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A QUANTITATIVE VARIATIONAL ANALYSIS OF THE

STAIRCASING PHENOMENON FOR A SECOND ORDER

REGULARIZATION OF THE PERONA-MALIK FUNCTIONAL

MASSIMO GOBBINO AND NICOLA PICENNI

Abstract. We consider the Perona-Malik functional in dimension one, namely
an integral functional whose Lagrangian is convex-concave with respect to the
derivative, with a convexification that is identically zero. We approximate
and regularize the functional by adding a term that depends on second order
derivatives multiplied by a small coefficient.

We investigate the asymptotic behavior of minima and minimizers as this
small parameter vanishes. In particular, we show that minimizers exhibit the
so-called staircasing phenomenon, namely they develop a sort of microstructure
that looks like a piecewise constant function at a suitable scale.

Our analysis relies on Gamma-convergence results for a rescaled functional,
blow-up techniques, and a characterization of local minimizers for the limit
problem. This approach can be extended to more general models.

1. Introduction

Let us consider the minimum problem for the one-dimensional functional

(1.1) PMF(u) :=

∫ 1

0

log
(
1 + u′(x)2

)
dx+ β

∫ 1

0

(u(x)− f(x))2 dx,

where β > 0 is a real number, and f ∈ L2((0, 1)) is a given function that we call
forcing term. The second integral is a sort of fidelity term, tuned by the parameter
β, that penalizes the distance between u and the forcing term f . The principal part
of (1.1) is the functional

(1.2) PM(u) :=

∫ 1

0

log
(
1 + u′(x)2

)
dx,

whose Lagrangian φ(p) := log(1 + p2) is not convex. To make matters worse, the
convex envelope of φ(p) is identically 0, and this implies that the relaxation of
(1.2) is identically 0 in every reasonable functional space. As a consequence, it is
well-known that

inf
{
PMF(u) : u ∈ C1([0, 1])

}
= 0 ∀f ∈ L2((0, 1)).
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5308 MASSIMO GOBBINO AND NICOLA PICENNI

We refer to (1.2) as the Perona-Malik functional, because its formal gradient-flow
is (up to a factor 2) the celebrated forward-backward parabolic equation

(1.3) ut =

(
ux

1 + u2
x

)
x

=
1− u2

x

(1 + u2
x)

2
uxx,

introduced by P. Perona and J. Malik [26]. Numerical experiments seem to suggest
that this diffusion process has good stability properties, but at the present there is
no rigorous theory that explains why a model that is ill-posed from the analytical
point of view exhibits this unexpected stability, known in literature as the Perona-
Malik paradox [22].

The same qualitative analysis applies when the principal part is of the form

PM(φ, u) :=

∫ 1

0

φ(u′(x)) dx,

provided that φ(p) is convex in a neighborhood of the origin, concave when |p| is
large, and with convex envelope identically equal to 0. Some notable examples are

(1.4) φ(p) = arctan(p2) or φ(p) = (1 + p2)α with α ∈ (0, 1/2),

or even more generally

(1.5) φ(p) = (1 + |p|γ)α with γ > 1 and α ∈ (0, 1/γ).

Singular perturbation of the Perona-Malik functional. Several approximat-
ing models have been introduced in order to mitigate the ill-posed nature of (1.3).
These approximating models are obtained via convolution [13], space discretiza-
tion [9, 16, 18], time delay [3], fractional derivatives [19], fourth order regulariza-
tion [7, 10, 15], addition of a dissipative term (see [11] and the references quoted
therein). For a more complete list of references on the evolution problem (1.3)
we refer to the recent papers [10, 11, 23] and to the references quoted therein. In
this paper we limit ourselves to the variational background, and we consider the
functional whose formal gradient flow is the fourth order regularization of (1.3),
namely the functional (see [2, 6–8, 15])
(1.6)

PMFε(u) :=

∫ 1

0

{
ε10| log ε|2u′′(x)2 + log

(
1 + u′(x)2

)
+ β(u(x)− f(x))2

}
dx,

where the bizarre form of the ε-dependent coefficient is just aimed at preventing
the appearance of decay rates defined in an implicit way in the sequel of the paper.
For every choice of ε ∈ (0, 1) and β > 0 the model is well-posed, in the sense
that the minimum problem for (1.6) admits at least one minimizer of class C2 for
every choice of the forcing term f ∈ L2((0, 1)). Here we investigate the asymptotic
behavior of minima and minimizers as ε → 0+. Before describing our results, it is
useful to discuss a related problem that has already been studied in the literature.

The Alberti-Müller model. Let us consider the functional

(1.7) AMε(u) :=

∫ 1

0

{
ε2u′′(x)2 + (u′(x)2 − 1)2 + β(x)u(x)2

}
dx,

where β ∈ L∞((0, 1)) is positive for almost every x ∈ (0, 1). The minimizers of (1.7)
with periodic boundary conditions were studied by G. Alberti and S. Müller in [1]
(see also [25]). In this model the forcing term f is identically 0, and the dependence
on first order derivatives is described by the double-well potential φ(p) := (p2−1)2.
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THE STAIRCASING PHENOMENON FOR THE PM FUNCTIONAL 5309

As in (1.6) the function φ(p) is non-convex, but in this case its convex envelope
vanishes just for |p| ≤ 1, while it coincides with φ(p) elsewhere, and in particular
it is coercive.

From the heuristic point of view, minimizers to (1.7) would like to be identi-
cally 0, but with constant derivative equal to ±1. Of course this is not possible
if we think of u and u′ as functions, but it becomes possible if we consider u as a
function whose “derivative” u′ is a Young measure. More formally, given a family
{uε} of minimizers to (1.7), one can show that uε → 0 uniformly, u′

ε ⇀ 0 weakly
in L4((0, 1)), and more precisely u′

ε converges to the Young measure that in every
point x ∈ (0, 1) assumes the two values ±1 with probability 1/2.

The next step consists in analyzing the asymptotic profile of minimizers. The in-
tuitive idea is that minimizers develop a microstructure at some scale ω(ε), and this
microstructure resembles a triangular wave (sawtooth function). In other words,
one expects minimizers to be of the form

(1.8) uε(x) ∼ ω(ε)ϕ

(
x

ω(ε)
+ b(ε)

)
,

where

• the function ϕ that describes the asymptotic profile of minimizers is a
triangular wave with slopes ±1, for example the function defined by ϕ(x) :=
|x| − 1 for every x ∈ [−2, 2], and then extended by periodicity to the whole
real line,

• ω(ε) is a suitable scaling factor that vanishes as ε → 0+ and is propor-
tional to the asymptotic “period” of minimizers (which, however, are not
necessarily themselves periodic),

• b(ε) is a sort of phase parameter that can be assumed to be less than the
period of ϕ.

We point out that the limit of u′
ε as a Young measure carries no information

concerning the asymptotic behavior of ω(ε), and it does not even imply the existence
of any form of asymptotic period or asymptotic profile.

The first big challenge is giving a rigorous formal meaning to an asymptotic
expansion of the form (1.8). In [1] the formalization relies on the notion of Young
measure with values in compact metric spaces. In a nutshell, starting from every
minimizer uε, the authors consider the function that associates to every x ∈ (0, 1)
the rescaled function

y �→ uε(x+ ω(ε)y)

ω(ε)
,

where ω(ε) = ε1/3. This new function is interpreted as a Young measure on the
interval (0, 1) with values in L∞(R), which is a compact metric space with respect
to the distance according to which gn converges to g∞ if and only if arctan(gn) con-
verges to arctan(g∞) with respect to the weak* convergence in L∞(R). The result is
that this family of Young measures converges (in the sense of Young measures with
values in a compact metric space) to a limit Young measure that in almost every
point is concentrated in the translations of the triangular wave. This statement is
a rigorous, although rather abstract and technical, formulation of expansion (1.8).

From Young measures to varifolds. There are some notable differences between our
model and (1.7). The first one is that in our case the trivial forcing term f ≡ 0
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5310 MASSIMO GOBBINO AND NICOLA PICENNI

would lead to the trivial solution uε ≡ 0 for every ε ∈ (0, 1). Therefore, here a
nontrivial forcing term is required if we want nontrivial solutions.

The second difference lies in the growth of the convex envelope of φ(p). In
the case of (1.7) the convex envelope grows at infinity as p4, and this guarantees
a uniform bound in L4((0, 1)) for the derivatives of all sequences with bounded
energy. In our case the convex envelope vanishes identically, and therefore there is
no hope to obtain bounds on derivatives in terms of bounds on the energies.

The third, and more relevant, difference lies in the construction of the convex
envelope. In the case of (1.7) the convex envelope of φ vanishes in the interval
[−1, 1] because every p in this interval can be written as a convex combination of
±1, and φ(1) = φ(−1) = 0. This is the ultimate reason why the derivatives of
minimizers tend to stay close to the two values ±1 when ε is small enough.

In our case the convex envelope of φ vanishes identically on the whole real line,
but no real number p can be written as the convex combination of two distinct
points where φ vanishes. Roughly speaking, the vanishing of the convex envelope
is achieved only in the limit, in some sense by writing every real number p as a
convex combination of 0 and ±∞, depending on the sign of p. This implies that
minimizers uε tend to assume a staircase-like shape, with regions where they are
“almost horizontal” and regions where they are “almost vertical” (as described in
the left and central sections of Figure 1). From the technical point of view, this
means that there is no hope that the family {u′

ε} admits a limit in the sense of
Young measures.

This is the point in which varifolds come into play, because varifolds allow “func-
tions” whose graph has in every point a mix of horizontal and vertical “tangent”
lines.

Our results. In our analysis of the asymptotic behavior of minima and minimizers,
we restrict ourselves to forcing terms f of class C1, and we prove three main results.

• The first result (Theorem 2.2) concerns the asymptotic behavior of minima.
We prove that the minimum mε of (1.6) over H2((0, 1)) satisfies

mε ∼ c0ε
2| log ε|

∫ 1

0

|f ′(x)|4/5 dx

for a suitable real constant c0.
• The second result (Theorem 2.9) concerns the asymptotic behavior of min-
imizers uε. To this end, for every family xε → x0 ∈ (0, 1) we consider the
families of functions

(1.9) y �→ uε(xε + ω(ε)y)− f(xε)

ω(ε)
and y �→ uε(xε + ω(ε)y)− uε(xε)

ω(ε)
,

which correspond to the intuitive idea of zooming the graph of a minimizer
uε in a neighborhood of (xε, f(xε)) and (xε, uε(xε)) at scale ω(ε). We
show that, when ω(ε) = ε| log ε|1/2, these functions converge (up to subse-
quences) in a rather strong sense (strict convergence of bounded variation
functions, see Definition 2.6) to a piecewise constant function, a sort of
staircase with steps whose height and length depend on f ′(x0). This result
provides a quantitative description of the staircase-like microstructure of
minimizers, with a notion of convergence that is much stronger than weak*
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THE STAIRCASING PHENOMENON FOR THE PM FUNCTIONAL 5311

convergence in L∞(R), and without the technical machinery of Young mea-
sures with values in metric spaces (see Remark 2.12).

• The third result (Theorem 2.14) shows that uε → f first in the sense of
uniform convergence, then in the sense of strict convergence of bounded
variation functions, and finally in the sense of varifolds, provided that we
consider the graph of f as a varifold with a suitable density and a suitable
combination of horizontal and vertical tangent lines in every point.

The three results described above are only the first order analysis of what is
ultimately a multi-scale problem. In a companion paper (in preparation) we plan
to investigate higher-resolution zooms of minimizers (from the center to the right
of Figure 1), in order to reveal the exact structure of the horizontal and vertical
parts of each step of the staircase.

Figure 1. Description of the multi-scale problem at three levels
of resolution. Left: Staircasing effect around the forcing term.
Center: Zoom of the staircase in a region. Right: Cubic transition
between two consecutive steps.

Overview of the technique. Our analysis relies on Gamma-convergence techniques.
The easy remark is that minimum values of (1.6) tend to 0, and minimizers tend to
the forcing term in L2((0, 1)). This is because the unstable character of (1.2) comes
back again when ε → 0+, and forces the Gamma-limit of the family of functionals
(1.6) to be identically 0.

More delicate is finding the vanishing order of minimum values, and the fine
structure of minimizers as ε → 0+. The starting observation is that, if vε(y)
denotes the blow-up defined in (1.9) on the left, with ω(ε) = ε| log ε|1/2, then vε(y)
minimizes a rescaled version of (1.6), namely the functional

(1.10) RPMFε(v) :=

∫
Iε

{
ε6(v′′)2 +

1

ε2| log ε| log
(
1 + (v′)2

)
+ β (v − gε)

2

}
dy,

where the new forcing term gε(y) is a suitable blow-up of f(x), and the new inte-
gration interval Iε depends on the blow-up center xε, but in any case its length is
equal to ω(ε)−1, and therefore diverges.

If f(x) is of class C1, then gε(y) → f ′(x0)y when xε → x0. Moreover, the results
of [2,7] suggest that, if we consider the functional (1.10) restricted to a finite fixed
interval (a, b), its Gamma-limit has the form

(1.11) α0J1/2(v) + β

∫ b

a

(v(y)− f ′(x0)y)
2
dy,
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5312 MASSIMO GOBBINO AND NICOLA PICENNI

where α0 is a suitable positive constant, and the functional J1/2(v) is finite only if
v is a “pure jump function” (see Definition 3.1), and in this class it coincides with
the sum of the square roots of the jump heights of v.

At the end of the day, this means that the minimum problem for (1.6) can
be approximated, at a suitable small scale, by a family of minimum problems for
functionals such as (1.11), and these minimum problems, due to the simpler form
and to the linear forcing term, can be solved almost explicitly.

However, things are not so simple. A first issue is that the integration intervals
Iε in (1.10) invade the whole real line. This forces us to work with local minimizers
(namely minimizers up to perturbations with compact support) instead of global
minimizers. So we have to adapt the classical Gamma-convergence results in order
to deal with local minimizers, and we need also to classify all local minimizers to
(1.11). These local minimizers are characterized in Proposition 4.5, and they turn
out to be staircases whose steps have length and height that depend on f ′(x0).

The second issue is compactness. We observed before that a bound on PMFε(uε)
does not provide compactness of the family {uε} in any reasonable space. After
rescaling and introducing (1.10), on the one hand the good news is that a classical
coerciveness result implies that a uniform bound on RPMFε(vε) is enough to deduce
that the family {vε} is relatively compact, for example in L2. On the other hand,
the bad news is that an asymptotic estimate of the form PMFε(uε) ∼ c0ω(ε)

2 yields
only a uniform bound on ω(ε) RPMFε(vε), which does not exclude that RPMFε(vε)
might diverge as ε → 0+.

We overcome this difficulty by showing that a bound of this type in some interval
yields a true uniform bound for RPMFε(vε) in a smaller interval, and this is enough
to guarantee the compactness of local minimizers. This improvement of the bound
(see Proposition 6.5) requires a delicate iteration argument in a sequence of nested
intervals, which probably represents the technical core of this paper.

Possible extensions. In order to keep the length of this paper reasonable, we decided
to focus our presentation only on the singular perturbation (1.6) of the original
functional with the logarithm. Nevertheless, many parts of the theory can be
extended to more general models. We discuss some possible generalizations in
section 7.

Dynamic consequences. We hope that our variational analysis could be useful in
the investigation of solutions to the evolution equation (1.3). Numerical experi-
ments with different approximating schemes seem to suggest that solutions develop
instantaneously a staircase-like pattern consistent with the results of this paper.
Due to its instantaneous character, this phase of the dynamic is usually referred to
as “fast time” (see [8]).

The connection between the dynamic and the variational behavior is hardly
surprising if we think of gradient-flows as limits of discrete-time evolutions, as in
De Giorgi’s theory of minimizing movements. In this context the minimum problem
for (1.1) with forcing term f equal to the initial datum u0 is just the first step in
the construction of the minimizing movement. Transforming this intuition into
a rigorous statement concerning the fast-time behavior of solutions to (1.3) is a
challenging problem.

Another issue is that the staircasing effect seems to appear only in the so-called
supercritical regions of u0(x), namely where u′

0(x) falls in the concavity region of
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THE STAIRCASING PHENOMENON FOR THE PM FUNCTIONAL 5313

φ(p) (see the simulations in [8,17,19–21]). The variational analysis cannot produce
this effect, in some sense because the convexification involves a “global procedure”,
and therefore it is very likely that an explanation should rely also on dynamical
arguments.

Structure of the paper. This paper is organized as follows. In section 2 we introduce
the notations and we state our main results concerning the asymptotic behavior of
minima and minimizers for (1.6). In section 3 we state the results that we need
concerning the rescaled functionals (1.10) and their Gamma-limit. In section 4 we
recall the notion of local minimizers, both for (1.6) and for the Gamma-limit, and
we state their main properties. In section 5 we show that our main results follow
from the properties of local minimizers that we prove later in section 6. Finally, in
section 7 we mention some different models to which our theory can be extended,
and in section 8 we present some open problems. We also add an appendix with
a proof of the results stated in section 3, some of which are apparently missing, or
present with flawed proofs, in the literature.

2. Statements

For every ε ∈ (0, 1) let us set

(2.1) ω(ε) := ε| log ε|1/2.

