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Abstract

We consider the 3D Euler equations for incompressible homogeneous fluids and we study the
problem of energy conservation for weak solutions in the space-periodic case. First, we prove
the energy conservation for a full scale of Besov spaces, by extending some classical results to a
wider range of exponents. Next, we consider the energy conservation in the case of conditions on
the gradient, recovering some results which were known, up to now, only for the Navier-Stokes
equations and for weak solutions of the Leray-Hopf type. Finally, we make some remarks on the
Onsager singularity problem, identifying conditions which allow to pass to the limit from solutions
of the Navier-Stokes equations to solution of the Euler ones, producing weak solutions which are
energy conserving.

1. Introduction

The aim of this paper is to extend some nowadays classical results about the energy conservation

for the space-periodic 3D Euler equations (here T
3 :=

(

R/2πZ
)3
)

∂tv
E + (vE · ∇) vE +∇pE = 0 in (0, T )× T

3,

div vE = 0 in (0, T )× T
3,

vE(0) = vE0 in T
3,

(1.1)

to embrace a full space-time range of exponents. Recall that it is known since [9] that weak
solutions of the Euler equations such that

vE ∈ Cw(0, T ;L
2(T3)) ∩ L3(0, T ;Bα

3,∞(T3)), with α >
1

3
, (1.2)

conserve the energy, where Bα,∞
3 (T3) denotes a standard Besov space and the motivation for

this result is the Onsager conjecture [15] following from Kolmogorov K41 theory. The Onsager
conjecture (only recently solved also for the negative part, see Isett [14] and De Lellis [6]) suggested
the threshold value α = 1/3 for energy conservation. Here, we consider a combination of space-
time conditions, identifying families of Besov spaces with the range (1/3, 1) for the exponent
of regularity balanced by a proper integrability exponent in time. Next, we consider also the
limiting case α = 1, and finally the connection of energy conservation with the vanishing viscosity
limits. We recall that the first rigorous results about Onsager conjecture are probably those of
Eyink [12, 13] in the Fourier setting and Constantin, E, and Titi [9] and we are mainly inspired
by these references; for the vanishing viscosity limit we follow the same path as in Drivas and
Eyink [10].
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The original results we prove concern: 1) the extension of (1.2) to a full scale of exponents
1
3 < α < 1, identifying the sharp conditions on the parameters, as previously done in the setting
of Hölder continuous functions in [4]; 2) the extension to the case α = 1, which means that we
look for conditions on the gradient of vE in standard Lebesgue spaces; 3) we identify hypotheses,
uniform in the viscosity, on solutions to the Navier-Stokes equations, which allow us to pass to
the limit as ν → 0 and to construct weak solutions of the Euler equations satisfying the energy
equality.

More precisely, concerning point 1) we extend the result of [9] to a wider range of exponents
proving the following theorem:

Theorem 1. Let vE be a weak solution to the Euler equations such that, for 1
3 < α < 1,

vE ∈ L1/α(0, T ;Bβ
2

1−α ,∞
(T3)), with α < β < 1. (1.3)

Then, vE conserves the energy.

Similar results have already been proved in the setting of Hölder continuous functions (see [3])
and in both cases, one can see that the limiting case α → 1− leads formally to L1(0, T ;W 1,∞),
which corresponds to the Beale-Kato-Majda criterion. Anyway, working directly with the velocity
vE in a Sobolev space, we obtain the following result:

Theorem 2. Let vE be a weak solution to the Euler equations such that, for q > 2,

vE ∈ Lr(0, T ;W 1,q(T3)), with r >
5q

5q − 6
. (1.4)

Then, vE conserves the energy.

The sharpness of this result comes by observing that we recover for the Euler equations the
same results (at least in this range of exponents) which are known for Leray-Hopf weak solutions
to the Navier-Stokes equations, see the recent results in [1, 5].

Concerning point 3) we extend results from [10, 4] on the emergence of solutions to the Euler
equations satisfying the energy equality as inviscid limits of Leray-Hopf weak solutions to the
Navier-Stokes equations (ν > 0)

∂tv
ν + (vν · ∇) vν − ν∆vν +∇pν = 0 in (0, T )× T

3,

div vν = 0 in (0, T )× T
3,

vν(0) = vν0 in T
3.

