### 1 EVOLVED GAS ANALYSIS-MASS SPECTROMETRY AND ISOCONVERSIONAL METHODS FOR THE

### 2 ESTIMATION OF COMPONENT-SPECIFIC KINETIC DATA IN WOOD PYROLYSIS

### 3 Federica Nardella, Marco Mattonai, Erika Ribechini

- 4 Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
- 5

### 6 Abstract

- 7 The pyrolysis reactions of hardwood and softwood were investigated using evolved gas analysis and mass spectrometry (EGA-MS) and by treating the experimental data with isoconversional methods to obtain 8 kinetic information. Mass spectrometric detection allowed the identification of the pyrolysis products to be 9 10 performed and component-specific thermograms were obtained by the extraction of appropriate m/zvalues without the need of peak-fitting. Finally, isoconversional methods, both an integral and a differential 11 method, were used on compound-specific thermograms to calculate apparent activation energies of the 12 13 carbohydrate and lignin fractions separately. The results showed that the two isoconversional methods 14 provide comparable results, and that there are significant differences between the energies of the holocellulose and lignin fractions. This work shows that EGA-MS can provide reliable kinetic data for multi-15 component samples without the need of chemical pre-treatments or signal deconvolution. 16 17
- 18 Keywords: Biomass; wood; isoconversional methods; evolved gas analysis; mass spectrometry
- 19

# 21 1. INTRODUCTION

| 22 | Pyrolysis of lignocellulosic biomass has been thoroughly investigated in the past decades as a promising        |                                                 |
|----|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 23 | source of sustainable fuels and highly valuable chemicals [1-4]. The complexity of biomass pyrolysis is such    | Codice campo modificato                         |
| 24 | that a sufficiently deep knowledge on the matter has not yet been obtained. In this frame, thermo-              |                                                 |
| 25 | analytical techniques have become tools of choice for the study of biomass pyrolysis, allowing us to            |                                                 |
| 26 | describe the composition of the pyrolysates and to obtain insights into the reaction mechanisms.                |                                                 |
| 27 | Isoconversional methods are a group of macroscopic modelling methods which provide kinetic data about           |                                                 |
| 28 | complex systems [5-7]. Model-free isoconversional methods are a sub-category of such methods, that allow        | Codice campo modificato                         |
| 29 | us to estimate an apparent activation energy for a reaction without any assumption on its mechanism. An         |                                                 |
| 30 | estimation of the activation energy of a pyrolytic process can provide useful information on the energetics     |                                                 |
| 31 | of the process, guiding the optimization of conversion strategies. Isoconversional methods have been            |                                                 |
| 32 | extensively applied in the field of biomass pyrolysis to process data from thermogravimetric analysis (TGA)     |                                                 |
| 33 | and differential scanning calorimetry (DSC) [8-12].                                                             | Codice campo modificato                         |
| 34 | The main disadvantage of using TGA and DSC data is that isoconversional analysis of samples with more           |                                                 |
| 35 | than one component will yield information on the pyrolysis process of the whole system, without                 |                                                 |
| 36 | information on the single components. This is particularly important when dealing with lignocellulosic          |                                                 |
| 37 | biomass, which is composed of a polysaccharidic fraction along with lignin, tannins and extractives.            |                                                 |
| 38 | Two main strategies have been proposed in order to solve this problem. The first strategy is to consider        |                                                 |
| 39 | wood components individually, either by studying commercially available substrates or by separating the         |                                                 |
| 40 | components using traditional wet-chemistry methods [13-15]. Although separation techniques have been            | Codice campo modificato                         |
| 41 | fully optimized throughout the years, they always present the risk of modifying the polymeric structure of      |                                                 |
| 42 | lignocellulose components, resulting in different pyrolysis mechanisms and therefore different apparent         |                                                 |
| 43 | activation energies. For instance, it is known that extraction and purification of cellulose deeply affect both |                                                 |
| 44 | its degree of polymerization and its crystallinity [16]. The second strategy is to perform the analysis of the  | Codice campo modificato                         |
| 45 | whole sample, and separate the contribution of each component to the total instrumental output by peak-         |                                                 |
| 46 | fitting [8,17]. This process does not entail sample pre-treatment, but requires approximation of each           | Codice campo modificato Codice campo modificato |
|    | _                                                                                                               |                                                 |