Let β > 0 be a real number, let Ω ⊆ R be an open set, and let f ∈ L2(Ω) be
a function that we call forcing term. In order to emphasize the dependence on all
the parameters, we write (1.6) in the form
(2.2)

PMFε(β, f,Ω, u) :=

∫
Ω

{
ε6ω(ε)4u′′(x)2 + log

(
1 + u′(x)2

)
+ β(u(x)− f(x))2

}
dx.

The first result that we state concerns existence and regularity of minimizers,
and their convergence to the fidelity term in L2((0, 1)). We omit the proof because
it is a standard application of the direct method in the calculus of variations, and
of the fact that the convex envelope of the function p �→ log(1+p2) is identically 0.

Proposition 2.1 (Existence and regularity of minimizers). Let ω(ε) be defined by
(2.1), and let PMFε(β, f, (0, 1), u) be defined by (2.2), where ε ∈ (0, 1) and β > 0
are two real numbers, and f ∈ L2((0, 1)) is a given function.

Then the following facts hold true.

(1) (Existence) There exists

(2.3) m(ε, β, f) := min
{
PMFε(β, f, (0, 1), u) : u ∈ H2((0, 1))

}
.

(2) (Regularity) Every minimizer belongs to H4((0, 1)), and in particular to
C2([0, 1]).

(3) (Minimum value vanishes in the limit) It turns out that m(ε, β, f) → 0 as
ε → 0+.

(4) (Convergence of minimizers to the fidelity term) If {uε} is any family of
minimizers for (2.3), then uε → f in L2((0, 1)) as ε → 0+.

In the sequel we assume that the forcing term f belongs to C1([0, 1]). Under this
regularity assumption, our first result concerns the asymptotic behavior of minima.
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5314 MASSIMO GOBBINO AND NICOLA PICENNI

Theorem 2.2 (Asymptotic behavior of minima). Let ω(ε) be defined by (2.1), and
let PMFε(β, f, (0, 1), u) be defined by (2.2), where ε ∈ (0, 1) and β > 0 are two real
numbers, and f ∈ C1([0, 1]) is a given function.

Then the minimum value m(ε, β, f) defined in (2.3) satisfies

(2.4) lim
ε→0+

m(ε, β, f)

ω(ε)2
= 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx.

The asymptotic behavior of m(ε, β, f) under weaker regularity assumptions on
f is a largely open problem. We refer to section 8 for further details.

Now we investigate the asymptotic behavior of minimizers. The intuitive idea
is that they tend to develop a staircase structure. In order to formalize this idea,
we need several definitions. To begin with, we define some classes of “staircase-like
functions”.

Definition 2.3 (Canonical staircases). Let S : R → R be the function defined by

S(x) := 2

⌊
x+ 1

2

⌋
∀x ∈ R,

where, for every real number α, the symbol �α� denotes the greatest integer less
than or equal to α. For every pair (H,V ) of real numbers, with H > 0, we call
canonical (H,V )-staircase the function SH,V : R → R defined by

(2.5) SH,V (x) := V · S(x/H) ∀x ∈ R.

Roughly speaking, the graph of SH,V is a staircase with steps of horizontal length
2H and vertical height 2V . The origin is the midpoint of the horizontal part of
one of the steps. The staircase degenerates to the null function when V = 0,
independently of the value of H.

Definition 2.4 (Translations of the canonical staircase). Let (H,V ) be a pair of
real numbers, with H > 0, and let SH,V be the function defined in (2.5). Let
v : R → R be a function.

• We say that v is an oblique translation of SH,V , and we write v ∈ Obl(H,V ),
if there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−Hτ0) + V τ0 ∀x ∈ R.

• We say that v is a graph translation of horizontal type of SH,V , and we
write v ∈ Hor(H,V ), if there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−Hτ0) ∀x ∈ R.

• We say that v is a graph translation of vertical type of SH,V , and we write
v ∈ Vert(H,V ), if there exists a real number τ0 ∈ [−1, 1] such that

v(x) = SH,V (x−H) + V (1− τ0) ∀x ∈ R.

Remark 2.5. Let us interpret translations of the canonical staircase in terms of
graph (see Figure 2).

• Oblique translations correspond to taking the graph of the canonical stair-
case SH,V (x) and moving the origin along the line Hy = V x, namely the
line that connects the midpoints of the steps.

• Graph translations of horizontal type correspond to moving the origin to
some point in the horizontal part of some step.
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THE STAIRCASING PHENOMENON FOR THE PM FUNCTIONAL 5315

• Graph translations of vertical type correspond to moving the origin to some
point in the vertical part of some step.

We observe that graph translations of horizontal type with τ0 = ±1 coincide
with graph translations of vertical type with the same value of τ0. In those cases
the origin is moved to the “corners” of the graph.

2V

H

(a) (b) (c) (d)

Figure 2. (a) Canonical staircase. (b) Oblique translation.
(c) Graph translation of horizontal type. (d) Graph translation
of vertical type. In all translations the parameter is τ0 = 1/2.

In the sequel BV ((a, b)) denotes the space of functions with bounded variation
in the interval (a, b) ⊆ R. For every function u in this space, Du denotes its
distributional derivative, which is a signed measure, and |Du|((a, b)) denotes the
total variation of u in (a, b). We call jump points of u the points x ∈ (a, b) where
u is not continuous. As usual, BVloc(R) denotes the set of all functions u : R → R

whose restriction to every interval (a, b) belongs to BV ((a, b)). The staircase-like
functions we have introduced above are typical examples of elements of the space
BVloc(R).

Our result for the asymptotic behavior of minimizers involves smooth functions
converging to staircases. The strongest sense in which this convergence is possible is
the so-called strict converge. We recall here the definitions (see [5, Definition 3.14]).

Definition 2.6 (Strict convergence in an interval). Let (a, b) ⊆ R be an in-
terval. A sequence of functions {un} ⊆ BV ((a, b)) converges strictly to some
u∞ ∈ BV ((a, b)), and we write

un �� u∞ in BV ((a, b)),

if

un → u∞ in L1((a, b)) and |Dun|((a, b)) → |Du∞|((a, b)).

Definition 2.7 (Locally strict convergence on the whole real line). A sequence of
functions {un} ⊆ BVloc(R) converges locally strictly to some u∞ ∈ BVloc(R), and
we write

un �� u∞ in BVloc(R),

if un �� u∞ in BV ((a, b)) for every interval (a, b) ⊆ R whose endpoints are not
jump points of the limit u∞.
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Definitions 2.6 and 2.7 can be extended in the usual way to families depending
on real parameters. For example, uε �� u0 in BV ((a, b)) as ε → 0+ if and only if
uεn �� u0 in BV ((a, b)) for every sequence εn → 0+.

In Remark 2.8 we recall some consequences of strict convergence.

Remark 2.8 (Consequences of strict convergence). Let us assume that un �� u∞ in
BV ((a, b)). Then the following facts hold true.

(1) It turns out that {un} is bounded in L∞((a, b)), and un → u∞ in Lp((a, b))
for every p ≥ 1 (but not necessarily for p = +∞).

(2) For every x ∈ (a, b), and every sequence xn → x, it turns out that

lim inf
y→x

u∞(y) ≤ lim inf
n→+∞

un(xn) ≤ lim sup
n→+∞

un(xn) ≤ lim sup
y→x

u∞(y),

and in particular un(xn) → u∞(x) whenever u∞ is continuous in x, and
the convergence is uniform in (a, b) if the limit u∞ is continuous in (a, b).

(3) It turns out that un �� u∞ in BV ((c, d)) for every interval (c, d) ⊆ (a, b)
whose endpoints are not jump points of the limit u∞.

(4) The positive and negative parts of the distributional derivatives converge
separately in the closed interval (see [5, Proposition 3.15]). More precisely,
if D+un and D−un denote, respectively, the positive and negative parts of
the signed measure Dun, and similarly for u∞, then for every continuous
test function φ : [a, b] → R it turns out that

lim
n→+∞

∫
[a,b]

φ(x) dD+un(x) =

∫
[a,b]

φ(x) dD+u∞(x),

and similarly with D−un and D−u∞.

In our second main result we consider any family {uε} of minimizers to (2.2) and
any family of points xε → x0 ∈ (0, 1), and we investigate the asymptotic behavior
of the family of fake blow-ups (we call them “fake” because in the numerator we
subtract f(xε) instead of uε(xε)) defined by

(2.6) wε(y) :=
uε(xε + ω(ε)y)− f(xε)

ω(ε)
∀y ∈

(
− xε

ω(ε)
,
1− xε

ω(ε)

)
,

and the asymptotic behavior of the family of true blow-ups defined by

(2.7) vε(y) :=
uε(xε + ω(ε)y)− uε(xε)

ω(ε)
∀y ∈

(
− xε

ω(ε)
,
1− xε

ω(ε)

)
.

We prove that both families are relatively compact in the sense of locally strict
convergence, and all their limit points are suitable staircases.

Theorem 2.9 (Blow-up of minimizers at standard resolution). Let ω(ε) be defined
by (2.1), and let PMFε(β, f, (0, 1), u) be defined by (2.2), where ε ∈ (0, 1) and β > 0
are two real numbers, and f ∈ C1([0, 1]) is a given function.

Let {uε} ⊆ H2((0, 1)) be a family of functions with

uε ∈ argmin
{
PMFε(β, f, (0, 1), u) : u ∈ H2((0, 1))

}
∀ε ∈ (0, 1),

and let xε → x0 ∈ (0, 1) be a family of points. Let us consider the canonical
(H,V )-staircase with parameters

(2.8) H :=

(
24

β2|f ′(x0)|3

)1/5

, V := f ′(x0)H,

Licensed to Universita di Pisa. Prepared on Fri Oct  6 11:06:36 EDT 2023 for download from IP 131.114.118.26.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with the agreement that this staircase is identically equal to 0 when f ′(x0) = 0.
Then the following statements hold true.

(1) (Compactness of fake blow-ups). The family {wε(y)} defined by (2.6) is
relatively compact with respect to locally strict convergence, and every limit
point is an oblique translation of the canonical (H,V )-staircase.

More precisely, for every sequence {εn} ⊆ (0, 1) with εn → 0+ there
exist an increasing sequence {nk} of positive integers and a function w∞ ∈
Obl(H,V ) such that

wεnk
(y) �� w∞(y) in BVloc(R).

(2) (Compactness of true blow-ups). The family {vε(y)} defined by (2.7) is
relatively compact with respect to locally strict convergence, and every limit
point is a graph translation of the canonical (H,V )-staircase.

More precisely, for every sequence {εn} ⊆ (0, 1) with εn → 0+ there
exist an increasing sequence {nk} of positive integers and a function v∞ ∈
Hor(H,V ) ∪Vert(H,V ) such that

vεnk
(y) �� v∞(y) in BVloc(R).

(3) (Realization of all possible oblique translations). Let w0 ∈ Obl(H,V ) be
any oblique translation of the canonical (H,V )-staircase.

Then there exists a family {x′
ε} ⊆ (0, 1) such that

(2.9) lim sup
ε→0+

|x′
ε − xε|
ω(ε)

≤ H,

and

(2.10)
uε(x

′
ε + ω(ε)y)− f(x′

ε)

ω(ε) �� w0(y) in BVloc(R).

(4) (Realization of all possible graph translations). Let v0 ∈ Hor(H,V ) ∪
Vert(H,V ) be any graph translation of the canonical (H,V )-staircase.

Then there exists a family {x′
ε} ⊆ (0, 1) satisfying (2.9) and

uε(x
′
ε + ω(ε)y)− uε(x

′
ε)

ω(ε) �� v0(y) in BVloc(R).

Let us make some comments about Theorem 2.9 above. To begin with, we
consider the special case of stationary points, and the special case of blow-ups in
boundary points.

Remark 2.10 (Stationary points of the forcing term). In the special case where
f ′(x0) = 0, the canonical (H,V )-staircase is identically equal to 0, and it coincides
with all its oblique or graph translations. In this case the whole family of fake
blow-ups and the whole family of true blow-ups converge to 0, without any need of
subsequences.

Remark 2.11 (Internal vs boundary blow-ups). For the sake of shortness, we stated
the result in the case where x0 ∈ (0, 1). The very same conclusions hold true, with
exactly the same proof, even if x0 ∈ {0, 1}, provided that

(2.11) lim
ε→0+

min{xε, 1− xε}
ω(ε)

= +∞.
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When x0 ∈ {0, 1} and (2.11) fails, we can again characterize the limits of fake
and true blow-ups, more or less with the same techniques. This requires a one-sided
variant of the canonical staircases that we discuss later in section 4. We refer to
Remark 5.1 for further details.

In Remark 2.12 we present the result from two different points of view.

Remark 2.12 (Further interpretations of Theorem 2.9). Let us consider any distance
in the space X := BVloc(R) that induces the locally strict convergence. Given any
minimizer uε to (2.2), we extend it to a continuous function ûε : R → R by setting

ûε(x) :=

⎧⎪⎨⎪⎩
uε(0) if x ≤ 0,

uε(x) if x ∈ [0, 1],

uε(1) if x ≥ 1.

Then we consider the function Uε : (0, 1) → X defined by

[Uε(x)](y) :=
ûε(x+ ω(ε)y)− f(x)

ω(ε)
∀y ∈ R,

namely the function that associates to every x ∈ (0, 1) the fake blow-up of ûε with
center in x at scale ω(ε).

Finally, for every x ∈ (0, 1) we consider the set T (x) ⊆ X consisting of all oblique
translations of the canonical (H,V )-staircase with parameters given by (2.8). We
observe that T (x) is homeomorphic to the circle S1 if f ′(x) �= 0, and T (x) is a
singleton if f ′(x) = 0.

Then “Uε(x) converges to T (x)” in the following senses.

(1) (Hausdorff convergence). For every interval [a, b] ⊆ (0, 1) we consider the
graph of Uε over [a, b], namely

Gε(a, b) := {(x,w) : x ∈ [a, b], w = Uε(x)} ⊆ [a, b]× X,

and the graph of the multi-function T (x), namely the set

G0(a, b) := {(x,w) : x ∈ [a, b], w ∈ T (x)} ⊆ [a, b]× X.

Then it turns out that Gε → G0 as ε → 0+ with respect to the Hausdorff
distance between compact subsets of (0, 1)× X.

This convergence result is a direct consequence of statements (1) and (3)
of Theorem 2.9. It can also be extended to true blow-ups, just by defining
T (x) as the set of graph translations instead of oblique translations.

(2) (Young measure convergence). Let us consider Uε as a Young measure νε
in (0, 1) with values in X. Let ν0 denote the Young measure that associates
to every x ∈ (0, 1) the probability measure in T (x) that is invariant by
oblique translations. Then it turns out that

νε ⇀ ν0 as ε → 0+,

where the convergence is in the sense of X-valued Young measures in (0, 1).
We point out that the strict convergence induced by the distance in our
space X is much stronger than the convergence in [1], where the distance
just induces the weak* topology in a ball of L∞. For this reason, our space X
is not compact, but we could easily recover the compactness by restricting
ourselves to the subset consisting of all blow-ups of all minimizers for ε
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in some interval (0, ε0] ⊆ (0, 1), together with all their possible limits as
ε → 0+.

This convergence in the sense of Young measures follows from the Haus-
dorff convergence and the invariance of ν0 by oblique translations, which in
turn follows from a remake of [1, Proposition 3.1 and Lemma 2.7]. The ar-
gument is however analogous to the proof of statement (3) of Theorem 2.9.
The idea is that any translation of the blow-up point of order ω(ε) delivers
a proportional oblique translation of the limit.

In the case of true blow-ups we expect the limit Young measure ν0 to be
uniformly concentrated only on graph translations of horizontal type, while
graph translations of vertical type should have zero measure because they
correspond to a very special choice of the blow-up points.

Theorem 2.9 shows that minimizers develop a microstructure at scale ω(ε). As
a consequence, this microstructure does not appear if we consider blow-ups at a
coarser scale, as in the following statement.

Corollary 2.13 (Low-resolution blow-ups of minimizers). Let ε, ω(ε), β, f , uε,
x0 be as in Theorem 2.9. Let {xε} ⊆ (0, 1) be a family of real numbers such that
xε → x0, and let {αε} be a family of positive real numbers such that αε → 0 and
ω(ε)/αε → 0.

Then it turns out that

uε(xε + αεy)− uε(xε)

αε
�� f ′(x0)y in BVloc(R),

and therefore also uniformly on bounded subsets of R.

The second consequence of Theorem 2.9 is an improvement of statement (4) in
Proposition 2.1, at least in the case where the forcing term f(x) is of class C1. In
this case indeed we obtain that minimizers converge to f also in the sense of strict
convergence. Moreover, as uε(x) converges to f(x), its derivative u′

ε(x) converges
to a mix of 0 and ±∞, and this mix is “in the average” equal to f ′(x). We state
the result using an elementary language, and then we interpret it in the formalism
of varifolds.

Theorem 2.14 (Convergence of minimizers to the forcing term). Let ε, β, f , uε

be as in Theorem 2.9.
Then the family {uε} of minimizers converges to f in the following senses.

(1) (Strict convergence). It turns out that uε �� f in BV ((0, 1)), and therefore
also uniformly in [0, 1].

