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Abstract— Reliably measuring fear perception could help
evaluate the effectiveness of treatments for pathological condi-
tions such as specific phobias or post-traumatic stress syndrome
(e.g., exposure therapy). In this study, we developed a novel vir-
tual reality (VR) scenario to induce fear and evaluate the related
physiological response by the analysis of skin conductance (SC)
signal. Eighteen subjects voluntarily experienced the fear VR
scenario while their SC was recorded. After the experiment,
each participant was asked to score the perceived subjective
fear using a Likert scale from 1 to 10. We used the cvxEDA
algorithm to process the collected SC signals and extract several
features able to estimate the autonomic response to the fearful
stimuli. Finally, the extracted features were linearly combined
to model the subjective fear perception scores by means of
LASSO linear regression. The sparsification imposed by the
LASSO procedure to mitigate the overfitting risk identified an
optimal linear model including only the standard deviation of
the tonic SC component as a regressor (p = 0.007; R2 = 0.3337).
The significant contribution of this feature to the model suggests
that subjects experiencing more intense subjective fear have a
more variable and unstable sympathetic tone.

I. INTRODUCTION

Fear is an emotion commonly experienced in response to
potentially dangerous or threatening cues but, when poorly
regulated, it can result in excessive manifestations and per-
sist in everyday situations, with implications in different
pathological conditions. Indeed, the long-term exposition to
fear could cause impairment of memories and difficulties in
regulating emotions [1]. Moreover, when fear translates into
irrational feeling, it could affect humans’ mental health by
originating conditions like specific phobias or post-traumatic
stress syndrome. Such pathological states substantially im-
pact daily life due to the adverse effects on our decision-
making, learning, and thinking processes.

One of the most effective clinical approaches to treat
phobias is exposure therapy [2]: a psychological treatment
that gradually exposes pathological subjects to irrationally
fearful objects. In this context, measuring fear perception
could help evaluate the effectiveness of the treatment as well
as standardize and control the exposure sessions.
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In clinical practice, the common approach to assess emo-
tions relies on psychometric scales and self-reported mea-
sures. Indeed, several self-assessment questionnaires have
been already developed and applied to evaluate the fear
induced by specific phobias (e.g., height [3], [4], spiders
[5]) in the exposure therapies context [6]. However, each
self-reported questionnaire has potential issues concerning
reliability and replicability mainly due to its subjective
nature, leading to biased measures. Thus, in the last years
more objective methods have been proposed to estimate
psychophysiological states by analyzing their physiological
correlates in response to emotional stimuli (e.g., fearful
stimuli) [7], [8]. Such a physiological response is regulated
by the parasympathetic and sympathetic branches of the
autonomic nervous system (ANS) and is manifested by
variations in different peripheral anatomic signals. One of the
most studied sympathetic nervous system (SNS) correlates in
fear studies is the skin conductance (SC) [9], which has been
recently used to assess anxiety disorders [10], and investigate
the fear learning and conditioning processes [11].

Nevertheless, despite the extensive use of SC in fear
studies, to the best of our knowledge, a model of the sys-
tematic relationship between the skin conductance response
patterns and fear perception level is still missing. Such an
analysis is complicated by the subject-dependent response
to fearful stimuli and by difficulties in reliably, reproducibly
and controllably eliciting specific emotions.

In the last decades, most affective computing studies
have attempted to induce fear by using mainly passive and
unengaging media such as the Internation Affective Picture
System (IAPS) and the International Affective Digitized
Sounds (IADS) or the so-called film clip paradigm [12].
However, the sense of presence and engagement represents
a crucial aspect of fear elicitation protocols [13]. The recent
advancements in computer vision and computational tools
have enabled virtual reality (VR) technologies in fear studies.
In this context, the opportunity to design virtual simulations
that faithfully mimic real-world situations can pave the
way to fear elicitation protocols that contemporarily involve
discrete responses and situational fear [14].

In this preliminary study, we developed a virtual scenario
to induce situational fear and investigate specific SC com-
ponents able to explain the subjective perception of fear. In
particular, we designed three different virtual scenarios in
which subjects could freely navigate. The SC signals were
recorded during the virtual exploration through a wearable
device. Afterwards SC signals were processed to extract
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specific features reflecting both tonic and phasic sympathetic
activation and to linearly combine them to explain the level
of subjective fear reported. To this aim, we adopted a
cross-validated LASSO regression procedure to build the
best linear model associating the physiological response and
psychological perception to a fearful virtual environment.