(1.5)

This result generalizes to a wider range of exponents the result from [10] which deals with
α ∼ 1/3 and also the results in [4], which are in the setting of Hölder continuous functions, but
with a more restrictive time-dependence for α > 1/2. We have the following result:

Theorem 3. Let {vν}ν>0 be a family of weak solutions of the NSE with the same initial datum

v0 ∈ H ∩ Bβ
2

1−α ,∞
(T3), β > α. Let also assume that for 1

3 < α < 1, and α < β < 1 there exists a

constant Cα,β > 0, independent of ν > 0, such that

‖vν‖L1/α(0,T ;Bβ
2

1−α
,∞

) ≤ Cα,β , ∀ ν ∈ (0, 1]. (1.6)

Then, in the limit ν → 0 the family {vν} converges (up to a sub-sequence) to a weak solution vE

in [0, T ] of the Euler equations satisfying the energy equality.

The problem of vanishing viscosity and construction of distributional (dissipative) solutions to
the Euler equations has a long history and we mainly refer to Duchon and Robert [11] for similar
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results. We also wish to mention the Fourier-based approach recently developed by Chen and
Glimm [7, 8] where spectral properties are used to deduce certain fractional regularity results,
suitable to prove the inviscid limit. Our proof uses standard mollification and handling of the
commutation terms. Even though the results use elementary techniques, they are new and rather
sharp. Note also that Theorem 3 implies that “quasi-singularities” are required in Leray-Hopf weak
solutions in order to account for anomalous energy dissipation, see the discussion and interpretation
in [10, 4].

Plan of the paper: In Section 2 we set up our notation by giving the definitions of the spaces
and the solutions that we use throughout the paper. Moreover, we recall the basic properties of
the mollification and the commutator formula that will be used extensively in the proofs of the
theorems. In Section 3 we give the proofs of Theorem 1 and 2, investigating minimum regularity
conditions for energy conservation, for weak solutions to the Euler equations. Finally, in Section 4,
we give the proof of Theorem 3, dealing with the emergence of weak solutions of Euler in the
limiting case ν → 0.

2. Notation

In the sequel we will use the Lebesgue (Lp(T3), ‖ . ‖p) and Sobolev (W 1,p(T3), ‖ . ‖1,p) spaces,
with 1 ≤ p ≤ ∞; for simplicity we denote by ( . , . ) and ‖ . ‖ the L2 scalar product and norm,
respectively, while the other norms are explicitly indicated. By H and V we denote the closure of
smooth, periodic, and divergence-free vector fields in L2(T3) or W 1,2(T3), respectively. Moreover,
we will use the Besov spaces Bα

p,∞(T3), which are the same as Nikol’skĭı spaces Nα,p(T3). They
are sub-spaces of Lp for which there exists c > 0, such that ‖u(· + h) − u(·)‖p ≤ c|h|α, and the
smallest constant is the semi-norm [ . ]Bα

p,∞
.

To properly set the problem we consider, we give the definitions of weak solutions:

Definition 1 (Weak solution to the Euler equations). Let v0 ∈ H. A measurable function vE :
(0, T )×T

3 → R
3 is called a weak solution to the Euler equations (1.1) if vE ∈ L∞(0, T ;H), solves

the equations in the weak sense:

∫ T

0

∫

T3

[

vE · ∂tφ+ (vE ⊗ vE) : ∇φ
]

dx dt = −
∫

T3

v0 · φ(0) dx, (2.1)

for all φ ∈ DT :=
{

φ ∈ C∞

0 ([0, T [×T
3) : div φ = 0

}

.

We also recall the definition of weak solutions to the Navier-Stokes equations.

Definition 2 (Space-periodic Leray-Hopf weak solution). Let vν0 ∈ H. A measurable function
vν : (0, T ) × T

3 → R
3 is called a Leray-Hopf weak solution to the space-periodic NSE (1.5) if

vν ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and the following hold true:
The function vν solves the equations in the weak sense:

∫ T

0

∫

T3

[

vν · ∂tφ− ν∇vν : ∇φ+ (vν ⊗ vν) : ∇φ
]

dxdt = −
∫

T3

vν0 · φ(0) dx, (2.2)

for all φ ∈ DT ;
The (global) energy inequality holds:

1

2
‖vν(t)‖22 + ν

∫ t

0

‖∇vν(τ)‖22 dτ ≤ 1

2
‖vν0‖22, ∀ t ∈ [0, T ]; (2.3)

The initial datum is strongly attained: limt→0+ ‖vν(t)− vν0‖ = 0.
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2.1. Mollification and Sobolev/Besov spaces

We use the classical tools of mollification to justify calculations and to this end we fix ρ ∈
C∞

0 (R3) such that ρ(x) = ρ(|x|), ρ ≥ 0, supp ρ ⊂ B(0, 1) ⊂ R
3,
∫

R3 ρ(x) dx = 1, and we define,
for ǫ ∈ (0, 1], the Friedrichs family ρǫ(x) := ǫ−3ρ(ǫ−1x). Then, for any function f ∈ L1

loc(R
3) we

define by the usual convolution

fǫ(x) :=

∫

R3

ρǫ(x− y)f(y) dy =

∫

R3

ρǫ(y)f(x− y) dy.

If f ∈ L1(T3), then f ∈ L1
loc(R

3), and it turns out that fǫ ∈ C∞(T3) is 2π-periodic along the
xj-direction, for j = 1, 2, 3. Moreover, if f is a divergence-free vector field, then fǫ is a smooth
divergence-free vector field. We report now the basic properties of the convolution operator we
will use in the sequel, see for instance [9, 2, 4].

Lemma 4. Let ρ be as above. If u ∈ Lq(T3), then ∃C > 0 (depending only on ρ) such that

‖uǫ‖r ≤
C

ǫ3(
1
q−

1
r )
‖u‖q for all r ≥ q; (2.4)

If u ∈ Bβ
q,∞(T3), then

‖u(·+ y)− u(·)‖q ≤ [u]Bβ
q,∞

|y|β,
‖u− uǫ‖q ≤ [u]Bβ

q,∞
ǫβ,

‖∇uǫ‖q ≤ C[u]Bβ
q,∞

ǫβ−1,

(2.5)

(2.6)

(2.7)

while if u ∈ W 1,q(T3), then

‖u(·+ y)− u(·)‖q ≤ ‖∇u‖q|y|,
‖u− uǫ‖q ≤ ‖∇u‖q ǫ,
‖∇uǫ‖q ≤ C‖u‖q ǫ−1.

(2.8)

(2.9)

(2.10)

In the sequel, the following well-known commutator formula derived in [9] and known as the
“Constantin-E-Titi commutator” will be crucial:

(u⊗ u)ǫ = uǫ ⊗ uǫ + rǫ(u, u)− (u− uǫ)⊗ (u− uǫ), (2.11)

with

rǫ(u, u) :=

∫

T3

ρǫ(y)(δyu(x)⊗ δyu(x)) dy, for δyu(x) := u(x− y)− u(x).

3. On the conservation of energy for ideal fluids

We prove Theorem 1 and, for β ∈ (13 , 1), we investigate the minimum Besov regularity that is
needed, so that weak solutions of the Euler equations conserve their kinetic energy.

Proof of Theorem 1. We test the Euler equations against ϕ = (vEǫ )ǫ to obtain

1

2
‖vEǫ (T )‖2L2(ΩT ) =

1

2
‖vEǫ (0)‖22 −

∫ T

0

∫

T3

rǫ(v
E , vE) : ∇vEǫ dxdt

+

∫ T

0

∫

T3

(vE − vEǫ )⊗ (vE − vEǫ ) : ∇vEǫ dxdt,

(3.1)

since
∫ T

0

∫

T3 v
E
ǫ ⊗ vEǫ : ∇vEǫ dxdt = 0, due to vEǫ being smooth and divergence-free. We now

estimate the last two terms from the right-hand side, using the properties of Besov spaces. Indeed,
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for 0 < η < 2 and q > 1, such that q − (1 + η) > 0 we write:

I1 :=

∣

∣

∣

∣

∣

∫ T

0

∫

T3

(vE − vEǫ )⊗ (vE − vEǫ ) : ∇vEǫ dxdt

∣

∣

∣

∣

∣

≤
∫ T

0

∫

T3

|vE − vEǫ |η|vE − vEǫ |2−η|∇vEǫ | dxdt

≤
∫ T

0

‖vE − vEǫ ‖ηq ‖vE − vEǫ ‖2−η
(2−η)q

q−(1+η)