(2) (Convergence as varifolds). Let us set

(2.12) V +
0 := {x ∈ [0, 1] : f ′(x) > 0} , V −

0 := {x ∈ [0, 1] : f ′(x) < 0} .

Then for every continuous test function

φ : [0, 1]× R×
[
−π

2
,
π

2

]
→ R,

Licensed to Universita di Pisa. Prepared on Fri Oct  6 11:06:36 EDT 2023 for download from IP 131.114.118.26.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5320 MASSIMO GOBBINO AND NICOLA PICENNI

it turns out that

(2.13) lim
ε→0+

∫ 1

0

φ
(
x, uε(x), arctan(u

′
ε(x))

)√
1 + u′

ε(x)
2 dx =

∫ 1

0

φ(x, f(x), 0) dx

+

∫
V −
0

φ
(
x, f(x),−π

2

)
|f ′(x)| dx+

∫
V +
0

φ
(
x, f(x),

π

2

)
|f ′(x)| dx.

The conclusions of Theorem 2.14 are weaker than Theorem 2.9, because it does
not carry so much information about the asymptotic profile of minimizers. Just
for comparison, the counterpart of this result in the Alberti-Müller model is the
convergence of u′

ε to a Young measure that in every point assumes the two values
±1 with equal probability. Therefore, we suspect that the same conclusion might
be true under weaker assumptions on the forcing term f , and we refer to section 8
for further discussion.

Remark 2.15 (Varifold interpretation). Let us limit ourselves for a while to test
functions such that φ(x, s, π/2) = φ(x, s,−π/2) for all admissible values of x and s.
Let us observe that the function p �→ arctan(p) is a homeomorphism between the
projective line and the interval [−π/2, π/2] with the endpoints identified. Under
these assumptions we can interpret the two sides of (2.13) as the action of two
suitable varifolds on the test function φ.

In the left-hand side we have the varifold associated to the graph of uε in the
canonical way, namely with “weight” (projection into R2) equal to the restriction
of the one-dimensional Hausdorff measure to the graph of uε, and “tangent compo-
nent” in the direction of the derivative u′

ε. In the right-hand side we have a varifold
with

• “weight” equal to the one-dimensional Hausdorff measure restricted to the
graph of f , multiplied by the density

1 + |f ′(x)|√
1 + f ′(x)2

,

which in turn coincides with the push-forward of the Lebesgue measure
through the map x �→ (x, f(x)) multiplied by 1 + |f ′(x)|,

• “tangent component” in the point (x, f(x)) equal to

1

1 + |f ′(x)| δ(1,0) +
|f ′(x)|

1 + |f ′(x)| δ(0,1),

where δ(1,0) and δ(0,1) are the Dirac measures concentrated in the horizontal
direction (1, 0) and in the vertical direction (0, 1), respectively.

It follows that statement (2) of Theorem 2.14 above is a reinforced version of
varifold convergence. The reinforcement consists in considering the vertical tangent
line in the direction (0, 1) as different from the vertical tangent line in the direction
(0,−1).

Remark 2.16 (Minimality is essential). In Theorem 2.9 and Theorem 2.14 we cannot
replace the requirement that {uε} is a family of minimizers by weaker “almost
minimality” conditions such as

(2.14) lim
ε→0+

PMFε(β, f, (0, 1), uε)

m(ε, β, f)
= 1.
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Indeed, one can check that the cost of adding an isolated bump that simulates
two opposite jumps in a neighborhood of some point is proportional to ω(ε)5/2 (see
also (8.1) below). Since the denominator in (2.14) is proportional to ω(ε)2, this
condition does not even imply a uniform bound on the total variation of uε.

3. Functional setting and Gamma-convergence

This section deals with the rescaled version of the Perona-Malik functional (2.2)
and its Gamma-limit. The results are somewhat classical, and rather close to similar
results in the literature. On the other hand, in some cases they are not stated in the
literature in the form we need, and in some other cases the proofs that we found in
the literature do not work. Therefore, for the convenience of the reader we decided
to include at least a sketch of the proofs in Appendix A.

Functional setting. Let us consider the functional

(3.1) RPMε(Ω, u) :=

∫
Ω

{
ε6u′′(x)2 +

1

ω(ε)2
log
(
1 + u′(x)2

)}
dx

defined for every real number ε ∈ (0, 1), every open set Ω ⊆ R, and every function
u ∈ H2(Ω). This functional is a rescaled version of the principal part of (2.2).
When we add the usual “fidelity term”, depending on a real parameter β > 0 and
on a forcing term f ∈ L2(Ω), we obtain the rescaled Perona-Malik functional with
fidelity term

(3.2) RPMFε(β, f,Ω, u) := RPMε(Ω, u) + β

∫
Ω

(u(x)− f(x))
2
dx.

The Gamma-limit of (3.1) as ε → 0+ turns out to be finite only in the space of
“pure jump functions”, defined as finite or countable linear combination of Heaviside
functions. More formally, the notion is the following.

Definition 3.1 (Pure jump functions). Let (a, b) ⊆ R be an interval. A function
u : (a, b) → R is called a pure jump function, and we write u ∈ PJ((a, b)), if
there exist a real number c, a finite or countable set Su ⊆ (a, b), and a function
J : Su → R \ {0} such that

(3.3)
∑
s∈Su

|J(s)| < +∞

and

(3.4) u(x) = c+
∑
s∈Su

J(s)�(s,b)(x) ∀x ∈ (a, b),

where �(s,b) : R → {0, 1} is the indicator function of the interval (s, b), defined as

�(s,b)(x) :=
{
1 if x ∈ (s, b),

0 otherwise.

The set Su is called the jump set of u, every element s ∈ Su is called a jump
point of u, and |J(s)| is called the height of the jump of u in s.

We call boundary values of u the numbers

(3.5) u(a) := lim
x→a+

u(x) = c and u(b) := lim
x→b−

u(x) = c+
∑
s∈Su

J(s).

Licensed to Universita di Pisa. Prepared on Fri Oct  6 11:06:36 EDT 2023 for download from IP 131.114.118.26.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5322 MASSIMO GOBBINO AND NICOLA PICENNI

Pure jump functions can be defined in an alternative way as those functions in
BV ((a, b)) whose distributional derivative is a finite or countable linear combination
of atomic measures. In particular, it can be verified that the representation (3.4)
is unique, and defines a function u ∈ BV ((a, b)) whose total variation is the sum
of the series in (3.3), and whose distributional derivative Du is the sum of Dirac
measures concentrated in the points of the set Su with weight J(s). Moreover, Su

coincides with the set of discontinuity points of u, and

J(s) = lim
x→s+

u(x)− lim
x→s−

u(x) ∀s ∈ Su.

We can now introduce the functional

(3.6) J1/2(Ω, u) :=
∑

s∈Su∩Ω

|J(s)|1/2,

defined for every u ∈ PJ((a, b)) and every open subset Ω ⊆ (a, b). Of course the
convergence of the series in (3.3) does not imply the convergence of the series in
(3.6), and therefore at this level of generality it may happen that J1/2(Ω, u) = +∞
for some choices of u and Ω.

Gamma-convergence. The following result concerns the convergence of the family
RPMε to a multiple of J1/2. The compactness statement is similar to [7, Theo-
rem 4.1], while the Gamma-convergence statement coincides with [7, Theorem 4.4]
in the special case φ(p) = log(1 + p2). Nevertheless, unfortunately the proof in [7]
relies on [7, Lemma 3.1], which is clearly false for this choice of φ(p). In Appendix
A we present a specific proof for this case.

Theorem 3.2 (Gamma-convergence, compactness, properties of recovery
sequences). Let (a, b) ⊆ R be an interval, let us consider the functionals defined
in (3.1) and (3.6), and let us set

(3.7) α0 :=
16√
3
.

Then the following statements hold true.

(1) (Gamma convergence) Let us extend the functionals (3.1) and (3.6) to the
space L2((a, b)) by setting them equal to +∞ outside their original domains.

Then with respect to the metric of L2((a, b)) it turns out that

Γ– lim
ε→0+

RPMε((a, b), u) = α0 J1/2((a, b), u) ∀u ∈ L2((a, b)).

(2) (Compactness) Let {εn} ⊆ (0, 1) be any sequence such that εn → 0+, and
let {un} ⊆ H2((a, b)) be any sequence such that

(3.8) sup
n∈N

{
RPMεn((a, b), un) +

∫ b

a

un(x)
2 dx

}
< +∞.

Then there exist an increasing sequence {nk} of positive integers, and a
function u∞ ∈ PJ((a, b)) such that unk

→ u∞ in L2((a, b)) as k → +∞.
(3) (Strict convergence of recovery sequences) Let u ∈ PJ((a, b)) be a pure jump

function with J1/2((a, b), u) < +∞. Let {εn} ⊆ (0, 1) be any sequence such

that εn → 0+, and let {un} ⊆ H2((a, b)) be any sequence such that un → u
in L2((a, b)), and

(3.9) lim
n→+∞

RPMεn((a, b), un) = α0 J1/2((a, b), u).
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Then actually un �� u in BV ((a, b)), according to Definition 2.6.
(4) (Recovery sequences with given boundary data) Let {εn} and u be as in

the previous statement, and let {A0,n}, {A1,n}, {B0,n}, {B1,n} be four
sequences of real numbers such that

lim
n→+∞

(A0,n, A1,n, B0,n, B1,n) = (u(a), 0, u(b), 0),

where the boundary values of u are intended as usual in the sense of (3.5).
Then there exists a sequence {un} ⊆ H2((a, b)) with boundary data

(3.10)
(
un(a), u

′
n(a), un(b), u

′
n(b)

)
= (A0,n, A1,n, B0,n, B1,n) ∀n ∈ N

such that un → u in L2((a, b)) and (3.9) holds true.

Remark 3.3. The choice of the ambient space L2((a, b)) is not essential in Theo-
rem 3.2, and actually it can be replaced with Lp((a, b)) for any real exponent p ≥ 1
(but not for p = +∞, at least in statements (2) and (4)).

Convergence of minima and minimizers. Since the fidelity term in (3.2) is contin-
uous with respect to the metric of L2(Ω), and Gamma-convergence is stable with
respect to continuous perturbations, we deduce that the Gamma-limit of (3.2) is
the functional

(3.11) JF1/2(α, β, f,Ω, u) := α J1/2(Ω, u) + β

∫
Ω

(u(x)− f(x))2 dx,

with α equal to the constant α0 defined in (3.7). Now we concentrate on the special
case where Ω = (0, L) and the forcing term is the linear function f(x) = Mx, for
suitable real numbers L > 0 and M , and we consider the following minimum values
without boundary conditions

με(β, L,M) := min
u∈H2((0,L))

RPMFε(β,Mx, (0, L), u),(3.12)

μ0(α, β, L,M) := min
u∈PJ((0,L))

JF1/2(α, β,Mx, (0, L), u).(3.13)

Then we introduce boundary conditions. In the case of (3.2) we call
H2((0, L),M) the set of all functions v ∈ H2((0, L)) such that v(0) = 0, v(L) =
ML, and v′(0) = v′(L) = 0. In the case of (3.11) we call PJ((0, L),M) the set
of all functions v ∈ PJ((0, L)) such that v(0) = 0 and v(L) = ML, where these
boundary values are intended in the sense of (3.5). At this point we consider the
following minimum values with boundary conditions

μ∗
ε(β, L,M) := min

u∈H2((0,L),M)
RPMFε(β,Mx, (0, L), u),(3.14)

μ∗
0(α, β, L,M) := min

u∈PJ((0,L),M)
JF1/2(α, β,Mx, (0, L), u).(3.15)

The following result contains the properties of these minimum values that we
exploit in the sequel (a sketch of the proof is in Appendix A).

Proposition 3.4 (Asymptotic analysis of minima with linear forcing term). The
minimum values defined in (3.12) through (3.15) have the following properties.

(1) (Existence). The minimum problems (3.12) through (3.15) admit a solution
for every (ε, α, β, L,M) ∈ (0, 1)× (0,+∞)3 × R.
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(2) (Symmetry, continuity and monotonicity with respect to M). For every
admissible value of ε, α, β, L the four functions

M �→ με(β, L,M), M �→ μ∗
ε(β, L,M),

M �→ μ0(α, β, L,M), M �→ μ∗
0(α, β, L,M)

are even, continuous in R, and nondecreasing in [0,+∞).
(3) (Monotonicity with respect to L). For every admissible value of ε, α, β,

M , the three functions

L �→ με(β, L,M), L �→ μ0(α, β, L,M), L �→ μ∗
0(α, β, L,M)

are nondecreasing with respect to L in (0,+∞). As for μ∗
ε, it turns out that

(3.16) μ∗
ε(β, L2,M) ≤

(
L2

L1

)3

μ∗
ε(β, L1,M)

for every 0 < L1 ≤ L2.
(4) (Pointwise convergence). For every admissible value of β, M and L it turns

out that

(3.17) lim
ε→0+

με(β, L,M) = μ0(α0, β, L,M),

and

(3.18) lim
ε→0+

μ∗
ε(β, L,M) = μ∗

0(α0, β, L,M),

where α0 is the constant defined in (3.7).
(5) (Uniform convergence). The limits (3.17) and (3.18) are uniform for

bounded values of M , in the sense that for every positive value of β and L
it turns out that

(3.19) lim
ε→0+

sup
|M |≤M0

|με(β, L,M)− μ0(α0, β, L,M)| = 0 ∀M0 > 0,

and

(3.20) lim
ε→0+

sup
|M |≤M0

|μ∗
ε(β, L,M)− μ∗

0(α0, β, L,M)| = 0 ∀M0 > 0.

4. Local minimizers

In this section we state the key tools for the proof of our main results. The key
idea is that also local minimizers for functionals of the form (3.2) converge to local
minimizers for functionals of the form (3.11). This extends the Gamma convergence
results of the previous section.

The notion of local minimizers can be introduced in a very general framework
by asking minimality with respect to compactly supported perturbations. In many
concrete examples this is equivalent to saying that a given function is a minimizer
with respect to its own boundary conditions. Of course the number and the form
of these boundary conditions depend on the nature of the functional, as we explain
below.

Definition 4.1 (Local minimizers in intervals). Let (a, b) ⊆ R be an interval, and
let F(u) be a functional defined in some functional space S((a, b)).
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• Let us assume that S((a, b)) = H2((a, b)). A local minimizer is any function
u ∈ H2((a, b)) such that F(u) ≤ F(v) for every function v ∈ H2((a, b)) such
that (

v(a), v′(a), v(b), v′(b)
)
=
(
u(a), u′(a), u(b), u′(b)

)
.

• Let us assume that S((a, b)) = PJ((a, b)). A local minimizer is any function
u ∈ PJ((a, b)) such that F(u) ≤ F(v) for every function v ∈ PJ((a, b))
such that (v(a), v(b)) = (u(a), u(b)), where boundary values of pure jump
functions are intended in the sense of (3.5).

In both cases we write

u ∈ argminloc {F(u) : u ∈ S((a, b))} .

We observe that in Definition 4.1 the two endpoints of the interval play the same
role. In the sequel we need also the following notion of one-sided local minimizer,
where we focus just on one of the endpoints.

Definition 4.2 (One-sided local minimizers in an interval). Let (a, b) ⊆ R be an
interval, and let F(u) be a functional defined in some functional space S((a, b)).

• Let us assume that S((a, b)) = H2((a, b)). A right-hand local minimizer
is any function u ∈ H2((a, b)) such that F(u) ≤ F(v) for every function
v ∈ H2((a, b)) such that (v(b), v′(b)) = (u(b), u′(b)).

• Let us assume that S((a, b)) = PJ((a, b)). A right-hand local minimizer
is any function u ∈ PJ((a, b)) such that F(u) ≤ F(v) for every function
v ∈ PJ((a, b)) such that v(b) = u(b).

In both cases we write

u ∈ argminR−loc {F(u) : u ∈ S((a, b))} .

Left-hand local minimizers are defined in a symmetric way, just focusing on the
endpoint a.

Definition 4.3 (Entire and semi-entire local minimizers). Let us consider func-
tionals F(I, u) defined for every interval I and every u in some function space
S(I).

• An entire local minimizer is a function u : R → R such that, for every
interval (a, b) ⊆ R, the restriction of u to (a, b) is a local minimizer in
(a, b).

• A right-hand semi-entire local minimizer is a function u : (0,+∞) → R

such that, for every real number L > 0, the restriction of u to (0, L) is a
right-hand local minimizer in (0, L).

• A left-hand semi-entire local minimizer is a function u : (−∞, 0) → R

such that, for every real number L > 0, the restriction of u to (−L, 0) is a
left-hand local minimizer in (−L, 0).

The following result is crucial both in the proof of Theorem 2.2, and as a prelim-
inary step toward the characterization of entire and semi-entire local minimizers to
the limiting functional (3.11).
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Proposition 4.4 (Estimates for minima of the limit problem). For every
(α, β, L,M) ∈ (0,+∞)3×R the minimum values defined in (3.13) and (3.15) satisfy

c1|M |4/5L− c2|M |1/5 ≤ μ0(α, β, L,M)(4.1)

≤ μ∗
0(α, β, L,M) ≤ c1|M |4/5L+ c3|M |1/5,(4.2)

where

(4.3) c1 :=
5

4

(
α4β

3

)1/5

, c2 := 20

(
2α6

3β

)1/5

, c3 :=
5

4

(
3α6

β

)1/5

.