| 47 | degradation curve using specific mathematical expressions. This can be problematic when dealing with                          |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 48 | natural polymers such as lignin, whose complex structure follows an intricate, multi-step pyrolysis                           |
| 49 | mechanism and generates degradation profiles which are hardly rationalized by analytical functions.                           |
| 50 | Recently, isoconversional analysis has been applied to evolved gas analysis-mass spectrometry (EGA-MS),                       |
| 51 | demonstrating that this technique can provide similar information to those obtained by TGA and DSC                            |
| 52 | [18,19]. Here, EGA-MS data obtained from the analyses of both softwood and hardwood samples were                              |
| 53 | treated with both differential and integral isoconversional methods. In EGA-MS, the pyrolysis products                        |
| 54 | evolved from each component of the sample can be monitored as a function of the furnace temperature in                        |
| 55 | a wide range of <i>m</i> /z values [20,21]. If a group of specific <i>m</i> /z values can be attributed to a single component |
| 56 | of the sample, then the extraction of these values from the total ion thermogram can be used to obtain                        |
| 57 | component-specific thermograms. Apparent activation energies are determined both from the total ion                           |
| 58 | thermogram, and from the thermograms obtained by selection of holocellulose- and lignin-specific $m/z$                        |
| 59 | values. Comparison of the activation energies are also carried out to discuss relations between the total                     |
| 60 | and component-specific activation energies. To the best of our knowledge, this is the first work dealing                      |
| 61 | with the study of whole lignocellulose using differential and integral isoconversional methods on both total                  |
| 62 | and extracted ion thermograms.                                                                                                |
| 63 |                                                                                                                               |
| 64 | 2. MATERIALS AND METHODS                                                                                                      |
| 65 | 2.1 Samples                                                                                                                   |
| 66 | Pine (Pinus pinaster), fir (Abies alba), oak (Quercus petraea) and iroko (Milicia excelsa) wood slabs were                    |
| 67 | obtained from a local provider. The slabs were mechanically reduced to splinters, and then the splinters                      |
| 68 | were ground to a fine powder_using a Pulverisette 23 vibratory ball-mill (Fritsch,                                            |
| 69 | Germany). The resulting particle size was measured with mechanical filters at various meshes and was                          |
|    |                                                                                                                               |

- 70 <u>found to be approximately 0.2 mm.</u> Before analysis, the powders were dried in oven at 60 °C for 8 h.
- 71 Approximately 50  $\mu$ g of sample were used for each experiment.

Codice campo modificato Codice campo modificato

Codice campo modificato Codice campo modificato

## 73 2.3 Experimental setup

| 74 | All experiments were performed with an EGA/PY-3030D micro-furnace pyrolyser (Frontier Laboratories                    |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 75 | Ltd., Japan) coupled to a 6890 gas chromatograph equipped with a split/splitless injector and a 5973 mass             |
| 76 | spectrometric detector (Agilent Technologies, USA). During each experiment, the furnace temperature was               |
| 77 | raised from 100 to 700 °C at six different heating rates ( $\beta$ = 15, 20, 25, 30, 35 and 40 °C/min). The interface |
| 78 | between the furnace and the GC injector was kept at 100 °C above the furnace temperature, to a maximum                |
| 79 | of 300 °C. The GC injector was operated in split mode with a 20:1 ratio at 280 °C. The pyrolyser and mass             |
| 80 | spectrometer were connected by an Ultra ALLOY deactivated and uncoated stainless-steel capillary column               |
| 81 | (UADTM-2.5N, 2.5 m x 0.15 mm, Frontier Laboratories Ltd, Japan), which was kept at 300 °C. Helium (1.2                |
| 82 | mL/min) was used as carrier gas. The mass spectrometer was operated in EI positive mode (70 eV, $m/z$                 |
| 83 | range 50-300). The ion source and quadrupole analyzer were kept at 230 $^\circ$ C and 150 $^\circ$ C, respectively.   |