‖∇vEǫ ‖q dt,

and in the second line we used Hölder’s inequality. Since a weak solution vE is in L∞(0, T ;H), if
(2−η)q
q−(1+η) = 2, we can use the energy bound to infer

‖vE − vEǫ ‖2 ≤ ‖vE‖2 + ‖vEǫ ‖2 ≤ 2‖vE‖2 ≤ 2 esssupt∈(0,T )‖vE‖2 ≤ C,

and thus by (2.6)-(2.7)

I1 ≤ C

∫ T

0

‖vE − vEǫ ‖ηq ‖∇vEǫ ‖q dt ≤ Cǫβη+β−1

∫ T

0

[vE(t)]η+1

Bβ
q,∞

dt,

where C > 0 does not depend on ǫ > 0.
Next, we estimate the remainder term in the commutator as follows:

rǫ(v
E , vE) =

∫

T3

ρǫ(y)(v
E(x− y)− vE(x))⊗ (vE(x− y)− vE(x)) dy

y=ǫz
=

∫

T3

ρ(z)(vE(x − ǫz))− vE(x)) ⊗ (vE(x− ǫz))− vE(x)) dz

≤
∫

T3

|vE(x − ǫz)− vE(x)|2 dz.

Then, as above, we can write for 0 < η < 2 such that (2−η)q
q−(1+η) = 2:

I2 :=

∣

∣

∣

∣

∣

∫ T

0

∫

T3

rǫ(v
E , vE) : ∇vEǫ dxdt

∣

∣

∣

∣

∣

≤
∫ T

0

∫

T3

∫

|vE(x− ǫz)− vE(x)|2|∇vEǫ | dzdxdt

=

∫ T

0

∫

T3

∫

T3

|vE(x− ǫz)− vE(x)|η|vE(x− ǫz)− vE(x)|2−η|∇vEǫ | dzdxdt

≤ C

∫ T

0

∫

T3

‖∇vEǫ ‖q ‖vE(· − ǫz)− vE(·)‖ηq‖vE(· − ǫz)− vE(·)‖2−η
(2−η)q

q−(1+η)

dxdt.

and using (2.6)-(2.7) we arrive at

I2 ≤ Cǫβη+β−1

∫ T

0

∫

T3

|z|ηβ[vE ]η+1

Bβ
q,∞

dzdt ≤ Cǫβη+β−1

∫ T

0

‖vE‖η+1

Bβ
q,∞

dt,

with C > 0 independent of ǫ.
Hence, for fixed β ∈ (13 , 1), we want to find (q, η) ∈ (1,+∞)×(0, 2) such that η+1 (the exponent
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of the Besov semi-norm) is the smallest possible, subject to the following set of constraints:







βη + β − 1 > 0
η < q − 1
(2−η)q
q−(1+η) = 2

.

Hence, we set η = 1−α
α and q = 2

1−α . The last two constraints are satisfied for α > 1/3 (leading

to q > 3); next, if β > α , then βη + β − 1 = β−α
α > 0 and consequently

0 ≤ I1 + I2 ≤ Cǫ
β−α
α

∫ T

0

[vE ]β
Bβ

2
1−α

,∞

dt
ǫ→0−→ 0

and letting ǫ→ 0 in (3.1) gives

1

2
‖vE(t)‖2L2 =

1

2
‖vE(0)‖2L2 . (3.2)

Therefore, for α ∈ (13 , 1), the “critical” space for energy conservation is L1/α(0, T ;Bα
2

1−α ,∞
).

We now prove the second theorem, corresponding to conditions on the gradient of vE , which
would, formally, be the same with α = 1, but in fact the result here is much stronger, since the
bound on the gradient allows us to make sense of the convective term in a more precise manner.