We are now ready to state the first main result of this section, namely the
characterization of all entire and semi-entire local minimizers for the functional
(3.11).

Proposition 4.5 (Classification of entire and semi-entire local minimizers). For
every choice of the real numbers (α, β,M) ∈ (0,+∞)2×R let us consider the func-
tional JF1/2(α, β,M,R, v) defined in (3.11). Let us consider the canonical (H,V )-
staircase SH,V with parameters

(4.4) H :=
1

2

(
9α2

β2|M |3

)1/5

, V := MH,

and the understanding that SH,V ≡ 0 when M = 0.
Then the following statements hold true.

(1) (Entire local minimizers). The set of entire local minimizers coincides with
the set of the oblique translations of the canonical (H,V )-staircase SH,V ,
as introduced in Definition 2.3 and Definition 2.4.

(2) (Semi-entire local minimizers). The unique right-hand semi-entire local
minimizer is the function w : (0,+∞) → R defined by

(4.5) w(x) :=

{
Mz0 if x ∈ (0, z0),

SH,V (x− z0) +Mz0 if x ≥ z0,

where z0 := (5/3)1/2H (if M = 0 the value of z0 is not relevant).
The unique left-hand semi-entire local minimizer is the function w(−x).

In other words, the right-hand semi-entire local minimizer is an oblique transla-
tion of the canonical (H,V )-staircase, but with a first step that is longer. Intuitively,
this is due to the fact that the “jump at the origin” has no cost in terms of energy.

The second main result of this section is the convergence of local minimizers for
(3.2) to local minimizers for (3.11). Let us start with the symmetric case.

Proposition 4.6 (Convergence to entire local minimizers). Let M and β be real
numbers, with β > 0. For every positive integer n, let εn ∈ (0, 1) and An < Bn

be real numbers, let gn : (An, Bn) → R be a continuous function, and let wn ∈
H2((An, Bn)).

Let us assume that

(i) as n → +∞ it turns out that εn → 0+, An → −∞, and Bn → +∞,
(ii) gn(x) → Mx uniformly on bounded subsets of R,
(iii) for every positive integer n it turns out that

wn ∈ argminloc
{
RPMFεn(β, gn, (An, Bn), w) : w ∈ H2((An, Bn))

}
,
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(iv) there exists a positive real number C0 such that

(4.6) RPMFεn(β, gn, (An, Bn), wn) ≤
C0

εn
∀n ≥ 1.

Then there exists an increasing sequence {nk} of positive integers such that

wnk �� w∞ in BVloc(R),

where w∞ is an entire local minimizer for the functional (3.11) with α given
by (3.7).

The result for one-sided local minimizers is analogous. We state it in the case of
right-hand local minimizers.

Proposition 4.7 (Convergence to semi-entire local minimizers). Let M and β
be real numbers, with β > 0. For every positive integer n, let εn ∈ (0, 1) and
Ln > 0 be real numbers, let gn : (0, Ln) → R be a continuous function, and let
wn ∈ H2((0, Ln)).

Let us assume that

(i) as n → +∞ it turns out that εn → 0+ and Ln → +∞,
(ii) gn(x) → Mx uniformly on bounded subsets of (0,+∞),
(iii) for every positive integer n it turns out that

wn ∈ argminR−loc

{
RPMFεn(β, gn, (0, Ln), w) : w ∈ H2((0, Ln))

}
,

(iv) there exists a positive real number C0 such that

RPMFεn(β, gn, (0, Ln), wn) ≤
C0

εn
∀n ≥ 1.

Let w∞ denote the unique right-hand semi-entire local minimizer for the func-
tional (3.11) with α given by (3.7), namely the function defined by (4.5).

Then for every L > 0 that is not a jump point of w∞ it turns out that

wn �� w∞ in BV ((0, L)).

5. Proofs of main results

In this section we assume that the results stated in section 3 and section 4
are valid, and using them we prove all the main results of section 2 concerning
the behavior of minima and minimizers. We hope that this presentation allows
to highlight the main ideas without focusing on the technical details that will be
presented in the next section.

5.1. Asymptotic behavior of minima (Theorem 2.2). The proof of Theo-
rem 2.2 consists of two main parts. In the first part (estimate from below) we
consider any family {uε} ⊆ H2((0, 1)) and we show that

(5.1) lim inf
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx.

In the second part (estimate from above) we construct a family {uε} ⊆ H2((0, 1))
such that

(5.2) lim sup
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ 10

(
2β

27

)1/5 ∫ 1

0

|f ′(x)|4/5 dx.
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5.1.1. Estimate from below.

Interval subdivision and approximation of the forcing term. Let us fix two real
numbers L > 0 and η ∈ (0, 1). For every ε ∈ (0, 1) we set

(5.3) Nε,L :=

⌊
1

Lω(ε)

⌋
and Lε :=

1

Nε,Lω(ε)
.

We observe that Nε,L is an integer, and that Lε → L when ε → 0+. We observe
also that [0, 1] is (up to a finite number of points) the disjoint union of the Nε,L

intervals of length Lεω(ε) defined by

(5.4) Iε,k := ((k − 1)Lεω(ε), kLεω(ε)) ∀k ∈ {1, . . . , Nε,L},

and we consider the piecewise affine function fε,L : [0, 1] → R that interpolates the
values of f at the endpoints of these intervals, namely the function defined by

(5.5) fε,L(x) := Mε,L,k(x− (k − 1)Lεω(ε)) + f((k − 1)Lεω(ε)) ∀x ∈ Iε,k,

where

Mε,L,k :=
f(kLεω(ε))− f((k − 1)Lεω(ε))

Lεω(ε)
.

From the C1 regularity of f we deduce that

(5.6) |Mε,L,k| ≤ max{|f ′(x)| : x ∈ [0, 1]} =: M∞

for every admissible value of ε, L and k, and that the family {fε,L} converges to f
in the sense that

(5.7) lim
ε→0+

1

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx = 0.

Moreover, we deduce also that f ′
ε,L(x) → f ′(x) uniformly in [0, 1], and in partic-

ular

(5.8) lim
ε→0+

Lεω(ε)

Nε,L∑
k=1

|Mε,L,k|4/5 = lim
ε→0+

∫ 1

0

|f ′
ε,L(x)|4/5 dx =

∫ 1

0

|f ′(x)|4/5 dx.

Finally, from the inequality

(a+ b)2 ≥ (1− η)a2 +

(
1− 1

η

)
b2 ∀η ∈ (0, 1), ∀(a, b) ∈ R

2,

we obtain the estimate∫ 1

0

(uε − f)2 dx ≥ (1− η)

∫ 1

0

(uε − fε,L)
2 dx+

(
1− 1

η

)∫ 1

0

(f − fε,L)
2 dx,

from which we conclude that

PMFε(β, f, (0, 1), uε) ≥ (1− η)PMFε(β, fε,L, (0, 1), uε)

+

(
1− 1

η

)
β

∫ 1

0

(f(x)− fε,L(x))
2 dx.(5.9)
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Reduction to a common interval. We prove that

(5.10) PMFε(β, fε,L, (0, 1), uε) ≥ ω(ε)3
Nε,L∑
k=1

με(β, L,Mε,L,k),

where με(β, L,Mε,L,k) is defined by (3.12). To this end, we begin by observing that

(5.11) PMFε(β, fε,L, (0, 1), uε) =

Nε,L∑
k=1

PMFε(β, fε,L, Iε,k, uε).

Each of the terms of the sum can be reduced to the common interval (0, Lε) by
introducing the function vε,L,k : (0, Lε) → R defined by
(5.12)

vε,L,k(y) :=
uε((k − 1)Lεω(ε) + ω(ε)y)− f((k − 1)Lεω(ε))

ω(ε)
∀y ∈ (0, Lε).

Indeed, with the change of variable x = (k − 1)Lεω(ε) + ω(ε)y, we obtain that∫
Iε,k

(uε(x)− fε,L(x))
2 dx = ω(ε)3

∫ Lε

0

(vε,L,k(y)−Mε,L,k y)
2 dy

and ∫
Iε,k

{
ε6ω(ε)4u′′

ε (x)
2 + log

(
1 + u′

ε(x)
2
)}

dx = ω(ε)3 RPMε((0, Lε), vε,L,k),

and therefore

PMFε(β, fε,L, Iε,k, uε) = ω(ε)3 RPMFε(β,Mε,L,k x, (0, Lε), vε,L,k)

≥ ω(ε)3με(β, Lε,Mε,L,k)

≥ ω(ε)3με(β, L,Mε,L,k),

where in the last inequality we exploited that Lε ≥ L, and με is monotone with
respect to the length of the interval. Plugging this inequality into (5.11) we obtain
(5.10).

Convergence to minima of the limit problem. There exists ε0 ∈ (0, 1) such that

(5.13) με(β, L,Mε,L,k) ≥ μ0(α0, β, L,Mε,L,k)− η

for every ε ∈ (0, ε0) and every k ∈ {1, . . . , Nε,L}, where the function μ0 is defined
according to (3.13), and α0 is defined by (3.7).

Indeed, this estimate follows from Proposition 3.4, and in particular from the
uniform convergence (3.19), after observing that the values of Mε,L,k are uniformly
bounded because of (5.6).

Conclusion. From the estimate from below in (4.1) we know that

μ0(α0, β, L,Mε,L,k) ≥ c1|Mε,L,k|4/5L− c2|Mε,L,k|1/5,

where c1 and c2 are given by (4.3), and therefore in particular

(5.14) c1 :=
5

4

(
α4
0β

3

)1/5

= 10

(
2β

27

)1/5

.
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Summing over k, from (5.10) and (5.13) we obtain that

PMFε(β, fε,L, (0, 1), uε)

ω(ε)2

≥ ω(ε)

Nε,L∑
k=1

με(β, L,Mε,L,k)

≥ ω(ε)

Nε,L∑
k=1

μ0(α0, β, L,Mε,L,k)− ηω(ε)Nε,L

≥ c1Lω(ε)

Nε,L∑
k=1

|Mε,L,k|4/5 − c2ω(ε)Nε,LM
1/5
∞ − ηω(ε)Nε,L.

Finally, plugging this estimate into (5.9) we deduce that

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ (1− η)c1

L

Lε
· Lεω(ε)

Nε,L∑
k=1

|Mε,L,k|4/5

− ω(ε)Nε,L · (1− η)
(
c2M

1/5
∞ + η

)
+

(
1− 1

η

)
β

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx.

Now we let ε → 0+, and we exploit (5.8) in the first line, the fact that ω(ε)Nε,L →
1/L in the second line, and (5.7) in the third line. We conclude that

lim inf
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≥ (1− η)

{
c1

∫ 1

0

|f ′(x)|4/5 dx− c2M
1/5
∞ + η

L

}
.

Finally, letting η → 0+ and L → +∞, and recalling that c1 is given by (5.14),
we obtain exactly (5.1).

5.1.2. Estimate from above. We show the existence of a family {uε} ⊆ H2((0, 1))
for which (5.2) holds true. This amounts to proving the asymptotic optimality of
all the steps in the proof of the estimate from below.

Interval subdivision and approximation of the forcing term. Let us fix again two
real numbers L > 0 and η ∈ (0, 1), and for every ε ∈ (0, 1) let us define Nε,L

and Lε as in (5.3), the intervals Iε,k as in (5.4), and the piecewise affine function
fε,L : (0, 1) → R as in (5.5). Then we exploit the inequality

(a+ b)2 ≤ (1 + η)a2 +

(
1 +

1

η

)
b2 ∀η ∈ (0, 1), ∀(a, b) ∈ R

2,

and for every u ∈ H2((0, 1)) we obtain the estimate

PMFε(β, f, (0, 1), u) ≤ (1 + η)PMFε(β, fε,L, (0, 1), u)

+

(
1 +

1

η

)
β

∫ 1

0

(f(x)− fε,L(x))
2 dx.
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Reduction to a common interval. We claim that there exists uε ∈ H2((0, 1)) such
that

PMFε(β, fε,L, (0, 1), uε) = ω(ε)3
Nε,L∑
k=1

μ∗
ε(β, Lε,Mε,L,k)

≤
(
Lε

L

)3

ω(ε)3
Nε,L∑
k=1

μ∗
ε(β, L,Mε,L,k),

where μ∗
ε is defined by (3.14), and the inequality follows from (3.16).

To this end, in analogy with the previous case we observe that the equalities

PMFε(β, fε,L, (0, 1), uε) =

Nε,L∑
k=1

PMFε(β, fε,L, Iε,k, uε)

= ω(ε)3
Nε,L∑
k=1

RPMFε(β,Mε,L,k x, (0, Lε), vε,L,k)

hold true for every uε ∈ H2((0, 1)), provided that uε(x) and vε,L,k(x) are related
by (5.12). At this point it is enough to choose uε in such a way that vε,L,k coincides
with a minimizer in the definition of μ∗

ε(β, Lε,Mε,L,k) for every admissible choice
of k.

Due to the boundary conditions in (3.14), the resulting function uε(x) coincides
with the forcing term f(x) in the nodes of the form x = kLεω(ε), its derivative
vanishes in the same points, and the profile in each subinterval is (up to homotheties
and translations) a minimizer to (3.14). As a consequence, the different pieces glue
together in a C1 way, and thus the resulting function belongs to H2((0, 1)).

Convergence to minima of the limit problem. As in the case of the estimates from
below we rely on Proposition 3.4, and in particular on the uniform convergence
(3.20), in order to deduce that there exists ε0 ∈ (0, 1) such that(

Lε

L

)3

μ∗
ε(β, L,Mε,L,k) ≤ μ∗

0(α0, β, L,Mε,L,k) + η

for every ε ∈ (0, ε0) and every k ∈ {1, . . . , Nε,L}. We can absorb the cubic factor
into η because Lε → L, and μ∗

ε(β, L,Mε,L,k) is uniformly bounded for ε small
because of the uniform bound on the slopes Mε,L,k and the continuity of the limit
μ∗
0 with respect to M .

Conclusion. Now we exploit the estimate from above in (4.2), and we find that

μ∗
0(α0, β, L,Mε,L,k) ≤ c1|Mε,L,k|4/5L+ c3|Mε,L,k|1/5,

where again c1 is given by (5.14), and as in the previous case we conclude that

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ (1 + η)c1Lω(ε)

Nε,L∑
k=1

|Mε,L,k|4/5

+ ω(ε)Nε,L · (1 + η)
(
c3M

1/5
∞ + η

)
+

(
1 +

1

η

)
β

ω(ε)2

∫ 1

0

(f(x)− fε,L(x))
2 dx.
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Letting ε → 0+, we obtain that this family {uε} satisfies

lim sup
ε→0+

PMFε(β, f, (0, 1), uε)

ω(ε)2
≤ (1 + η)

{
c1

∫ 1

0

|f ′(x)|4/5 dx+
c3M

1/5
∞ + η

L

}
.

Now we observe that the right-hand side tends to the right-hand side of (5.2)
when η → 0+ and L → +∞. Therefore, with a standard diagonal procedure we
can find a family {uε} ⊆ H2((0, 1)) for which exactly (5.2) holds true. �

5.2. Blow-ups at standard resolution (Theorem 2.9). The proof of Theo-
rem 2.9 consists of three main steps. In the first two steps we address the com-
pactness of fake and true blow-ups. In the final step we show how to achieve all
possible translations of the canonical staircase.

5.2.1. Compactness of fake blow-ups and oblique translations. Let us set for sim-
plicity xn := xεn , and let wn(y) := wεn(y) denote the corresponding fake blow-ups,
defined in the interval (An, Bn) with

(5.15) An := − xn

ω(εn)
, Bn :=

1− xn

ω(εn)
.

We need to show that the sequence {wn} has a subsequence that converges locally
strictly in BVloc(R) to some oblique translation of the canonical (H,V )-staircase.
To this end, we introduce the function gn : (An, Bn) → R defined by

(5.16) gn(y) :=
f(xn + ω(εn)y)− f(xn)

ω(εn)
∀y ∈ (An, Bn).

We are now in a position to apply Proposition 4.6. Let us check the assumptions.

• Since xn → x0 ∈ (0, 1), passing to the limit in (5.15) we see that An → −∞
and Bn → +∞.

• Since the forcing term f is of class C1, passing to the limit in (5.16) we see
that gn(y) → f ′(x0) · y uniformly on bounded subsets of R.

• With the change of variable x = xn + ω(εn)y we obtain that

(5.17) PMFεn(β, f, (0, 1), uεn) = ω(εn)
3 · RPMFεn(β, gn, (An, Bn), wn).

Since uεn(x) is a minimizer of the original functional

u �→ PMFεn(β, f, (0, 1), u),

it follows that wn(y) is a minimizer of w �→ RPMFεn(β, gn, (An, Bn), w).
• Due to (5.17), estimate (4.6) follows from Theorem 2.2 as soon as | log εn| ≥
1.

At this point, from Proposition 4.6 we deduce that the sequence {wn} converges
locally strictly in BVloc(R), at least up to subsequences, to an entire local minimizer
of the limiting functional (3.11), with α given by (3.7). Finally, from Proposition 4.5
we know that all these entire local minimizers are oblique translations of the canon-
ical (H,V )-staircase, with parameters given by (2.8).