#### 84 2.4 Data processing

The total and extracted thermograms at different heating rates for each sample were processed with
isoconversional methods. First, conversion profiles were calculated from the thermogram using (1), where
S is the total ion current of the mass spectrometer as a function of the temperature T, T<sub>0</sub> the initial
temperature, and A<sub>TOT</sub> is the total area of the thermogram.

89 (1) 
$$\alpha = \frac{1}{A_{TOT}} \int_{T_0}^T S(\tau) d\tau$$

Both the differential and the Kissinger-Akahira-Sunose isoconversional methods were used. The equations for these two methods are (2) and (3), respectively, where  $\alpha$  is the conversion,  $\beta$  is the heating rate,  $E_a$  the activation energy, R the gas constant, and  $q(\alpha)$  and  $r(\alpha)$  are functions of the conversion. For a fixed value of  $\alpha$ , both these equations give a linear trend of the left side as a function of 1/T. The slope of these functions can be directly related to the activation energy.

95 (2) 
$$\ln\left(\beta\frac{d\alpha}{dT}\right) = -\frac{E_a}{RT} + q(\alpha)$$

| 96  | (3) $\ln\left(\frac{\beta}{T^2}\right) = -\frac{E_a}{RT} + r(\alpha)$                                               |                                           |
|-----|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 97  | The derivative of the conversion to be used in (2) was calculated using the definition of conversion given in       |                                           |
| 98  | (1), as shown in (4). Equation (4) shows that the derivative of conversion can be calculated directly from the      |                                           |
| 99  | total ion current S of the mass spectrometer, without requiring derivation. This is an important advantage          |                                           |
| 100 | of EGA-MS over TGA, as derivation usually results in a decrease of the signal to noise ratio and introduces         |                                           |
| 101 | significant error in the calculation [5] <del>(5)</del> .                                                           | Codice campo modificato                   |
| 102 | $(4)\frac{d\alpha}{dT} = \frac{1}{A_{TOT}}\frac{d}{dT}\int_{T_0}^T S(\tau)d\tau = \frac{S(T)}{A_{TOT}}$             |                                           |
| 103 | Reproducibility of the EGA-MS experiments was established by repeating the analysis of the same sample              |                                           |
| 104 | at the same heating rate for three times. The relative standard deviation, calculated on the total                  |                                           |
| 105 | thermogram area divided by the sample amount, was found to be less than 10%.                                        |                                           |
| 106 |                                                                                                                     |                                           |
| 107 | 3. RESULTS AND DISCUSSION                                                                                           |                                           |
| 108 | 3.1 EGA-MS                                                                                                          |                                           |
| 109 | Figure 1 shows the total ion thermograms obtained for pine and oak, which are representative of a                   |                                           |
| 110 | softwood and a hardwood, respectively. The associated average mass spectra are also shown.                          |                                           |
| 111 | The lower $m/z$ ratios in the mass spectra ( $m/z$ 57, 60, 69, 73, 85, 98, 114) can be related to the pyrolysis     | ha formattato: Tipo di carattere: Corsivo |
| 112 | products of the polysaccharidic fraction of the wood, while the higher ratios ( <i>m/z</i> 137, 151, 164, 167, 181) | ha formattato: Tipo di carattere: Corsivo |
| 113 | are ascribable to the lignin thermal degradation. The structures of the fragment ions responsible for the           | ha formattato: Tipo di carattere: Corsivo |
| 114 | main MS peaks are displayed in Table 1.                                                                             |                                           |
| 115 | The ions giving signals at $m/z$ 60, 69 and 73 are obtained by fragmentation reactions involving the                | ha formattato: Tipo di carattere: Corsivo |
| 116 | monocarcharides of holocollulose [22] These fragmentations can take place following various mechanisms              |                                           |
| 110 | monosacchanges of holocendiose [22]. These fragmentations can take place following various mechanisms,              | Codice campo modificato                   |
| 117 | including extrusions, retro-aldol condensation and retro-Diels-Alder reactions. Fragmentation of                    |                                           |