Proof of Theorem 2. In the case α = 1, the required regularity for energy conservation is ∇u ∈
Lr(0, T ;Lq(Ω)), for r > 5q

5q−6 , as follows from the following computations. The approach is similar

as before and we just need to control the commutator terms, after testing the equations by (vEǫ )ǫ
(we make explicit computations only for this one, since the remainder can be handled as we have
done before). We get in fact

I1 : =

∣

∣

∣

∣

∣

∫ T

0

∫

T3

(vE − vEǫ )⊗ (vE − vEǫ ) : ∇vEǫ dxdt

∣

∣

∣

∣

∣

≤
∫ T

0

∫

T3

|vE − vEǫ |2|∇vEǫ | dxdt

≤
∫ T

0

‖vE − vEǫ ‖22p ‖∇vEǫ ‖p′ dxdt

≤
∫ T

0

‖vE − vEǫ ‖2θ2 ‖vE − vEǫ ‖2(1−θ)
q ‖∇vEǫ ‖p′ dxdt,

where in the second step we used Hölder’s inequality with conjugate exponents p and p′ (to be
determined), and in the third one convex interpolation such that 1

2p = θ
2 +

1−θ
q , with 2p < q. Now,

using the fact that vE ∈ L∞(0, T ;L2(T3)) and inequality (2.4) for the gradient of vE

‖∇vEǫ ‖p′ ≤ Cǫ
−3

(

1
q−

1
p′

)

‖∇vE‖q, for p′ > q,

we obtain:

I1 ≤ Cǫ
−3

(

1
q−

1
p′

) ∫ T

0

‖vE − vEǫ ‖
2q(p−1)
p(q−2)
q ‖∇vE‖q dt

and (2.9)-(2.10) yield:

I1 ≤ Cǫ
2q(p−1)
p(q−2) −3

(

1
q−

1
p′

)
∫ T

0

‖∇vE‖
2q(p−1)
p(q−2)

+1
q dt.
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Now, we want to choose p such that the exponent of ǫ is non-negative, corresponding to

p >
(5q − 6)q

5q2 − 9q + 6
,

and notice that the expression on the denominator is strictly positive. Moreover, the constraints

2p < q and p′ > q imply that p < min
{

q
2 ,

q
q−1

}

and thus the range of allowed p is

(5q − 6)q

5q2 − 9q + 6
< p < min

{

q

2
,

q

q − 1

}

.

The second term on the right-hand side of (3.1) is handled the same way and yields the same
range for p. Then, for the infimum value of p that makes the exponent of ǫ non-negative, we get
that the exponent r of the Lq norm of the gradient becomes r = 5q

5q−6 and thus the “critical” space

for energy conservation (in the case α = 1) is ∇vE ∈ L
5q

5q−6 (0, T ;Lq(T3)).

4. Inviscid limit from Navier-Stokes to Euler

In this section we prove Theorem 3, dealing with the inviscid (singular) limit ν → 0 and
identifying sufficient conditions to construct weak solutions of the Euler equations conserving the
kinetic energy.

Proof of Theorem 3. In the weak formulation (2.2) of the NSE we set ϕ = (vνǫ )ǫ. Note that since
vν0 ∈ L2(Ω), we deduce, being vν a Leray-Hopf solution, that

‖uν‖L∞(0,T ;L2(T3)) + ‖√ν∇uν‖L2((0,T )×T3) ≤ C.

Moreover, since vν ∈ L1/α(0, T ;Bβ
2/(1−α),∞), it has a derivative in the sense of distributions in

the space L1/2α(0, T ;Bβ−2
1/(1−α),∞), given by dvν

dt = −P div(vν ⊗ vν) + ν∆vν , where P is the Leray

projector. Indeed, by comparison, (the subscript “σ” means divergence-free)

〈

∫ T

0

∂tv
ν , φdt

〉

=
〈

∫ T

0

− div(vν ⊗ vν) + ν∆un, φ dt
〉

, ∀φ ∈ C∞

σ (T3),

where 〈·, ·〉 is the duality pairing between elements of D∗(T3) and D(T3) = C∞(T3). Choosing
φ(x, t) = ψ(t)ϕ(x), with ψ ∈ C∞

0,σ(0, T ) and ϕ ∈ C∞

σ (T3) we obtain

〈

∫ T

0

∂tv
νψ, ϕdt

〉

=

∫ T

0

ψ(t)
〈

[−P div(vν ⊗ vν) + ν∆un] , ϕ
〉

dt

and note that

‖P div(vν ⊗ vν)‖L1/2α(0,T ;Bβ−2
1/(1−α),∞

) ≤ C‖vν ⊗ vν‖L1/2α(0,T ;Bβ−1
1/(1−α),∞

)

≤ C‖vν‖2
L1/α(0,T ;Bβ−1

2/(1−α),∞
)

≤ C‖vν‖2
L1/α(0,T ;Bβ

2/(1−α),∞
)
.