Remark 5.1 (Back to Remark 2.11). Let consider the case where xε → x0 ∈ {0, 1}.
If (2.11) holds true, then again An → −∞ and Bn → +∞ for every sequence
εn → 0+, and hence the previous proof still works. If (2.11) fails, then when
x0 = 0 it may happen that An → A∞ ∈ (−∞, 0] and Bn → +∞ for some sequence
εn → 0+.
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In this case it is convenient to introduce the translated functions

ŵn(y) := wn(y +An)− f ′(0)An and ĝn(y) := gn(y +An)− f ′(0)An.

We observe that these functions are defined in the interval (0, Ln) with Ln :=
Bn −An, so that Ln → +∞. We observe also that

ŵn ∈ argmin
{
RPMFεn(β, ĝn, (0, Ln), v) : v ∈ H2((0, Ln))

}
,

and that ĝn(y) → f ′(0) · y uniformly on bounded subsets of (0,+∞).
This means that we are in the framework of Proposition 4.7, from which we de-

duce that the whole sequence {ŵn} converges to the unique semi-entire local mini-
mizer in (0,+∞) of the limiting functional (3.11), with α given by (3.7). This semi-
entire local minimizer is given by (4.5), and the convergence is strict in BV ((0, L))
for every L > 0 that is not a jump point of the limit. This is a rigorous way of
saying that wn(y) converges to w(y−A∞)+ f ′(0)A∞, and the latter is the oblique
translation of the unique semi-entire local minimizer that “starts in y = A∞”.

The case where x0 = 1, and for some sequence εn → 0+ it happens that An →
−∞ and Bn → B∞ ∈ [0,+∞), is symmetric.

5.2.2. Compactness of true blow-ups and graph translations. Let us define xn and
wn(y) as before, and let vn(y) := vεn(y) denote the corresponding true blow-ups.
We observe that true blow-ups are related to the fake blow-ups by the equality

(5.18) vn(y) = wn(y)− wn(0) ∀y ∈ (An, Bn),

and therefore the asymptotic behavior of the sequence {vn} can be deduced from
the asymptotic behavior of the sequence {wn}. More precisely, let us assume that

wnk
(y) �� SH,V (y −Hτ0) + V τ0 in BVloc(R)

for some sequence nk → +∞ and some τ0 ∈ [−1, 1]. Then we distinguish two cases.

• Let us assume that |τ0| < 1. In this case y = 0 is not a discontinuity
point of the limit of fake blow-ups, and hence the strict convergence implies
pointwise convergence (see statement (2) in Remark 2.8), so that

lim
k→+∞

wnk
(0) = SH,V (−Hτ0) + V τ0 = V τ0.

Therefore, from (5.18) we deduce that vnk
(y) �� SH,V (y − Hτ0) in

BVloc(R), and we conclude by observing that the limit is a graph trans-
lation of horizontal type of the canonical (H,V )-staircase, as required.

• Let us assume that τ0 = ±1, and hence τ0 = 1 without loss of general-
ity (because oblique translations corresponding to τ0 = 1 and τ0 = −1
coincide). In this case y = 0 is a discontinuity point of the limit of fake
blow-ups, and hence strict convergence (see statement (2) in Remark 2.8)
implies only that

−V ≤ lim inf
k→+∞

wnk
(0) ≤ lim sup

k→+∞
wnk

(0) ≤ V.

As a consequence, up to a further subsequence (not relabeled), wnk
(0)

tends to some value in [−V, V ] that we can always write in the form V τ1
for some real number τ1 ∈ [−1, 1]. Therefore, from (5.18) we deduce that,
along this further subsequence,

vnk
(y) �� SH,V (y −H) + V − V τ1 in BVloc(R),
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and we conclude by observing that the limit is a graph translation of vertical
type of the canonical (H,V )-staircase, as required.

5.2.3. Realization of all possible oblique/horizontal/vertical translations. In the con-
structions we can assume, without loss of generality, that f ′(x0) �= 0, because oth-
erwise all families of fake or true blow-ups converge to the trivial staircase that is
identically 0, in which case there is nothing to prove.

Canonical staircase. We show that there exists a family x′
ε → x0 satisfying (2.9),

and (2.10) with w0(y) := SH,V (y). The natural idea is to look for the fake blow-ups
that minimize some distance from the desired limit. To this end, for every ε ∈ (0, 1)
small enough we consider the function

ψε(x) :=

∫ H

−H

∣∣∣∣uε(x+ ω(ε)y)− f(x)

ω(ε)

∣∣∣∣ dy.
It is a continuous function of x, and therefore it admits at least one minimum

point x′
ε in the interval [xε−Hω(ε), xε+Hω(ε)]. We claim that {x′

ε} is the required
family. To begin with, we observe that (2.9) is automatic from the definition, and
we call

(5.19) wε(y) :=
uε(x

′
ε + ω(ε)y)− f(x′

ε)

ω(ε)

the corresponding fake blow-ups. If we assume by contradiction that {wε} does
not converge to SH,V , then from the compactness result we know that there exists
a sequence εn → 0+ such that wεn converges locally strictly in BVloc(R) to some
oblique translation z0 of SH,V , different from SH,V itself, and in particular

lim
n→+∞

ψεn(x
′
εn) = lim

n→+∞

∫ H

−H

|wεn(y)| dy =

∫ H

−H

|z0(y)| dy > 0.

On the other hand, since z0 is an oblique translation, it can be written in the
form

z0(y) = SH,V (y −Hτ1) + V τ1

for a suitable τ1 ∈ [−1, 1], with τ1 �= 0. Now for every positive integer n we set

x′′
εn

:= x′
εn + (2kn + τ1)Hω(εn),

where kn ∈ {−1, 0, 1} is chosen in such a way that

xεn −Hω(εn) ≤ x′′
εn < xεn +Hω(εn)

(we point out that there is always exactly one possible choice of kn). We claim that

(5.20)
uεn(x

′′
εn + ω(εn)y)− f(x′′

εn)

ω(εn)
�� SH,V (y) in BVloc(R),

and in particular the convergence is also in L1((−H,H)). This implies that ψεn(x
′′
εn)

→ 0, and hence ψεn(x
′′
εn) < ψεn(x

′
εn) when n is large enough, thus contradicting

the minimality of x′
εn . In order to prove (5.20), up to subsequences (not relabeled)

we can always assume that kn is actually a constant k∞. Now we observe that

uεn(x
′′
εn + ω(εn)y)− f(x′′

εn)

ω(εn)
= wεn(y + (2k∞ + τ1)H)−

f(x′′
εn)− f(x′

εn)

ω(εn)
,

so that in particular

wεn(y + (2k∞ + τ1)H) �� z0(y + (2k∞ + τ1)H) = SH,V (y + 2k∞H) + V τ1,
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and

lim
n→+∞

f(x′′
εn)− f(x′

εn)

ω(εn)
= (2k∞ + τ1)H · f ′(x0) = (2k∞ + τ1)V.

It follows that

uεn(x
′′
εn + ω(εn)y)− f(x′′

εn)

ω(εn)
�� SH,V (y + 2k∞H)− 2k∞V,

and we conclude by observing that the latter coincides with SH,V (y). This com-
pletes the proof of (5.20).

All oblique translations. Let x′
ε → x0 be the family that we found in the previous

paragraph, namely a family satisfying (2.9), and (2.10) with w0(y) := SH,V (y). If
we need to obtain a different oblique translation of the form w0(y) = SH,V (y −
Hτ0) + V τ0 for some τ0 ∈ (−1, 1], then it is enough to consider the family

x′′
ε := x′

ε −Hτ0ω(ε) + 2kεHω(ε),

where kε ∈ {−1, 0, 1} is chosen in such a way that x′′
ε ∈ [xε −Hω(ε), xε +Hω(ε)].

Indeed, it is enough to observe that

(5.21)
uε(x

′′
ε + ω(ε)y)− f(x′′

ε )

ω(ε)
= wε(y + (2kε − τ0)H)− f(x′′

ε )− f(x′
ε)

ω(ε)
,

where wε is the family of fake blow-ups with centers in x′
ε. At this point, if needed

we split the family into three subfamilies according to the value of kε. In the
subfamily where kε is equal to some constant k0 we obtain that

wε(y + (2kε − τ0)H) �� SH,V (y + (2k0 − τ0)H),

and
f(x′′

ε )− f(x′
ε)

ω(ε)
→ (2k0 − τ0)H · f ′(x0) = (2k0 − τ0)V.

This implies that the left-hand side of (5.21) converges locally strictly to

SH,V (y + (2k0 − τ0)H)− (2k0 − τ0)V,

which is equal to SH,V (y −Hτ0) + V τ0, independently of k0, as required.

Graph translations of horizontal type. In this paragraph we show that any graph
translation of the form SH,V (y − Hτ0), with τ0 ∈ [−1, 1], can be obtained as the
limit of a suitable family of true blow-ups whose centers satisfy (2.9).

To begin with, we observe that the set of possible limits is closed with respect to
the locally strict convergence in BVloc(R), and therefore it is enough to obtain all
limits with τ0 in the open interval (−1, 1). In this case, we claim that we can take
the same family x′

ε → x0 whose fake blow-ups converge to SH,V (y −Hτ0) − V τ0,
with the same value of τ0. Indeed, we observe again that

(5.22)
uε(x

′
ε + ω(ε)y)− uε(x

′
ε)

ω(ε)
= wε(y)− wε(0),

where wε(y) is defined by (5.19). Now we know that wε(y) �� SH,V (y−Hτ0)−V τ0.
Moreover, if τ0 ∈ (−1, 1) the limit function is continuous in y = 0, and therefore
the strict convergence implies also that wε(0) → SH,V (−Hτ0) − V τ0 = −V τ0.
Plugging these two results into (5.22) we obtain that the left-hand side converges
to SH,V (y −Hτ0), as required.
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Graph translations of vertical type. In this final paragraph we show that any graph
translation of the form SH,V (y−H)+(1−τ0)V , with τ0 ∈ [−1, 1], can be obtained as
the limit of a suitable family of true blow-ups whose centers satisfy (2.9). To begin
with, as in the case of graph translations of horizontal type we reduce ourselves to
the case where τ0 ∈ (−1, 1).

In this case we consider the family x′
ε → x0 whose fake blow-ups wε(y) defined by

(5.19) converge to SH,V (y). Since SH,V (y) is continuous in y = −2H and y = 2H,
the strict convergence implies in particular that

lim
ε→0+

wε(−2H) = −2V and lim
ε→0+

wε(2H) = 2V.

Recalling that wε(y) is continuous in y and vanishes for y = 0, this means that
when ε ∈ (0, 1) is small enough there exist aε ∈ (−2H, 0) and bε ∈ (0, 2H) such
that

(5.23) wε(aε) = (−1 + τ0)V and wε(bε) = (1 + τ0)V.

These two conditions imply in particular that

(5.24) lim
ε→0+

aε = −H and lim
ε→0+

bε = H,

because a limit of blow-ups can be different from an integer multiple of 2V only in
the jump points of the limit function SH,V .

Now we set

x′′
ε :=

{
x′
ε + ω(ε)aε if x′

ε ≥ xε,

x′
ε + ω(ε)bε if x′

ε < xε,

and we claim that this is the required family. Indeed, from the definition it follows
that

|x′′
ε − xε|
ω(ε)

≤ max

{
|x′

ε − xε|
ω(ε)

,−aε, bε

}
,

and therefore (2.9) for x′′
ε follows from (2.9) for x′

ε and (5.24).
In order to compute the limit of the true blow-ups with center in x′′

ε , we consider
the two subfamilies where x′′

ε is defined using aε or bε. In the first case from (5.23)
and (5.24) we deduce that

uε(x
′′
ε + ω(ε)y)− uε(x

′′
ε )

ω(ε)
= wε(y + aε)− wε(aε),

�� SH,V (y −H)− (−1 + τ0)V,

as required. Analogously, in the second case we obtain that

uε(x
′′
ε + ω(ε)y)− uε(x

′′
ε )

ω(ε)
�� SH,V (y +H)− (1 + τ0)V,

which again coincides with SH,V (y −H) + (1− τ0)V , as required. �
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5.3. Convergence of minimizers to the forcing term.

5.3.1. Strict convergence (statement (1) of Theorem 2.14). Since the limit f is con-
tinuous, we know that uniform convergence in [0, 1] follows from strict convergence
(see statement (2) in Remark 2.8). As for strict convergence, we already know from
Proposition 2.1 that uε → f in L2((0, 1)). Therefore, it remains to show that (the
opposite inequality is trivial)

(5.25) lim sup
ε→0+

∫ 1

0

|u′
ε(x)| dx ≤

∫ 1

0

|f ′(x)| dx.

Let us assume by contradiction that this is not the case, and hence there exist a
positive real number η0 and a sequence {εn} ⊆ (0, 1) such that εn → 0+ and

(5.26)

∫ 1

0

|u′
εn(x)| dx ≥

∫ 1

0

|f ′(x)| dx+ η0 ∀n ∈ N.

For every fixed positive real number L, in analogy with (5.3) we set

Nn :=

⌊
1

Lω(εn)

⌋
and Ln :=

1

Nnω(εn)
,

and we consider the intervals In,k := ((k − 1)Lnω(εn), kLnω(εn)) with k ∈
{1, . . . , Nn}. Since we can rewrite (5.26) in the form

Nn∑
k=1

∫
In,k

(
|u′

εn(x)| − |f ′(x)|
)
dx ≥ η0,

we deduce that for every n ∈ N there exists an integer kn such that

(5.27)

∫
In,kn

(
|u′

εn(x)| − |f ′(x)|
)
dx ≥ η0

Nn
.

Now we set xn := (kn − 1)ω(εn)Ln, and we consider the corresponding fake
blow-ups

(5.28) wn(y) :=
uεn(xn + ω(εn)y)− f(xn)

ω(εn)
.

With the change of variable x = xn + ω(ε)y, we can rewrite (5.27) in the form

(5.29)

∫ Ln

0

(
|w′

n(y)| − |f ′(xn + ω(εn)y)|
)
dy ≥ η0

Nnω(εn)
≥ η0L.

Up to subsequences (not relabeled) we can always assume that xn converges to
some x∞ ∈ [0, 1]. Let us assume now that x∞ ∈ (0, 1). From the continuity of f ′

we deduce that f ′(xn + ω(εn)y) → f ′(x∞) uniformly on bounded subsets of R and
in particular, since Ln → L, we obtain that

(5.30) lim
n→+∞

∫ Ln

0

|f ′(xn + ω(εn)y)| dy = |f ′(x∞)|L.

Moreover, from statement (1) of Theorem 2.9 we deduce that, up to a further
subsequence (not relabeled), wn �� w∞ in BVloc(R), where w∞ is an oblique trans-
lation of a canonical staircase with parameters depending on β and f ′(x∞). As a
consequence, from statement (3) of Remark 2.8 we obtain that

lim sup
n→+∞

∫ Ln

0

|w′
n(y)| dy ≤ lim

n→+∞

∫ b

a

|w′
n(y)| dy = |Dw∞|((a, b))
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for every interval (a, b) ⊇ [0, L] whose endpoints a and b are not jump points of
w∞. If we consider any sequence of such intervals whose intersection is [0, L], we
deduce that

(5.31) lim sup
n→+∞

∫ Ln

0

|w′
n(y)| dy ≤ |Dw∞|([0, L]).

From (5.29), (5.30) and (5.31) we conclude that

(5.32) |Dw∞|([0, L])− |f ′(x∞)|L ≥ η0L.

Now we observe that the left-hand side is the difference between the total vari-
ation of w∞ in [0, L] and the total variation of the line y �→ |f ′(x∞)|y in the same
interval. Since w∞(y) is a staircase with the property that the midpoints of the ver-
tical parts of the steps lie on the same line, the left-hand side of (5.32) is bounded
from above by the height of each step of the staircase. Now both w∞ and x∞
might depend on L, but in any case the height of the steps depends only on β and
|f ′(x∞)|, and the latter is bounded independently on L because f is of class C1.
In conclusion, the left-hand side of (5.32) is bounded from above independently of
L, and this contradicts (5.32) when L is large enough.

Let us consider next the case where x∞ = 0 (the case x∞ = 1 is symmetric). In
this case we consider the sequence {kn}. If it is unbounded, then up to subsequences
we can assume that it diverges to +∞. In this case the intervals where the functions
wn of (5.28) are defined invade eventually the whole real line, and therefore the
previous argument works without any change (see also Remark 2.11).

If the sequence {kn} is bounded, then up to subsequences we can assume that it
is equal to some fixed positive integer k∞. In this case the functions wn(y) are all
defined in the same half-line y > y∞ with y∞ := −(k∞ − 1)L, and in this half-line
they converge to a limit staircase w∞(y) (see Remark 5.1). The convergence is
strict in every interval of the form (y∞, b), where b is not a jump point of w∞,
and of course also in all intervals of the form (a, b) where a and b are not jump
points of w∞. Moreover, the function w∞ is the unique semi-entire right-hand
local minimizer of JF1/2 with the appropriate parameters in this half-line, namely
the suitable oblique translation of the function defined in (4.5), which is again a
staircase with the property that the midpoints of the vertical parts of the steps lie
on the line f ′(x∞)y.