- **Figure 1** Top: Total ion thermograms obtained for (left) pine wood and (right) oak wood at  $\beta$  = 20 °C/min.
- 125 Bottom: average mass spectra from the EGA profiles of (left) pine and (right) oak.



# 130 Table 1 – Structures of the fragment ions deriving from holocellulose and lignin.

## 131

| 132 | The signals at $m/z$ 137, 151 and 164 are characteristic of guaiacyl alcohol monomers, which are obtained    |   |
|-----|--------------------------------------------------------------------------------------------------------------|---|
| 133 | from depolymerization of both softwood and hardwood lignin during pyrolysis, while the peaks at $m/z$ 167    |   |
| 134 | and 181 are characteristic of syringyl alcohol monomers, only present in hardwood lignin. The characteristic |   |
| 135 | signals of lignin correspond to its monomers, generated from depolymerization, which have undergone a        |   |
| 136 | partial fragmentation of the propanoid side chain. The ions at $m/z$ 137 and 167 are obtained after loss of  |   |
| 137 | two carbon atoms from the side chain, while those at $m/z$ 151 and 181 are obtained after the loss of a      |   |
| 138 | single carbon atom [27,28].                                                                                  | < |
| 139 | In order to separate the contribution of holocellulose and lignin we extracted the main $m/z$ signals        |   |
| 140 | representative of both holocellulose and lignin from the total ion thermograms: $m/z$ 60, 69 and 73 for      |   |

holocellulose, m/z 137, 151, 167 and 181 for lignin. The extracted ion profiles are displayed in Figure 2.

Codice campo modificato



| As expected, the abundance of the signal at $m/2$ 167 and 181 for pine wood is very low due to the low                     |
|----------------------------------------------------------------------------------------------------------------------------|
| amount of syringyl-lignin in softwoods, while all four $m/z$ signals provided significant peak heights in the              |
| case of oak wood. The total ion thermograms of all the samples considered are provided in Figure S1 in the                 |
| Supplementary Materials along with their compound-specific thermograms for                                                 |
| holocellulose and lignin.                                                                                                  |
|                                                                                                                            |
| 3.2 Isoconversional methods                                                                                                |
| Both differential and Kissinger-Akahira-Sunose isoconversional methods were used to calculate apparent                     |
| activation energies from the EGA-MS thermograms. In addition to the total ion thermogram, two fraction-                    |
| specific thermograms were obtained by extracting the discussed $m/z$ signals. The $m/z$ signals were chosen                |
| based on their relative intensities in the mass spectra and their representativeness of the corresponding                  |
| fraction of wood.                                                                                                          |
| The m/z signals at 60, 69 and 73 were extracted and summed to obtain a holocellulose-specific                              |
| thermogram, while the m/z signals at 137, 151, 167 and 181 were used to obtain a lignin-specific                           |
| thermograms. Normalized total ion thermograms and compound-specific thermograms at all heating rates                       |
| for both pine and oak wood are displayed in Figure 3. <u>Although a small number of <i>m/z</i> values was selected</u>     |
| for each compound-specific thermogram, well-defined profiles were obtained in most of the cases. The                       |
| only exception to this was oak lignin, which provided a relatively low signal-to-noise ratio. This is most likely          |
| due to a low content of lignin in this hardwood sample.                                                                    |
| Once the series of thermograms was obtained, the extent of conversion $\alpha$ was calculated using (1). Figure 5          |
| shows the conversion profiles obtained for pine wood and oak wood at all heating rates.                                    |
| Once the conversion profiles were determined, six conversion values (from $\alpha$ =0.2 to $\alpha$ =0.7 with intervals of |
| 0.1) were chosen, for each sample, to perform linear regression. We selected this range of values because                  |
| of the background noise existing in the thermograms, in particular in the extracted ion thermograms. The                   |
| presence of the noise can affect the results at limit values of conversion, providing high standard deviations             |
|                                                                                                                            |