II. MATERIALS & METHODS
A. Study population & experimental protocol

Eighteen healthy subjects (12 females), aged between 18
and 35, voluntarily participated in the experiment. The study
was approved by the bioethical commitee of the University
of Pisa (n. 14/2019). Before beginning the experimental
sessions, the subjects were asked to sign the informed
consent and fill in the S.T.A.I. Y-1 questionnaire. Only
subjects with a S.T.A.L. Y1 score less than 45 (i.e., threshold
of a high anxious state) were included in the experiment.
The experimental protocol (see Figure 1) consisted of four
sessions showing three different VR scenarios, as follows:

« Session 1, Rest (R): the participants were immersed for
three minutes in a void space and they were asked to
relax.

o Session 2, Neutral (N): each subject visited a virtual
living room for three minutes, representing a neutral
situation in terms of emotional stimulation.

o Session 3, Fear (F): the participants explored for five
minutes a virtual scenario purposely designed to induce
subejctive fear.

o Session 4. Recovery (V): the participants were im-
mersed for three minutes in the same void space to
recover.

We adopted the Oculus Rift S (Lenovo and Facebook
Technologies, USA) to render and update the VR scenarios
and a Shimmer 3GSR+ unit to record the SC signals sampled
at 50.33 Hz throughout the experiment.

After the experiment, each subject was asked to self-assess
the fear felt (SASF) during the F session by using a Likert
scale whose levels spanned from 1 to 10.
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Fig. 1. The experimental timeline. R=Rest session. N=Neutral session.
F=Fear-inducing session. V=Recovery session

B. Virtual environment design

We designed the three VR scenarios using the Unity3D
game engine. Subjects could navigate within the scenarios
using the Oculus touch controller. The speed of the move-
ments was limited to minimize possible motion sickness
effects. To control the emotional impact of the environments
we dealt with lightining conditions and colours temperature
[15]. The VR environments were developed as follows:

1) Rest scenario: The R and V sessions were charac-
terized by a void space displaying only a black text on a
neutral warm coloured background. The black text invited
the participants to relax and the background colour was
accurately selected to avoid arousing effects.

2) Neutral scenario: The N scenario was designed to help
the subjects adapt to the immersive virtual environment and
to train them to move using the Oculus touch controller.
To control the emotional impact of this session, the lights
were configured with neutral colour temperature and equally
divided between direct and indirect [15]. In addition, the
objects within the scenario were of neutral colours [15].

3) Fear scenario: The F session represented a virtual
abandoned hospital of 550m> following horror movies and
games specific guidelines [16]. Accordingly, we set flickering
dimmed lights to favour darkness and provide suspenseful
audio. The participants could navigate within the low-light
environment using a virtual flashlight bound to the non-
dominant hand. To enhance the fear-inducing effect of the
environment, we included a series of virtual horror contents
combining both sight and auditory sensory channels stimu-
lation.

Fig. 2. F session design. On the left side=virtual abandoned hospital. On
the right side=example of virtual horror content.

C. SC decomposition & feature extraction

To monitor the SNS activity, we recorded and analyzed
the SC signal throughout the whole experiment. Indeed, the
SC describes variations in the electrical properties of the skin
and represents one of the most direct measures to observe
the SNS dynamics. The SC signal is comprised of two
main components: a slow-varying component (i.e., the skin
conductance level; SCL) and fast-varying fluctuations (i.e.,
the skin conductance response; SCR). These operate with
different timescale and relationships with exogenous stimuli.
The SCL reflects the sympathetic tone of the subject [17] and
contains information about the general psychophysiological
state [18]. The SCRs arise in response to external stimuli.
We used the cvxEDA algorithm [19] to decompose the SC
signal in its components (i.e., SCL and SCRs) and jointly
estimate the sympathetic bursts of the SMNA underlying the
SCRs.

Once the SC signals were decomposed, we processed the
SCL, the SCRs and the SMNA signals to extract several
features (Table I). In particular, the SCL signals were seg-
mented using non-overlapped time windows of 20 seconds.
For each segment, we extracted the mean value (SCLmean)
and the standard deviation (SCLstd). Likewise, we used a
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shorter non-overlapped time window of 5 seconds to analyze
the SCRs and the SMNA signals. More specifically, we
estimated the mean value of the SCR component (SCRmean),
and the amplitude of the maximum peak (PeakMax), the
spikes number (NPeak) and the sum of the peaks amplitude
(AmpSum) from the SMNA signal. In addition, we computed
the SC spectral power in the frequency band 0.04-0.15
Hz (EDAsymp) within non-overlapped time windows of
60 seconds. Finally, we computed the difference between
averaged values within the time segments considering the
features extracted from the F' and the R session.

TABLE I
LIST OF INVESTIGATED SC FEATURES

Feature Description
SCLmean SCL mean value
SCLstd SCL standard deviation
SCRmean SCR mean value
. Maximum amplitude within the
PeakMax SMNA spike train
Number of peaks within the
NPeak SMNA spike train
Sum of the peak amplitudes
AmpSum | iihin the SMNA spike train
. SC spectral power in the
EDAsymp | quency band 0.04-0.15 Hz

D. Statistical analysis: LASSO regression

We modeled the collected SASFs as a function of the
extracted features. To select the best linear model explaining
the SASFs, we adopted the LASSO (least absolute shrinkage
and selection operator) linear regression [20]. The LASSO
is a model that implements a regularization technique based
on L'-norm particularly suited to handle multicollinearity
and mitigate the overfitting risk in the regression models.
A typical LASSO problem considering n features can be
formulated as the following minimization problem (Eq. 1):

min {|ly — X5+ |XB|}} (D
BeR"

Where y represents the dependent variable to be modeled
(i.e., the SASFs), X is the design matrix containing the
SC features, § defines the coefficients vector, and A is a
regularization parameter controlling for the sparsity of the
solution.