At the end of the day, we obtain that (5.32) holds true also in this case, and as
before the right-hand side depends only on the difference between the “values” of
w∞(y) and of the line f ′(x∞)y at the two endpoints. This difference is bounded
from above by the height of the steps of w∞. These steps could be either the
“ordinary steps” or the “initial step”, which is higher, but in any case their height
is independent of L.

5.3.2. Varifold convergence (statement (2) of Theorem 2.14).

Notations and splitting of the graph. In analogy with (2.12), for every ε ∈ (0, 1) we
set

V +
ε := {x ∈ [0, 1] : u′

ε(x) > 0} and V −
ε := {x ∈ [0, 1] : u′

ε(x) < 0}.
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From statement (4) of Remark 2.8 we know that the strict convergence of uε to
f implies in particular that

(5.33) lim
ε→0+

∫
V +
ε

g(x)u′
ε(x) dx =

∫
V +
0

g(x)f ′(x) dx

for every continuous function g : [0, 1] → R, and similarly with V −
ε and V −

0 .
We observe also that the strict convergence uε �� f in BV ((0, 1)) implies that

the family {uε} is bounded in L∞((0, 1)), and therefore there exist real numbers
ε0 ∈ (0, 1) and M0 ≥ 0 such that

(5.34) |φ(x, uε(x), arctan p)| ≤ M0 ∀(x, p) ∈ [0, 1]× R ∀ε ∈ (0, ε0).

Now for every a ∈ (0, 1) we define the three sets

Ia := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, |p| ≤ a} ,

I+a := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, p ≥ 1/a} ,

I−a := {(x, s, p) ∈ [0, 1]× R× R : |s− f(x)| ≤ a, p ≤ −1/a} ,
and the corresponding three constants

Γa := max {|φ(x, s, arctan p)− φ(x, f(x), 0)| : (x, s, p) ∈ Ia} ,

Γ+
a := max

{
|φ(x, s, arctan p)− φ(x, f(x), π/2)| : (x, s, p) ∈ I+a

}
,

Γ−
a := max

{
|φ(x, s, arctan p)− φ(x, f(x),−π/2)| : (x, s, p) ∈ I−a

}
.

We observe that, due to the boundedness of f(x) and the uniform continuity of
φ in bounded sets, these constants satisfy

(5.35) lim
a→0+

Γa = lim
a→0+

Γ+
a = lim

a→0+
Γ−
a = 0.

Finally, for every ε ∈ (0, 1) and every a ∈ (0, 1), we write the interval [0, 1] as
the disjoint union of the four sets

Ha,ε := {x ∈ [0, 1] : |u′
ε(x)| ≤ a} ,(5.36)

V +
a,ε := {x ∈ [0, 1] : u′

ε(x) ≥ 1/a} , V −
a,ε := {x ∈ [0, 1] : u′

ε(x) ≤ −1/a} ,(5.37)

Ma,ε := {x ∈ [0, 1] : a < |u′
ε(x)| < 1/a} ,(5.38)

and accordingly we write∫ 1

0

φ
(
x, uε(x), arctan(u

′
ε(x))

)√
1 + u′

ε(x)
2 dx = IHa,ε + I+a,ε + I−a,ε + IMa,ε,

where the four terms in the right-hand side are the integrals over the four sets
defined above. We observe that

PMFε(β, f, (0, 1), uε) ≥
∫ 1

0

log
(
1 + u′

ε(x)
2
)
dx

≥ log
(
1 + a2

) (
|V +

a,ε|+ |V −
a,ε|+ |Ma,ε|

)
,

and, since the left-hand side tends to 0, we deduce that

lim
ε→0+

|V +
a,ε| = lim

ε→0+
|V −

a,ε| = lim
ε→0+

|Ma,ε| = 0 ∀a ∈ (0, 1),

Licensed to Universita di Pisa. Prepared on Fri Oct  6 11:06:36 EDT 2023 for download from IP 131.114.118.26.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5340 MASSIMO GOBBINO AND NICOLA PICENNI

and as a consequence

lim
ε→0+

|H+
a,ε| = 1 ∀a ∈ (0, 1).

We claim that for every fixed a ∈ (0, 1) it turns out that

lim sup
ε→0+

∣∣∣∣IHa,ε − ∫ 1

0

φ(x, f(x), 0) dx

∣∣∣∣ ≤ M0

(√
1 + a2 − 1

)
+ Γa,(5.39)

lim
ε→0+

IMa,ε = 0,(5.40)

lim sup
ε→0+

∣∣∣∣∣I+a,ε −
∫
V +
0

φ(x, f(x), π/2) · f ′(x) dx

∣∣∣∣∣ ≤ Γ+
a

∫ 1

0

|f ′(x)| dx+M0a,(5.41)

lim sup
ε→0+

∣∣∣∣∣I−a,ε −
∫
V −
0

φ(x, f(x),−π/2) · |f ′(x)| dx
∣∣∣∣∣ ≤ Γ−

a

∫ 1

0

|f ′(x)| dx+M0a.

(5.42)

If we prove these claims, then we let a → 0+ and from (5.35) we obtain exactly
(2.13).

In words, this means that the integral in the left-hand side of (2.13) splits into
the four integrals over the regions (5.36), (5.37), (5.38), which behave as follows.

• The integral over the “intermediate” region Ma,ε disappears in the limit.
• The integral over the “horizontal” region Ha,ε tends to the first integral in
the right hand side of (2.13), in which the “tangent component” is horizon-
tal.

• The integrals over the two “vertical” regions V +
a,ε and V −

a,ε tend to the two

integrals over V +
0 and V −

0 in the right hand side of (2.13). In these two
integrals the “tangent component” is vertical.

Estimate in the intermediate regime. From (5.34) we know that

|φ(x, uε(x), arctan(u
′
ε(x)))|

√
1 + u′

ε(x)
2 ≤ M0

√
1 +

1

a2
∀x ∈ Ma,ε,

and therefore

|IMε,a| ≤ M0

√
1 +

1

a2
· |Ma,ε|.

Since |Ma,ε| → 0 as ε → 0+, this proves (5.40).

Estimate in the horizontal regime. In order to prove (5.39), we observe that

IHa,ε−
∫ 1

0

φ(x, f(x), 0) dx =

∫
Ha,ε

φ
(
x, uε(x), arctan(u

′
ε(x))

) (√
1 + u′

ε(x)
2 − 1

)
dx

+

∫
Ha,ε

{
φ
(
x, uε(x), arctan(u

′
ε(x))

)
− φ(x, f(x), 0)

}
dx,

+

∫
Ha,ε

φ(x, f(x), 0) dx−
∫ 1

0

φ(x, f(x), 0) dx.

The absolute value of the first line in the right-hand side is less than or equal to
M0

(√
1 + a2 − 1

)
. The absolute value of the second line is less than or equal to Γa
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provided that

(5.43) |uε(x)− f(x)| ≤ a ∀x ∈ [0, 1],

and this happens whenever ε is small enough. The third line tends to 0 because
|Hε,a| → 1 as ε → 0+. This is enough to establish (5.39).

Estimate in the vertical regime. In order to prove (5.41), we observe that

I+a,ε −
∫
V +
0

φ(x, f(x), π/2) · f ′(x) dx

=

∫
V +
a,ε

φ
(
x, uε(x), arctan(u

′
ε(x))

) (√
1 + u′

ε(x)
2 − u′

ε(x)
)
dx

+

∫
V +
a,ε

{
φ
(
x, uε(x), arctan(u

′
ε(x))

)
− φ(x, f(x), π/2)

}
u′
ε(x) dx

+

∫
V +
a,ε

φ(x, f(x), π/2)u′
ε(x) dx−

∫
V +
ε

φ(x, f(x), π/2)u′
ε(x) dx

+

∫
V +
ε

φ(x, f(x), π/2)u′
ε(x) dx−

∫
V +
0

φ(x, f(x), π/2)f ′(x) dx

=: L1 + L2 + L3 + L4.

Let us consider the four lines separately. The first line can be estimated as

|L1| ≤ M0 max
{√

1 + p2 − p : p ≥ 1/a
}
|V +

a,ε| ≤ M0 ·
a

2
· |V +

a,ε|,

and this tends to 0 when ε → 0+. The second line can be estimated as

|L2| ≤ Γ+
a ·
∫ 1

0

|u′
ε(x)| dx

whenever (5.43) holds true, namely when ε is small enough. For the third line we
observe that V +

ε \ V +
a,ε ⊆ Ha,ε ∪Ma,ε, and therefore

|L3| ≤
∫
Ha,ε

|φ(x, f(x), 0)| · |u′
ε(x)| dx+

∫
Ma,ε

|φ(x, f(x), 0)| · |u′
ε(x)| dx

≤ M0a+M0 ·
1

a
· |Ma,ε|.

Finally, we observe that L4 → 0 as ε → 0+ because of (5.33). Recalling (5.25)
and the fact that |Ma,ε| → 0 as ε → 0+, from the previous estimates we conclude
that

lim sup
ε→0+

|L1 + L2 + L3 + L4| ≤ lim sup
ε→0+

Γ+
a ·
∫ 1

0

|u′
ε(x)| dx+M0a

= Γ+
a

∫ 1

0

|f ′(x)| dx+M0a,

which proves (5.41). The proof of (5.42) is analogous. �
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5.4. Low resolution blow-ups (Corollary 2.13). The pointwise convergence
for y = 0 is trivial, and therefore it is enough to check the convergence of total
variations, which in turn reduces to

(5.44) lim sup
ε→0+

∫ b

a

|u′
ε(xε + αεy)| dy ≤ |f ′(x0)|(b− a)

for every interval (a, b) ⊆ R. If we assume by contradiction that (5.44) fails, then the
same argument we exploited in the proof of (5.25) shows that there exist a positive
real number η0, a sequence {εn} ⊆ (0, 1) such that εn → 0+, and a sequence of
positive integers kn such that

(5.45)

∫ Ln

0

|u′
εn(x̂n + ω(εn)y)| dy − |f ′(x0)|Ln ≥ η0 ·

αεn

ω(εn)Nn
,

where now

Nn :=

⌊
(b− a)αεn

Lω(εn)

⌋
, Ln :=

(b− a)αεn

Nnω(εn)
, x̂n :=xεn+aαεn +Lnω(εn)(kn−1),

and kn ∈ {1, . . . , Nn}. The integral in the left-hand side of (5.45) coincides with
the total variation in the interval (0, Ln) of the fake blow-up of uεn , at the standard
scale ω(εn), with center in x̂n. Since x̂n → x0 (here we exploit again that kn ≤ Nn

and ω(ε)/αε → 0), we know that these fake blow-ups converge strictly (up to
subsequences) to some staircase w∞. Therefore, passing to the limit in (5.45) we
deduce that

|Dw∞|([0, L])− |f ′(x0)|L ≥ η0L

b− a
,

and we conclude exactly as in the proof of (5.25). �

6. Asymptotic analysis of local minimizers

This section is the technical core of the paper. Here we prove all the results that
we stated in section 4.

6.1. Preliminary lemmata.

Lemma 6.1. Let C0 and C1 be two positive real numbers. Let us consider the
function ϕ : (0, 1) → R defined by

ϕ(t) := C0

(√
t+

√
1− t

)
+ C1

(
t3 + (1− t)3

)
,

and let us assume that there exists t0 ∈ (0, 1) such that ϕ(t) ≥ ϕ(t0) for every
t ∈ (0, 1).

Then it turns out that t0 = 1/2.

Proof. With the variable change t = sin2 θ, we can restate the claim as follows. Let
us consider the function g : (0, π/2) → R defined by

g(θ) := C0 (cos θ + sin θ) + C1

(
cos6 θ + sin6 θ

)
;

if there exists θ0 ∈ (0, π/2) such that

(6.1) g(θ) ≥ g(θ0) ∀θ ∈ (0, π/2),

then necessarily θ0 = π/4.
In order to prove this claim, we observe that the derivative of g is

(6.2) g′(θ) = (cos θ − sin θ) (C0 − 6C1 cos θ sin θ(cos θ + sin θ)) .
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Let us consider the function ψ(θ) := cos θ sin θ(cos θ+ sin θ), whose derivative is

ψ′(θ) = (cos θ − sin θ)(1 + 3 cos θ sin θ).

It follows that ψ is increasing in [0, π/4] and decreasing in [π/4, π/2], and its

maximum value is ψ(π/4) = 1/
√
2. Now we distinguish two cases.

• If C0

√
2 ≥ 6C1, then the sign of g′(θ) coincides with the sign of cos θ−sin θ.

It follows that π/4 is the unique stationary point of g in (0, π/4), but it is
a maximum point, and therefore in this case there is no θ0 ∈ (0, π/2) for
which (6.1) holds true.

• If C0

√
2 < 6C1, then also the second term in the right-hand side of (6.2)

changes its sign in two points of the form π/4±θ1 for some θ1 ∈ (0, π/4). In
this case it turns out that g has three stationary points in (0, π/2), namely
π/4± θ1 (which are maximum points) and π/4, which is a minimum point
(local or global depending on C0 and C1).

In any case, if g has a minimum point in (0, π/2), this is necessarily π/4. �

Lemma 6.2. Let (a, b) ⊆ R be an interval, and let A0, A1, B0, B1 be four real
numbers. Let us consider the minimum problem

min

{∫ b

a

w′′(y)2 dy : w∈H2((a, b)),
(
w(a), w′(a), w(b), w′(b)

)
=(A0, A1, B0, B1)

}
.

Then the unique minimum point is the function

w0(y) = P

(
y − a+ b

2

)
,

where P (x) = c0+c1x+c2x
2+c3x

3 is the polynomial of degree three with coefficients

c0 :=
A0 +B0

2
− B1 −A1

8
(b− a), c1 :=

3(B0 −A0)

2(b− a)
− A1 +B1

4
,

c2 :=
B1 −A1

2(b− a)
, c3 := −2(B0 −A0)

(b− a)3
+

A1 +B1

(b− a)2
.

As a consequence, the minimum value is

(B1 −A1)
2

b− a
+

12

(b− a)3

[
(B0 −A0)−

A1 +B1

2
(b− a)

]2
,

and the minimum point satisfies the pointwise estimates

|w0(y)| ≤
3(|A0|+ |B0|)

2
+

|A1|+ |B1|
2

(b− a) ∀y ∈ [a, b],

and

|w′
0(y)| ≤

3|B0 −A0|
b− a

+
3(|A1|+ |B1|)

2
∀y ∈ [a, b].

Proof. From the Euler-Lagrange equation we know that minimizers are polynomials
of degree at most three, and w0 is the unique such polynomial that fits the boundary
conditions. �

Lemma 6.3. Let (a, b) ⊆ R be an interval, and let D and H be positive real
numbers. Let ε ∈ (0, 1) be a real number such that

(6.3) 2ε2
(√

H + ε2D
)
< (b− a)
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and

(6.4)
2

| log ε| log
(
1 +

45

2ε4

(√
H + ε2D

)2)
≤ 18.

Then for every (A0, B0) ∈ [−H,H]2 and every (A1, B1) ∈ [−D,D]2 there exists
a function w ∈ H2((a, b)) satisfying the boundary conditions

(6.5)
(
w(a), w′(a), w(b), w′(b)

)
= (A0, A1, B0, B1),

and the estimates

RPMε((a, b), w) ≤ 80
(√

H + ε2D
)
,(6.6) ∫ b

a

w(x)2 dx ≤ 10ε2
(√

H + ε2D
)5

.(6.7)

Proof. For every real number η ∈ (0, (b− a)/2), let us consider the function

w(x) :=

⎧⎪⎨⎪⎩
ϕ1(x) if x ∈ [a, a+ η],

0 if x ∈ [a+ η, b− η],

ϕ2(x) if x ∈ [b− η, b],

where ϕ1 is the unique polynomial of degree three such that

ϕ1(a) = A0, ϕ′
1(a) = A1, ϕ1(a+ η) = ϕ′

1(a+ η) = 0,

and ϕ2 is the unique polynomial of degree three such that

ϕ2(b) = B0, ϕ′
2(b) = B1, ϕ2(b− η) = ϕ′

2(b− η) = 0.

We observe that w belongs to H2((a, b)), and fulfills the boundary conditions
(6.5). From Lemma 6.2 we deduce that w satisfies the integral estimate∫ a+η

a

w′′(x)2 dx ≤ D2

η
+

12

η3

(
H +

D

2
η

)2

≤ 7D2

η
+

24H2

η3
,

and the pointwise estimates

|w(x)| ≤ 3H

2
+

Dη

2
and |w′(x)| ≤ 3H

η
+

3D

2

for every x ∈ [a, a+ η], from which we deduce that∫ a+η

a

w(x)2 dx ≤ 9H2η

2
+

D2η3

2
,

and ∫ a+η

a

log
(
1 + w′(x)2

)
dx ≤ η log

(
1 +

18H2

η2
+

9D2

2

)
.