# 180 <u>and improper interpretation of the data. The obtained conversion profiles are presented in Figure 4.</u> Figure

181 5 and Figure 6 show the regression curves obtained for pine and oak woods and their components, using

182 the KAS method and the differential method respectively.

183



185 Figure 3 – Normalized thermograms obtained by EGA-MS for pine and oak raw wood, holocellulose and

187

<sup>186</sup> lignin at different heating rates (15, 20, 25, 30, 35, 40 °C/min).



190 Figure 4 – Conversion profiles obtained for (left) pine wood and (right) oak wood and their component.



193 Figure 5 – Linear regression curves obtained using the KAS method for (left) pine and (right) oak woods and

194 their components.



**Figure 6** – Linear regression curves obtained using the differential method for (left) pine and (right) oak

198 woods and their components.

| 200 | Graphical trends of the results apparent activation energies obtained for all wood samples are shown in                   |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 201 | Figure 7. Oak wood showed the highest values of apparent activation energy and was the only case in                       |
| 202 | which these values increased with the increase of the conversion. The activation energies obtained for the                |
| 203 | other woods tended to decrease as $\alpha$ increased. Significant variations of $E_a$ can be observed between the         |
| 204 | lowest and the highest conversion values selected ( $\alpha$ =0.2 and $\alpha$ =0.7). In only a few cases, the changes in |
| 205 | the $E_a$ values calculated with the KAS method fall within the estimated uncertainties, but overall, we can              |
| 206 | state that the activation energy varies with the extent of conversion. The observed trends are likely due to              |

## 207 an interaction between the pyrolysis products and the substrate, which can modify the reaction mechanism

and therefore the corresponding activation energy as the temperature raises [5].

Codice campo modificato



210

209

211 Figure 7 – Apparent activation energy values as a function of conversion for pine, fir, oak and iroko and

213

The values of the apparent activation energies measured for the lignin component are higher on average than those calculated for the raw wood and the holocellulose component. This was expected, as lignin is

216 the most thermally resistant component of wood and its degradation occurs at higher temperatures than

<sup>212</sup> their fractions obtained with (left) KAS and (right) differential methods.

217 the degradation of holocellulose. This is also confirmed by the temperature values of the holocellulose and

218 lignin-specific thermograms in Figure 3.

219 The six slopes obtained from the regression curves were averaged to estimate the activation energies. The

results obtained for <u>all wood samples</u> are shown in Table 2

221 222

.

223 Table 2 – Apparent activation energies and R<sup>2</sup> values obtained by linear regression using KAS and

224 differential isoconversional methods on EGA-MS data; H: holocellulose; L: lignin.

|         | KAS E <sub>a</sub> (KJ/mol) | KAS average R <sup>2</sup> | Differential E <sub>a</sub> (KJ/mol) | Differential average R <sup>2</sup> |
|---------|-----------------------------|----------------------------|--------------------------------------|-------------------------------------|
| Pine    | 88 ± 1                      | 0.988                      | 85 ± 5                               | 0.992                               |
| Pine H  | 85 ± 5                      | 0.987                      | 75 ± 6                               | 0.974                               |
| Pine L  | 100 ± 4                     | 0.973                      | 97 ± 20                              | 0.968                               |
| Fir     | 84 ± 1                      | 0.976                      | 84 ± 5                               | 0.979                               |
| Fir H   | 76 ± 2                      | 0.981                      | 78 ± 6                               | 0.987                               |
| Fir L   | 92 ± 7                      | 0.952                      | 79 ± 6                               | 0.938                               |
| Oak     | 119 ± 10                    | 0.986                      | 128 ± 8                              | 0.983                               |
| Oak H   | 112 ± 6                     | 0.976                      | 119 ± 5                              | 0.977                               |
| Oak L   | 119 ± 4                     | 0.981                      | 114 ± 4                              | 0.980                               |
| Iroko   | 82 ± 4                      | 0.967                      | 74 ± 10                              | 0.950                               |
| Iroko H | 78 ± 3                      | 0.933                      | 71 ± 9                               | 0.951                               |
| Iroko L | 87 ± 3                      | 0.967                      | 82 ± 7                               | 0.986                               |