Moreover, since T
3 is bounded and T < +∞, the embeddings

L1/α(0, T ;Bβ−2
2/(1−α),∞) →֒ L1/2α(0, T ;Bβ−2

2/(1−α),∞) →֒ L1/2α(0, T ;Bβ−2
1/(1−α),∞),
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are continuous, thus

‖∆vν‖L1/2α(0,T ;Bβ−2
1/(1−α),∞

) ≤ C‖∆vν‖L1/2α(0, T ;B
β−2
2/(1−α),∞)

≤ C‖∆vν‖L1/α(0, T ;B
β−2
2/(1−α),∞)

≤ C‖vν‖L1/α(0,T ;Bβ
2/(1−α),∞

),

and we conclude that ∂tv
ν ∈ L1/2α(0, T ;Bβ−2

1/(1−α),∞).

Therefore, by the Aubin-Lions’ lemma, there exists a sub-sequence (which is not relabeled)
such that:

vν → v strongly in Lq(0, T ;H) ∀ q ∈ (1,∞)
√
ν∇vν ⇀ 0 weakly in L2(0, T ;H)

∂tv
ν ⇀ ∂tv weakly in L1/2α(0, T ;Bβ−2

1/(1−α),∞),

which is enough to pass to the limit as ν → 0 in (2.2), proving that v is a solution of the Euler
equations.

As a final step, we show that the dissipation in the energy equation goes to zero as ν → 0,
yielding an energy equation for the limiting solution v, as well. Indeed, for β > α and α ∈ (13 ,

1
2 ]:

ν

∫ T

0

‖∇vνǫ ‖22 dt ≤ Cν

∫ T

0

‖∇vνǫ ‖2 2
1−α

dt ≤ Cνǫ2(β−1)

∫ T

0

‖vν‖2
Bβ

2
1−α

,∞

dt

≤ Cνǫ2(β−1)‖vν‖2
L

1
α (0,T ;Bβ

2
1−α

,∞
)
,

where C > 0 does not depend on ǫ or ν and we need to choose ν going to zero faster than ǫ2(1−β).
This is the extension of the result in [4] for the Hölder case. In the case α > 1/2 we prove here a
slightly better result, since

ν

∫ T

0

‖∇vνǫ ‖22 dt = ν

∫ T

0

‖∇vνǫ ‖
2− 1

β

2 ‖∇vνǫ ‖
1
β

2 dt ≤ ν

∫ T

0

(

1

ǫ
‖vǫ‖2

)2− 1
β

(

ǫβ−1‖vǫ‖Bβ
2

1−α
,∞

)
1
β

dt

≤ Cνǫ−1‖vν‖2
L

1
α (0,T ;Bβ

2
1−α

,∞
)
,

with C > 0 independent of ǫ and ν. One needs to choose ν going to zero faster than ǫ.

So, in the case 1
3 < β ≤ 1

2 we have ν
∫ T

0 ‖∇vνǫ ‖22 dt = O(νǫ2(β−1)), and thus

1

2
‖vν(T )‖22 −

1

2
‖uν0‖22 = O(ǫ

β−α
α ) +O(νǫ2(β−1));

on the other hand in the case 1
2 < β < 1 we have ν

∫ T

0 ‖∇vνǫ ‖22 dt = O(νǫ−1), and thus

1

2
‖vν(T )‖22 −

1

2
‖uν0‖22 = O(ǫ

β−α
α ) +O(νǫ−1).

Since ǫ > 0 is arbitrary, we can optimize the upper bound, the same way it was performed in [10],
by balancing the contribution of the nonlinear flux with the one of the dissipation. Choosing
ǫ ∼ να/(α+β−2αβ) in the first case and ǫ ∼ να/β in the second one, yields the upper bounds

1

2
‖vνǫ (T )‖22 −

1

2
‖uν0‖22 = O(ν

β−α
α−2αβ+β ),

and
1

2
‖vνǫ (T )‖22 −

1

2
‖uν0‖22 = O(ν

β−α
β ),

8



respectively, hence showing that as ǫ, ν → 0 with the above rates, the kinetic energy is conserved.
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