Analogous estimates hold true in the interval [b − η, b], while of course there is
no contribution from the central interval [a+ η, b− η]. It follows that
(6.8)

RPMε((a, b), w) ≤
η

ε2

{(
14D2

η2
+

48H2

η4

)
ε8 +

2

| log ε| log
(
1 +

18H2

η2
+

9D2

2

)}
,

and

(6.9)

∫ b

a

w(x)2 dx ≤ 9H2η +D2η3.
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Now we set η := ε2
(√

H + ε2D
)
. This choice is admissible because η < (b−a)/2

due to (6.3). We observe also that η4 ≥ ε8H2 and η2 ≥ ε8D2. As a consequence,
from (6.9) we conclude that∫ b

a

w(x)2 dx ≤ 9H2η +D2η3 ≤ 10η5

ε8
,

which proves (6.7). Similarly, we obtain that(
14D2

η2
+

48H2

η4

)
ε8 ≤ 62,

and
2

| log ε| log
(
1 +

18H2

η2
+

9D2

2

)
≤ 2

| log ε| log
(
1 +

45

2

η2

ε8

)
≤ 18,

where in the last inequality we exploited (6.4). Plugging these estimates into (6.8)
we obtain (6.6). �

6.2. Proof of Proposition 4.4 and Proposition 4.5. In this subsection we
prove the two propositions simultaneously. The common idea is that every local
minimizer to the functional (3.11) is a staircase where all the steps have the same
length and the same height, and this staircase intersects the graph of the forcing
term Mx in the midpoint of every horizontal step. This structure applies to entire
local minimizers, but also to minimizers to (3.13), with the possible exception that
the length of the two steps at the boundary might be different. Once this structure
has been established, we only need to optimize with respect to the length of the
steps in both cases.

The proof of the structure result is rather lengthy, because we need first to show
that the jump set is discrete, then that the steps are symmetric with respect to the
forcing term, and finally that all the steps have the same length.

Since the parameters α, β and M are fixed once and for all, for the sake of
shortness in the sequel the functional (3.11) is denoted only by JF(Ω, w). When
needed, we also assume that M > 0 (the case M < 0 is symmetric, and the easier
case M = 0 is treated in the last paragraph of the proof).

The jump set of local minimizers is discrete. Let us assume that w0 is a local
minimizer for the functional JF((a, b), w) in some interval (a, b) ⊆ R. We prove
that the set of jump points of w0 in (a, b) is finite.

To this end, let us assume by contradiction that this is not the case. Due to
the structure of the elements of the space PJ((a, b)), we know that there exist a
sequence {sk} ⊆ (a, b) of distinct real numbers, a real number c0, and a sequence
{Jk} of real numbers different from zero such that

∞∑
k=1

|Jk| < +∞

and

(6.10) w0(x) = c0 +
∞∑
k=1

Jk�(sk,b)(x) ∀x ∈ (a, b).
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For every integer n ≥ 2 we consider the real number

Rn :=
∞∑

k=n+1

|Jk|,

and the function wn : (a, b) → R defined by

(6.11) wn(x) := c0+

(
J1 +

∞∑
k=n+1

Jk

)
�(s1,b)(x)+

n∑
k=2

Jk�(sk,b)(x) ∀x ∈ (a, b).

We observe that Rn → 0, and the function wn has a finite number of jumps
located at the arguments s1, . . . , sn, and the jump in s1 has “absorbed” all the
heights of the jumps in si with i ≥ n+1 (the jump height in s1 might also vanish).
In this way it turns out that

lim
x→a+

wn(x)= lim
x→a+

w0(x)=c0 and lim
x→b−

wn(x)= lim
x→b−

w0(x)=c0 +

∞∑
k=1

Jk,

and therefore w0 and wn have the same “boundary data”. As a consequence, due
to the minimality of w0 this implies that

(6.12) JF((a, b), wn) ≥ JF(a, b), w0) ∀n ≥ 2.

On the other hand, from (6.10) and (6.11) we obtain that

J1/2((a, b), w0)− J1/2((a, b), wn) =
∞∑

k=n+1

|Jk|1/2 + |J1|1/2 −
∣∣∣∣∣J1 +

∞∑
k=n+1

Jk

∣∣∣∣∣
1/2

.

Due to the subadditivity of the square root, the first term can be estimated as

∞∑
k=n+1

|Jk|1/2 ≥
( ∞∑

k=n+1

|Jk|
)1/2

= (Rn)
1/2,

while for the second and third terms it turns out that

|J1|1/2 −
∣∣∣∣∣J1 +

∞∑
k=n+1

Jk

∣∣∣∣∣
1/2

≥ |J1|1/2 − (|J1|+Rn)
1/2 ≥ − Rn

2|J1|1/2
.

From these two inequalities it follows that

(6.13) J1/2((a, b), w0)− J1/2((a, b), wn) ≥ (Rn)
1/2 − Rn

2|J1|1/2
.

Moreover, from (6.11), we obtain also that

|w0(x)− wn(x)| ≤ Rn ∀x ∈ (a, b)

and

|wn(x)−Mx| ≤ |c0|+
∞∑
k=1

|Jk|+M max{|a|, |b|} =: V∞ ∀x ∈ (a, b),

and therefore∫ b

a

(w0(x)−Mx)2 dx ≥
∫ b

a

[
(wn(x)−Mx)2+2(wn(x)−Mx)(w0(x)−wn(x))

]
dx

≥
∫ b

a

(wn(x)−Mx)2 dx− 2(b− a)V∞Rn(6.14)
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for every n ≥ 2. From (6.13) and (6.14) we conclude that

JF((a, b), w0)− JF((a, b), wn) ≥ α(Rn)
1/2 − αRn

2|J1|1/2
− 2β(b− a)V∞Rn.

When Rn → 0+ the right-hand side is positive, and this contradicts (6.12).

Existence of jump points and intersections. Let us assume that M > 0, and let us
set

(6.15) L0 :=

(
64α2

β2M3

)1/5

.

We claim that, if w0 is a local minimizer in some interval (a, b) ⊆ R with length
b − a > L0, then w0 has either at least one jump point in (a, b) or at least one
intersection with the line Mx, namely there exists z0 ∈ (a, b) such that w0(z0) =
Mz0.

Indeed, let us assume by contradiction that this is not the case. Then in (a, b)
the function w0 is a constant of the form Ma− c or Mb+ c for some real number
c ≥ 0. In both cases it turns out that

(6.16) JF((a, b), w0) =

(
M2

3
(b− a)3 +M(b− a)2c+ (b− a)c2

)
β.

For every real number τ with 0 < 2τ < b − a, let us consider the function
wτ : (a, b) → R defined by

(6.17) wτ (x) :=

⎧⎨⎩
M(a+ b)

2
if a+ τ < x < b− τ,

w0(x) if x ∈ (a, b) \ (a+ τ, b− τ ).

Since wτ coincides with w0 in a neighborhood of the boundary, from the min-
imality of w0 we deduce that JF((a, b), wτ ) ≥ JF((a, b), w0) for every admissible
value of τ , and in particular

(6.18) lim
τ→0+

JF((a, b), wτ ) ≥ JF((a, b), w0).

The right-hand side is given by (6.16). As for the left-hand side, we observe that
wτ has two equal jumps of height c +M(b − a)/2, while the integral term can be
computed starting from the explicit expression (6.17). We obtain that

(6.19) lim
τ→0+

JF((a, b), wτ ) = 2α

(
c+

M(b− a)

2

)1/2

+
βM2

12
(b− a)3.

Plugging (6.19) and (6.16) into (6.18) we conclude that

(6.20) 2α

(
c+

M(b− a)

2

)1/2

≥ βM2

4
(b− a)3 + βM(b− a)2c+ β(b− a)c2.

We claim that this is impossible if c ≥ 0 and b− a > L0. To this end, we write
(6.15) in the equivalent form β2M3L5

0 = 64α2, from which we deduce that

(6.21) β2M3(b− a)5 > 64α2

because b− a > L0. Now we distinguish two cases.
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• Let us assume that c ≤ M(b − a)/2. Multiplying (6.21) by M(b − a), and
taking the square root, we obtain that

βM2(b− a)3 > 8α[M(b− a)]1/2,

and therefore

2α

(
c+

M(b− a)

2

)1/2

≤ 2α[M(b− a)]1/2 <
βM2

4
(b− a)3.

Since the latter is less than or equal to the right-hand side of (6.20), we
have reached a contradiction in this case.

• Let us assume that c ≥ M(b − a)/2, and, in particular, that c is positive.
We observe that this condition can be rewritten as

2
√
2 c3/2 ≥ M3/2(b− a)3/2,

while (6.21) can be rewritten in the form

β(b− a) >
8α

M3/2(b− a)3/2
.

Since c > 0, from these inequalities it follows that

β(b− a)c2 >
8α

M3/2(b− a)3/2
· c2 ≥ 2α

√
2c ≥ 2α

(
c+

M(b− a)

2

)1/2

.

Since the first term is less than or equal to the right-hand side of (6.20),
we have reached a contradiction also in this case.

Symmetry of jumps. Let w0 be a local minimizer in some interval (a, b) ⊆ R, and
let s ∈ (a, b) be a jump point of w0. From the first step we already know that s is
isolated and therefore, up to restricting to a smaller interval, we can assume that
w0(x) is equal to some constant A in (a, s), and to some constant B �= A in (s, b).
We claim that

(6.22) Ms−A = B −Ms

and that, if M �= 0, the two terms have the same sign as M .
To this end, for every τ ∈ (a, b) we consider the function wτ : (a, b) → R that is

equal to A in (a, τ ), and equal to B in (τ, b), and we set

ϕ(τ ) := JF((a, b), wτ ) = α
√
B −A+ β

∫ τ

a

(A−Mx)2 dx+ β

∫ b

τ

(B −Mx)2 dx.

Since wτ coincides with w0 in a neighborhood of the boundary of the interval,
from the minimality of w0 we deduce that ϕ(τ ) attains its minimum in (a, b) when
τ = s. This implies in particular that

(6.23) 0 = ϕ′(s) = β
[
(Ms−A)2 − (B −Ms)2

]
and

(6.24) 0 ≤ ϕ′′(s) = 2βM [(Ms−A) + (B −Ms)].

Since β > 0 and B �= A, equality (6.23) implies (6.22). If in addition M �= 0,
then (6.24) implies that the two terms in (6.22) have the same sign as M .
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Equipartition of intersections. Let us assume that M > 0, let w0 be a local mini-
mizer in some interval (a, b) ⊆ R, and let

a < z1 < z2 < . . . < zn < b

denote the intersections in (a, b) of w0(x) with the line Mx, namely the solutions to
the equation w0(x) = Mx. We observe that between any two intersections there is
necessarily at least one jump point, and therefore from the previous steps we know
that their number is finite. We claim that

z2 − z1 = z3 − z2 = . . . = zn − zn−1.

In order to show the claim it is enough to show that, if z1 < z2 < z3 are three
consecutive intersections, then z2 − z1 = z3 − z2. To this end, we restrict to the
interval (z1, z3) and we observe that, due to the previous steps, it turns out that

w0(x) =

⎧⎪⎨⎪⎩
Mz1 if x ∈ (z1, (z1 + z2)/2),

Mz2 if x ∈ ((z1 + z2)/2, (z2 + z3)/2),

Mz3 if x ∈ ((z2 + z3)/2, z3).

For every τ ∈ (z1, z3) we consider the function wτ : (z1, z3) → R defined by

wτ (x) =

⎧⎪⎨⎪⎩
Mz1 if x ∈ (z1, (z1 + τ )/2),

Mτ if x ∈ ((z1 + τ )/2, (τ + z3)/2),

Mz3 if x ∈ ((τ + z3)/2, z3).

From this explicit expression it follows that

JF((z1, z3), wτ ) = α
√
M
(√

τ − z1 +
√
z3 − τ

)
+

βM2

12

{
(τ − z1)

3 + (z3 − τ )3
}
.

Since wτ coincides with w0 in a neighborhood of the boundary of the interval,
from the minimality of w0 we deduce that this function of τ attains its minimum
in (z1, z3) when τ = z2. With the change of variable τ = z1 + t(z3 − z1) this is
equivalent to saying that the function

ϕ(t) := C0

(√
t+

√
1− t

)
+ C1

(
t3 + (1− t)3

)
,

where

C0 := α
√
M

√
z3 − z1 and C1 :=

βM2

12
(z3 − z1)

3,

attains its minimum in (0, 1) when t = (z2 − z1)/(z3 − z1). On the other hand,
from Lemma 6.1 we know that the only possible minimum point is t = 1/2, and
this implies that z2 is the midpoint of (z1, z3).

Estimate from below for the minimum. We are now ready to prove the estimate
from below in (4.1). Again we consider the case where M > 0.

To begin with, we observe that this estimate is trivial when L ≤ 8L0, because
in this case the left-hand side is nonpositive. If L > 8L0, then from the previous
steps we know that any minimizer w0 ∈ PJ((0, L)) intersects the line Mx in at
least one point a0 ∈ (0, 4L0), and in at least one point b0 ∈ (L − 4L0, L). Indeed,
we know that in (0, 2L0) there exists at least one intersection or jump (because the
length of the interval is greater than L0), and the same in (2L0, 4L0), and in any
case between any two jumps there exists at least one intersection because of the
symmetry of jumps.
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Now we know that the interval (a0, b0) is divided into n ≥ 1 intervals of equal
length whose endpoints are intersections. Moreover, w0 has exactly one jump point
in the midpoint between any two consecutive intersections. As a consequence, the
shape of w0 in (a0, b0) depends only on n, and with an elementary computation we
find that

JF((0, L), w0) ≥ JF((a0, b0), w0)

= n

{
α

√
M(b0 − a0)

n
+

βM2

12

(
b0 − a0

n

)3
}
.

Therefore, from the inequality

A+B ≥ 5

(
A4B

44

)1/5

∀(A,B) ∈ [0,+∞)2,

we conclude that

JF((0, L), w0) ≥
5

4

(
α4βM4

3

)1/5

(b0 − a0) ≥
5

4

(
α4βM4

3

)1/5

(L− 8L0).

Plugging (6.15) into this inequality we obtain the estimate from below in (4.1).

Estimate from above for the minimum. Let us prove the estimate from above in
(4.1).

Let n := �L/(2H)� denote the smallest integer greater than or equal to L/(2H),
where H is defined by (4.4), and let us consider the function w0 ∈ PJ((0, 2nH))
that has intersections with the line Mx in 0, 2H, 4H, . . . , 2nH, and jumps in
the midpoints of the intervals between consecutive intersections. Since w0 is a
competitor for the minimum problem (3.15) in the interval (0, 2nH), from the
monotonicity of μ∗

0 with respect to L we deduce that

μ∗
0(α, β, L,M) ≤ μ∗

0(α, β, 2nH,M)

≤ JF((0, 2nH), w0)

= n

(
α
√
2MH +

2βM2

3
H3

)
≤
(

L

2H
+ 1

)(
α
√
2MH +

2βM2

3
H3

)
,(6.25)

and we conclude by remarking that the last term coincides with the right-hand side
of (4.2) when H is given by (4.4).

Structure of entire local minimizers. Let w0 be an entire local minimizer. From
the previous steps applied in every interval of the form (−L,L), with L → +∞, we
know that the set of intersection points of w0(x) with Mx is discrete and divides
the line into segments of the same length 2h > 0, whose midpoints are the unique
jump points of w0. This is enough to conclude that w0 is an oblique translation
of some staircase with steps of horizontal length 2h and vertical height 2Mh. It
remains only to show that h = H, where H is given by (4.4).

Up to an oblique translation, we can always assume that the intersections are
the points of the form 2zh with z ∈ Z. Let us consider the interval (0, 2nh), where
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n is a positive integer. Applying (6.25) with L = 2nh we deduce that

n

(
α
√
2Mh+

2βM2

3
h3

)
= JF((0, 2nh), w0)

= μ∗
0(α, β, 2nh,M)

≤
(
2nh

2H
+ 1

)(
α
√
2MH +

2βM2

3
H3

)
.

Dividing by nh, and letting n → +∞, we conclude that

α

√
2M√
h

+
2βM2

3
h2 ≤ α

√
2M√
H

+
2βM2

3
H2,

and this inequality is possible if and only if h = H, because H is the unique
minimum point of the left-hand side as a function of h > 0.

Structure of semi-entire local minimizers. Let w0 : (0,+∞) → R be a right-hand
semi-entire local minimizer. Let z0 < z1 < z2 < . . . denote the intersection points of
w0. Arguing as in the case of entire local minimizers we can show that zk+1− zk =
2H for every k ≥ 0. It remains to find the value of z0. To this end, for every real
number τ we consider the function

wτ (x) := w0(x) +Mτ�(0,z0+H)(x) ∀x > 0.

If we restrict to the interval (0, z1) = (0, z0 + 2H), then wτ and w0 have the
same boundary value in z1, and therefore by the minimality of w0 we know that
the function ϕ(τ ) := JF1/2((0, z1), wτ ) has a minimum point in τ = 0. On the other
hand an easy computation reveals that

ϕ(τ ) = α
√
M(2H − τ ) + β

∫ z0+H

0

M2(z0 + τ − x)2 dx+ β

∫ z1

z0+H

M2(z1 − x)2 dx,

and therefore

(6.26) 0 = ϕ′(0) = − α
√
M

2
√
2H

+ βM2
(
z20 −H2

)
.