| 226 | It is important to notice that, despite the lower signal-to-noise ratio, the relative standard deviation on the               |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 227 | apparent activation energy and average R2 of oak lignin were comparable with those obtained from the                          |
| 228 | other thermograms. The average activation energies obtained with the two methods were compared using                          |
| 229 | the Student's <i>t</i> -test and Welch's test at a 95% confidence. The differences between E <sub>a</sub> values proved to be |
| 230 | statistically negligible in most of the cases. For pine holocellulose and fir lignin the values obtained with the             |
| 231 | two methods result to be statistically different. These results suggest that the differential and integral                    |
| 232 | isoconversional methods can both be used to obtain reliable kinetic data on the pyrolysis process of wood.                    |
| 233 | In particular, EGA-MS allows us to use the differential method with the advantage of calculating d $lpha/dT$                  |

| 254 | directly from the experimental data, without performing any derivation. This is particularly interesting, as                         |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|---|
| 235 | the differential method estimates the activation energy without any mathematical approximation.                                      |   |
| 236 | The obtained apparent activation energy values were compared with those available in the literature                                  |   |
| 237 | calculated from TGA experiment [13,32-38]. Data present in literature are summarized in Table S1 of the                              | < |
| 238 | Ssupplementary Mmaterials. In several cases the average energies measured in our work result to be lower                             |   |
| 239 | than the values reported in the literature. For instance, Yao and co-workers reported a value of 160 KJ/mol                          |   |
| 240 | for pine wood using the KAS method [33], while Park et al. determine the activation energy for oak trees in                          |   |
| 241 | the range of 216 – 461 KJ/mol by the differential method [36]. Both the works employ samples with particle                           |   |
| 242 | size around 0.8 mm. The difference could be due to the heat transfer to the sample-since it's well known                             |   |
| 243 | that the particles size influences the heat transfer process [39]. If the heat supply is not efficientimmediate                      |   |
| 244 | it could lead to slow pyrolysis and incomplete reactions, the temperature in the sample at any given point                           |   |
| 245 | during the experiment can be lower than the nominal temperature, resulting in an overestimation of the                               |   |
| 246 | degradation temperature and therefore a greater apparent activation energy. Thanks to the smaller sample                             |   |
| 247 | amount and particle size, heat transfer in EGA experiment is more efficient than in TGA, and this means                              |   |
| 248 | that the degradation temperature is reached at slightly lower times in our experimental setup. In some                               |   |
| 249 | <del>cases, t</del> The difference in the results iscoould also be due to other factors, such as the plant species and               |   |
| 250 | origin as well as the sampling point. Furthermore, the energy values reported for lignin were lower than                             |   |
| 251 | those reported for cellulose and hemicellulose, in contrast to our results. This can be attributed to the                            |   |
| 252 | significant chemical changes in the native structure of lignin, <u>that could have been</u> introduced <del>with <u>during</u></del> |   |
| 253 | its isolation via chemical methods from the whole biomass, and taking into account that the thermal                                  |   |
| 254 | stability of lignin depends on the isolation method and the plant species.                                                           |   |
| 255 |                                                                                                                                      |   |
| 256 | 4. CONCLUSIONS                                                                                                                       |   |
| 257 | In the present work, the pyrolysis of four wood species using EGA-MS and model-free isoconversional                                  |   |
|     |                                                                                                                                      |   |

. . .