Given the high number of regressors compared to the
number of observations, to facilitate model interpretability
and comparisons between regressors, we applied the LASSO
model after z-scoring the SC features. Then, the model was
evaluated in terms of mean squared error (MSE) according
to a 9-folds cross-validation. The cross-validation was ac-
complished for a geometric sequence of 100 different values
of A ranging from 1.39¢ —4 to 1.39. The SC features were
ranked by analyzing the relative coefficient at the different
A coefficient values. Afterwards, the statistical significance
of the selected features was evaluated through an exact post-
selection inference procedure [21] to overcome the overfitting
issues affecting the standard way of conducting inference

in regression models. Then, the values of B and A that
minimized the MSE were considered to fit the best model
explaining the SASFs.

III. RESULTS

Cross-Validated MSE of Lasso Fit
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Fig. 3. The upper figure shows the Mean Squared Error (MSE) of the

least absolute shrinkage and selection operator (LASSO) regression model
estimating the SASFs at different values of A. The intervals of confidence
for each considered A were obtained through a 9-folds cross-validation.
The bottom figure shows the value of each regressor coefficient at different
values of A.

The anxiety of each participant was classified as
low/moderate (i.e., S.T.A.I. Y-1 score less than 45); thus,
no subjects were excluded from the experimental sessions.
The SASF's scores evaluating the subjective fear felt during
the virtual exploration of the abandoned hospital was equal
to 7.50+£ 1.50.

The feature selection process imposed by the LASSO
L'-regularization reduced the dimensionality of the feature
set by finding a sparse optimal model (Figure 3). The SC
features were ranked according to the trend of the relative
coefficients shown in Figure 3. The Table II reports such a
feature ranking.

TABLE II
LASSO FEATURE RANKING. Ay INDICATES THE VALUE OF THE A
PARAMETER IMPOSING THE BETA COEFFICIENT OF THE RELATIVE SC
FEATURE EQUAL TO ZERO.

Feature Rank Ao
SCLstd 1 1.03993
SCLmean 2 0.3158
PeakMax 3 0.1647
NPeak 4 0.1246
SCRmean 5 0.0780
EDAsymp 6 0.0530
AmpSum 7 0.0111

The model that minimized the mean squared error (A =
0.4582) within the 9-folds cross-validation framework im-
posed coefficients equal to zero for six of the seven extracted
features. Thus, according to the results produced by the
LASSO algorithm, only SCLstd was included in the best
model. The exact post-selection inference showed the statis-
tical significance of this feature (p = 0.007) at the value of
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lambda that minimized the MSE. The model accounted for
the 33.73% of the SASFs variability.
The model was the following (Eq. 2):

SASF = 6.4118+0.9701 - TonicStd 2)
The model (Eq. 2) minimum MSE was equal to 4.3439.

IV. DISCUSSION

In this study, we combined a VR fear-inducing scenario
with a LASSO regression to investigate the SC features
able to explain the processes underlying the perception of
situational fear. Our work confirms the capability of VR to
induce genuine emotional states in ecological, reproducible
and highly-controllable experimental environments. While
the traditional laboratory conditions can only administer
discrete and decontextualized emotional stimuli, VR allows
for an experimental manipulation of the whole environment
where the emotional reactions are elicited and consciously
perceived. For what concerns the proposed VR scenario,
the high median value of the SASFs scores suggested that
it represented a suspenseful context inducing a high level
of subjective fear (i.e., situational fear). Interestingly, the
psychophysiological correlates of such situational fear (con-
sciously reported) are distinguishable from those of fight-
or-flight responses to discrete fearful stimuli (that do not
necessarily involve consciousness; [22]). Indeed, the analysis
based on LASSO regression revealed an optimal linear
model for the available dataset, including only SCLstd as
a regressor rather than fast reactions typical of the fight-
or-flight response to discrete stimuli. This mechanism could
represent a possible etiology and therapeutic target for mental
disorders sharing an irrational fear for specific animals,
objects or situations (e.g., specific phobias, post-traumatic
stress disorder, panic disorder). Future works will explore
the physiological reaction induced by the discrete stimuli
within the proposed virtual scenario.

V. CONCLUSIONS

This study proposes a novel virtual scenario able to
induce situational fear providing at the same time a flexible
tool to investigate possible physiological correlates of this
emotion. In this work, we analyzed both fast- and slow-
varying components of the SC signal by using a LASSO
regression model explaining the self-reported situational fear.
This analysis could be considered the first step towards
an objective measurement of fear perception entirely based
on sympathetic dynamics, preferable to possibly unreliable
subjective reports.
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