Codice campo modificato Codice campo modificato

Codice campo modificato Codice campo modificato

Codice campo modificato

258 methods was investigated for the first time. Selection of specific m/z values allowed us to obtain

259 cumulative extracted ion thermograms that were used as representative of the polysaccharide and lignin

| 260 | fractions of wood. Model-free isoconversional methods provided apparent activation energy values for the       |
|-----|----------------------------------------------------------------------------------------------------------------|
| 261 | whole wood as well as for the single components, and these values were found to be slightly lower than         |
| 262 | those obtained from TGA data.                                                                                  |
| 263 | The main advantages of EGA-MS as a technique for kinetic analysis were outlined in the paper. This             |
| 264 | technique requires small sample amounts, ensuring an efficient heat transfer from the system to the            |
| 265 | sample. If compound-specific m/z values are found in the mass spectrum of the thermogram, this                 |
| 266 | technique can also provide information on the single components of wood, without the need of curve-            |
| 267 | fitting of the data or extraction of the components using wet chemistry methods. Moreover, EGA-MS              |
| 268 | allows the application of differential isoconversional method, which does not require approximations,          |
| 269 | without the need of derivation of the experimental data.                                                       |
| 270 | We believe the results of the present work prove that EGA-MS can be a useful tool for the kinetic analysis     |
| 271 | of lignocellulose pyrolysis. In addition, the possibility of obtaining component-specific thermograms could    |
| 272 | be applied in the future to study the co-pyrolysis of biomass with other substrates such as plastics, which is |
| 273 | a research field of growing interest.                                                                          |
| 274 |                                                                                                                |
| 275 | ACKNOWLEDGEMENTS                                                                                               |
| 276 | The authors would like to acknowledge the University of Pisa for having funded the                             |
| 277 | project "Advanced analytical pyrolysis to study polymers in renewable energy, environment, cultural            |
| 278 | heritage" (PRA_2018_26).                                                                                       |
| 279 | The authors would also like to thank the project "Heterogeneous Robust Catalysts to Upgrade Low value          |
| 280 | biomass Streams (HERCULES)" funded by the Italian Ministry of Education, Universities and Research             |
| 281 | (MIUR) within PRIN 2015 call.                                                                                  |
| 282 |                                                                                                                |

# 283 **REFERENCES**

- 284 [1] S. Wang, G. Dai, H. Yang and Z. Luo, *Progress in Energy and Combustion Science*, 62, (2017) 33.
- [2] G. SriBala, H.H. Carstensen, K.M. Van Geem and G.B. Marin, Wiley Interdisciplinary Reviews: Energy and Environment, 8, (2019) e326.

- [3] M. Uddin, K. Techato, J. Taweekun, M.M. Rahman, M. Rasul, T. Mahlia and S. Ashrafur, *Energies*, 11, (2018) 3115.
- 289 [4] G. Kabir and B. Hameed, *Renewable and Sustainable Energy Reviews*, 70, (2017) 945.
- 290 [5] S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes, Springer, 2015, p.
- [6] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli,
   Thermochimica Acta, 520, (2011) 1.
- 293 [7] P. Šimon, Journal of Thermal Analysis and Calorimetry, 76, (2004) 123.
- [8] I. Ali, H. Bahaitham and R. Naebulharam, *Bioresource Technology*, 235, (2017) 1.
- 295 [9] A. Anca-Couce, A. Berger and N. Zobel, Fuel, 123, (2014) 230.
- 296 [10] Y.J. Rueda-Ordóñez and K. Tannous, *Bioresource technology*, 196, (2015) 136.
- [11] P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero and
   J.M. Criado, *Cellulose*, 18, (2011) 1487.
- [12] M.A. Mehmood, G. Ye, H. Luo, C. Liu, S. Malik, I. Afzal, J. Xu and M.S. Ahmad, *Bioresource Technology*, 228, (2017) 18.
- 301 [13] G. Jiang, D.J. Nowakowski and A.V. Bridgwater, *Thermochimica Acta*, 498, (2010) 61.
- 302 [14] G. Lv and S. Wu, Journal of Analytical and Applied Pyrolysis, 97, (2012) 11.
- J.B. Dahiya, K. Kumar, M. Muller-Hagedorn and H. Bockhorn, *Polymer International*, 57, (2008) 722.
   A.C. O'Sullivan, *Cellulose*, 4, (1997) 173.
- 305 [17] P. Brachi, F. Miccio, M. Miccio and G. Ruoppolo, Fuel Processing Technology, 154, (2016) 243.
- [18] Y.-M. Kim, T.U. Han, B. Hwang, Y. Lee, A. Watanabe, N. Teramae, S.-S. Kim, Y.-K. Park and S. Kim,
   *Polymer Testing*, 60, (2017) 12.
- M. Mattonai, D. Pawcenis, S. del Seppia, J. Łojewska and E. Ribechini, *Bioresource Technology*, 270,
   (2018) 270.
- 310 [20] R. Risoluti and S. Materazzi, Applied Spectroscopy Reviews, 54, (2019) 87.
- 311 [21] S. Materazzi, A. Gentili and R. Curini, *Talanta*, 69, (2006) 781.
- 312 [22] T. Hosoya, H. Kawamoto and S. Saka, Journal of analytical and applied pyrolysis, 80, (2007) 118.
- J.B. Paine III, Y.B. Pithawalla and J.D. Naworal, *Journal of Analytical and Applied Pyrolysis*, 82, (2008)
   42.
- 315 [24] G.C. Galletti and P. Bocchini, Rapid communications in mass spectrometry, 9, (1995) 815.
- 316
   [25]
   D. Shen, W. Jin, J. Hu, R. Xiao and K. Luo, *Renewable and Sustainable Energy Reviews*, 51, (2015)

   317
   761.
- 318 [26] X. Zhang, W. Yang and C. Dong, Journal of Analytical and Applied Pyrolysis, 104, (2013) 19.
- 319 [27] D. Shen, S. Gu, K. Luo, S. Wang and M. Fang, *Bioresource Technology*, 101, (2010) 6136.
- 320
   [28]
   S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen and T. Fransson, *Biotechnology Advances*, 27, (2009)

   321
   562.
- [29] D. Tamburini, J.J. Łucejko, E. Ribechini and M.P. Colombini, *Journal of Mass Spectrometry*, 50,
   (2015) 1103.
- 324 [30] T. Kotake, H. Kawamoto and S. Saka, *Journal of analytical and applied pyrolysis*, 105, (2014) 309.
- 325 [31] T. Kotake, H. Kawamoto and S. Saka, Journal of Analytical and Applied Pyrolysis, 113, (2015) 57.
- 326 [32] C. Di Blasi, Fast pyrolysis of biomass: a handbook, 3, (2005) 121.
- 327 [33] F. Yao, Q. Wu, Y. Lei, W. Guo and Y. Xu, Polymer Degradation and Stability, 93, (2008) 90.
- 328 [34] A. Anca-Couce, N. Zobel, A. Berger and F. Behrendt, Combustion and Flame, 159, (2012) 1708.
- [35] F. Thurner and U. Mann, Industrial & Engineering Chemistry Process Design and Development, 20,
   (1981) 482.
- 331 [36] Y.-H. Park, J. Kim, S.-S. Kim and Y.-K. Park, *Bioresource Technology*, 100, (2009) 400.
- 332 [37] D.Q. Tran and C. Rai, *Fuel*, 57, (1978) 293.
- [38] Q. Liu, S. Wang, Y. Zheng, Z. Luo and K. Cen, *Journal of Analytical and Applied Pyrolysis*, 82, (2008)
   170.
- 335[39]M. Van de Velden, J. Baeyens, A. Brems, B. Janssens and R. Dewil, *Renewable energy*, 35, (2010)336232.
- 337