Finally, we observe that the definition of H in (4.4) implies that

α
√
M

2
√
2H

=
2βM2

3
H2.

Plugging this identity into (6.26) we obtain that z0 = (5/3)1/2H, as required.

Existence of entire and semi-entire local minimizers. Up to this point we have
just shown that, if entire or semi-entire local minimizers exist, then they have the
prescribed form. It remains to show that all oblique translations of the canoni-
cal (H,V )-staircase are actually entire local minimizers, and that the function w
defined by (4.5) is actually a right-hand semi-entire local minimizer.

The argument is rather standard, and therefore we limit ourselves to sketching
the main steps in the case of the canonical (H,V )-staircase SH,V (the case of its
oblique translations and of semi-entire minimizers is analogous). It is enough to
show that, for every positive integer n, the function SH,V minimizes
JF1/2((−2nH, 2nH), u) among all functions u ∈ PJ((−2nH, 2nH)) that coincide
with SH,V at the endpoints. To begin with, we show that the minimum exists.
This follows from a standard application of the direct method in the calculus of
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variations, as in the proof of statement (1) of Proposition 3.4. Once we know that
the minimum exists, we go back through all the previous steps in order to show
that the minimum has only a finite number of equi-spaced intersections points, and
their number is the one we expect.

The case M = 0. When the forcing term vanishes, the estimates of Proposition 4.4
are actually trivial. As for Proposition 4.5, we have to show that the function
w0 ≡ 0 is the unique entire or semi-entire local minimizer. This can be proved in
the following way. Let w0 be any entire or semi-entire local minimizer.

• We show that the jump set of w0 is discrete. This can be done as in the
general case, since in that paragraph we never used that M �= 0.

• We show the symmetry of jumps (6.22) as in the general case, since that
equality was proved without using that M �= 0. As a consequence, we
deduce that |w0| is constant.

• We show that w0 vanishes identically. Indeed, when we consider a long
enough interval, any function w0 with |w0| constant and different from 0
is worse (due to the overwhelming cost of the fidelity term) than a func-
tion with the same boundary values that has two jump points close to the
boundary and vanishes elsewhere.

This completes the proof also in this special case. �

Remark 6.4. The existence of entire and semi-entire local minimizers follows also
as a corollary of Proposition 4.6 and Proposition 4.7.

6.3. Compactness and convergence of local minimizers. In this subsection
we prove Proposition 4.6 and Proposition 4.7. The key point in the argument is
the following result, where we show that an estimate of order ε−1 for the energy
RPMFε in some interval implies an ε-independent estimate for the same energy in
a smaller interval.

Proposition 6.5 (Boundedness of the energy in a smaller interval). Let L, Γ0, β
be positive real numbers.

Then there exists two real numbers ε0 ∈ (0, 1) and Γ1 > 0 for which the following
statement holds true. Let f : [−(L+ 1), L+ 1] → R be a continuous function such
that

(6.27) |f(x)| ≤ Γ0 ∀x ∈ [−(L+ 1), L+ 1],

let ε ∈ (0, ε0), and let
(6.28)
w ∈ argminloc

{
RPMFε(β, f, (−(L+ 1), L+ 1), w) : w ∈ H2((−(L+ 1), L+ 1))

}
be a local minimizer such that

(6.29) RPMFε(β, f, (−(L+ 1), L+ 1), w) ≤ Γ0

ε
.

Then in the smaller interval (−L,L) the local minimizer w satisfies

(6.30) RPMFε(β, f, (−L,L), w) ≤ 4Γ1.

Proof. Let us consider the expression

Γ2 :=
Γ
1/4
1

β1/4
+ Γ

1/2
0 + 1.
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We observe that it is possible to choose a real number Γ1 ≥ Γ0 in such a way
that

(6.31) (80 + 20β)Γ2 + 4β(L+ 1)Γ2
0 ≤ Γ1,

and it is possible to choose a real number ε0 ∈ (0, 1/4) such that the inequalities

Γ1ε
1/2| log ε| ≤ log 2, ε3/2 Γ2 ≤ L,(6.32)

2

| log ε| log
(
1 +

45

2ε5
· Γ2

2

)
≤ 18, ε5/8 Γ4

2 ≤ 1(6.33)

hold true for every ε ∈ (0, ε0).
In the sequel we show that the statement holds true with these values of ε0 and

Γ1.
Since ε ∈ (0, ε0) and ε0 < 1/4, there exists a unique positive integer n such that

(6.34)
1

42n
=

1

22n+1 ≤ ε <
1

22n
.

For every k ∈ {0, 1, . . . , n} we set

Ln,k := L+ 1− 1

2n−k
,

and we observe that for every k ∈ {0, 1, . . . , n− 1} it turns out that

L ≤ Ln,k+1 < Ln,k < L+ 1,

Ln,k − Ln,k+1 =
1

2n−k
,(6.35)

and

(6.36) 2n−k ≤ 22
n−k−1

=

{(
22

n
)1/2}2−k

<

(
1

ε1/2

)2−k

.

We claim that

(6.37) RPMFε(β, f, (−Ln,k, Ln,k), w) ≤
Γ1

ε2−k ∀k ∈ {0, 1, . . . , n}.

The case k = 0 follows from assumption (6.29) because the interval (−Ln,0, Ln,0)
is contained in the interval (−(L + 1), L + 1) and Γ1 ≥ Γ0. Since Ln,n = L, the
case k = n implies (6.30) because of the estimate from below in (6.34).

Now we prove (6.37) by finite induction on k. Let us assume that (6.37) holds
true for some k ∈ {0, 1, . . . , n−1}, and let us prove that it holds true also for k+1.
To begin with, we focus on the interval (Ln,k+1, Ln,k), and we observe that

Γ1

ε2−k ≥ RPMFε(β, f, (−Ln,k, Ln,k), w)

≥ RPMFε(β, f, (Ln,k+1, Ln,k), w)

≥
∫ Ln,k

Ln,k+1

{
1

ω(ε)2
log
(
1 + w′(y)2

)
+ β(w(y)− f(y))2

}
dy

≥ (Ln,k − Ln,k+1)·

·min

{
1

ω(ε)2
log
(
1 + w′(y)2

)
+ β(w(y)− f(y))2 : y ∈ [Ln,k+1, Ln,k]

}
.
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If bk,ε ∈ [Ln,k+1, Ln,k] is any minimum point, recalling (6.35), (6.36), and the
first inequality in (6.32), this proves that

log
(
1 + w′(bk,ε)

2
)
≤ Γ1

ε2−k ·ω(ε)2 · 2n−k ≤ Γ1(
ε3/2

)2−k ·ω(ε)2 ≤ Γ1ε
1/2| log ε| ≤ log 2,

and

β(w(bk,ε)− f(bk,ε))
2 ≤ Γ1

ε2−k · 2n−k ≤ Γ1(
ε3/2

)2−k .

From these two inequalities and (6.27) we deduce that |w′(bk,ε)| ≤ 1 and

|w(bk,ε)| ≤
Γ
1/2
1

β1/2
(
ε3/4

)2−k + Γ0 ≤ (Γ1/β)
1/2 + Γ0(

ε3/4
)2−k .

With an analogous argument, we can show that there exists ak,ε ∈
[−Ln,k,−Ln,k+1] such that

|w′(ak,ε)| ≤ 1 and |w(ak,ε)| ≤
(Γ1/β)

1/2 + Γ0(
ε3/4

)2−k .

Now we exploit that w minimizes RPMFε in the interval (ak,ε, bk,ε) with re-
spect to its boundary conditions, and we estimate the minimum value by applying
Lemma 6.3 with

(a, b) = (ak,ε, bk,ε), D := 1, H :=
(Γ1/β)

1/2 + Γ0(
ε3/4

)2−k .

We observe that

√
H + ε2D ≤

[
(Γ1/β)

1/2 + Γ0

]1/2(
ε3/8

)2−k + 1 ≤ Γ2(
ε3/8

)2−k ,

and in particular from the second inequality in (6.32) we obtain that

ε2
(√

H + ε2D
)
≤ ε3/2Γ2 ≤ L <

bk,ε − ak,ε
2

,

which shows that assumption (6.3) is satisfied, while from the first inequality in
(6.33) we obtain that

2

| log ε| log
(
1 +

45

2ε4

(√
H + ε2D

)2)
≤ 2

| log ε| log
(
1 +

45

2ε4
· Γ

2
2

ε

)
≤ 18,

which shows that assumption (6.4) is satisfied. Therefore, from Lemma 6.3 we
deduce the existence of wk,ε ∈ H2((ak,ε, bk,ε)), with the same boundary values
(function and derivative) as w, satisfying

RPMε((ak,ε, bk,ε), wk,ε) ≤ 80
Γ2(

ε3/8
)2−k ≤ 80

Γ2

ε2−k−1

and∫ bk,ε

ak,ε

wk,ε(x)
2 dx ≤ 10ε2

Γ5
2(

ε15/8
)2−k = 10

ε11/8(
ε15/8

)2−k ·
(
ε5/8Γ4

2

)
· Γ2 ≤ 10

Γ2

ε2−k−1 ,
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where the last inequality follows from the second relation in (6.33). From the last
two estimates and the minimality of w we conclude that

RPMFε(β, f, (−Ln,k+1, Ln,k+1), w)

≤ RPMFε(β, f, (ak,ε, bk,ε), w)

≤ RPMFε(β, f, (ak,ε, bk,ε), wk,ε)

≤ RPMε((ak,ε, bk,ε), wk,ε) + 2β

∫ bk,ε

ak,ε

wk,ε(x)
2 dx+ 2β

∫ bk,ε

ak,ε

f(x)2 dx

≤ (80 + 20β)
Γ2

ε2−k−1 + 2β(2L+ 2)Γ2
0

≤ Γ1

ε2−k−1 ,

where in the last two inequalities we exploited (6.27) and (6.31), respectively. This
completes the inductive step, and hence also the proof. �

Remark 6.6. Proposition 6.5 can be extended in a straightforward way to one-sided
local minimizers. To this end, it is enough to replace in the statement the interval
(−L,L) with (0, L), the interval (−(L + 1), L+ 1) with (0, L+ 1), and “loc” with
“R-loc”. The proof is analogous and somewhat simpler, because we just need to
work on one side of the interval.

6.3.1. Proof of Proposition 4.6.

Existence of a limit. We prove that there exist a function w∞ : R → R and an
increasing sequence {nk} of positive integers such that, for every L > 0, the re-
striction of w∞ to the interval (−L,L) belongs to PJ((−L,L)) and wnk

→ w∞ in
L2((−L,L)).

To this end, it is enough to prove that, for every fixed real number L > 0, it
holds that

(6.38) sup

{
RPMεn((−L,L), wn) +

∫ L

−L

wn(x)
2 dx : n ∈ N

}
< +∞.

Indeed, once this uniform bound has been established (the supremum might de-
pend on L, of course), the compactness result of statement (2) in Theorem 3.2
implies that the sequence {wn} is relatively compact in L2((−L,L)) for this fixed
value on L, and any limit function lies in PJ((−L,L)). At this point we apply
the result to a sequence of intervals (−Lk, Lk) with Lk → +∞, and with a clas-
sical diagonal procedure we obtain the subsequence that converges in all bounded
intervals.

In order to prove (6.38), we begin by observing that, due to assumption (ii),
there exists a constant ML such that

|gn(x)| ≤ ML ∀x ∈ [−(L+ 1), L+ 1], ∀n ∈ N.

We now apply Proposition 6.5 with

w(x) := wn(x), f(x) := gn(x), Γ0 := max{ML, C0}.

This is possible because assumptions (6.28) and (6.29) are satisfied for trivial rea-
sons as soon as [−(L+1), L+1] ⊆ (An, Bn) and | log εn| ≥ 1. From Proposition 6.5
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we obtain that there exists a constant Γ1 such that

(6.39) RPMFεn(β, gn, (−L,L), wn) ≤ 4Γ1

when n is large enough. This implies (6.38) because the left hand-side of (6.39)
controls the first term in the left-hand side of (6.38), while the integral can be
estimated as∫ L

−L

wn(x)
2 dx ≤ 2

∫ L

−L

(wn(x)− gn(x))
2 dx+ 2

∫ L

−L

gn(x)
2 dx,

where the first integral is controlled again by the left hand-side of (6.39), and the
second integral is controlled because of the uniform bound on gn.

Characterization of the limit. Let w∞ be any limit function identified in the first
paragraph of the proof. We claim that w∞ is an entire local minimizer for the
functional (3.11) with α defined by (3.7).

The function w∞ is by definition the limit in L2
loc(R) of some sequence wnk

,
and from the uniform bounds (6.39) we deduce also that log(1 + (w′

nk
)2) → 0 in

L1
loc(R). Up to further subsequences (not relabeled) we can assume that in both

cases the convergence is also pointwise for almost every x ∈ R. Now let us consider
any interval (a, b) ⊆ R whose endpoints are not jump points of w∞, and such that
wnk

(x) → w∞(x) and w′
nk
(x) → 0 for x ∈ {a, b}.

Let v ∈ PJ((a, b)) be any function with the same boundary conditions of w∞ in
the usual sense. From statement (4) of Theorem 3.2 applied with the quadruple of
boundary data

(wnk
(a), w′

nk
(a), wnk

(b), w′
nk
(b)) → (w∞(a), 0, w∞(b), 0) = (v(a), 0, v(b), 0),

we obtain a recovery sequence {vk} ⊆ H2((a, b)) for v that has the same boundary
conditions as wnk

in a and b (both on the function and on the derivative). From
the minimality of wnk

we deduce that

RPMFεnk
(β, gnk

, (a, b), wnk
) ≤ RPMFεnk

(β, gnk
, (a, b), vk)

for every positive integer k. Letting k → +∞, and recalling statement (1) in
Theorem 3.2, we conclude that

JF1/2(α0, β,M, (a, b), w∞) ≤ lim inf
k→+∞

RPMFεnk
(β, gnk

, (a, b), wnk
)

≤ lim
k→+∞

RPMFεnk
(β, gnk

, (a, b), vk)

= JF1/2(α0, β,M, (a, b), v).

Since v is arbitrary, this proves that w∞ is a local minimizer of the limiting
functional in the interval (a, b). Since intervals of this type exhaust the real line,
this proves that w∞ is an entire local minimizer for the limiting functional, as
required.

Strict convergence. In the special case where v ≡ w∞ in (a, b), the argument of the
previous paragraph gives that

lim
k→+∞

RPMεnk
((a, b), wnk

) = α0 J1/2((a, b), w∞),

namely {wnk
} is a recovery sequence for w∞ in the interval (a, b). At this point,

from statement (3) in Theorem 3.2, we conclude that wnk �� w∞ in BV ((a, b)).
Since intervals of this type exhaust the real line, this completes the proof. �
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6.3.2. Proof of Proposition 4.7. The proof is analogous to the proof of Proposi-
tion 4.6, and hence we limit ourselves to sketching the argument.

In the first step we show that there exist a function w∞ : (0,+∞) → R and an
increasing sequence {nk} of positive integers such that

• the restriction of w∞ to the interval (0, L) belongs to PJ((0, L)) for every
L > 0,

• wnk
→ w∞ in L2((0, L)) and log(1 + (w′

nk
)2) → 0 in L1((0, L)) for every

L > 0,
• wnk

(x) → w∞(x) and w′
nk
(x) → 0 for almost every x > 0.

The argument relies on the one-sided version of Proposition 6.5 (see Remark 6.6),
and on the compactness result of statement (2) of Theorem 3.2.

In the second step we consider intervals of the form (0, L), where L is any positive
real number in which we have the pointwise convergence wnk

(L) → w∞(L) and
w′

nk
(L) → 0, and such that L is not a jump point of w∞ (both conditions hold

true for almost every point in the half-line). Then we consider any function v ∈
PJ((0, L)) such v(L) = w∞(L), where boundary values are intended in the usual
sense. From statement (4) of Theorem 3.2, applied with the quadruple of initial
data

(v(0), 0, wnk
(L), w′

nk
(L)) → (v(0), 0, w∞(L), 0) = (v(0), 0, v(L), 0),

we obtain a recovery sequence {vk} ⊆ H2((0, L)) for v that has the same boundary
conditions as wnk

in x = L. Thus from the minimality of wnk
in (0, L) we deduce,

as in the previous case, that

JF1/2(α0, β,M, (0, L), w∞) ≤ JF1/2(α0, β,M, (0, L), v).

Since L can be chosen to be arbitrarily large, this is enough to conclude that
w∞ is a right-hand minimizer in (0,+∞).

Finally, in the third step we conclude as before that the convergence is strict in
every interval (0, L) such that L is not a jump point of w∞. �

7. Possible extensions

Our proof of Theorem 2.2 relies just on the Gamma-convergence results for the
rescaled functionals (3.1), and on the estimates of Proposition 4.4 for the minima
of the limiting functional with linear forcing term. Our proofs of Theorems 2.9
and 2.14 rely on the characterization of local minima for the limiting functional, and
on the compactness result that follows from Proposition 6.5. For these reasons, we
expect that these results can be extended to more general models by just extending
the tools that we exploited here. For example, it is possible to consider more general
fidelity terms of the form ∫ 1

0

β(x)|u(x)− f(x)|p dx,

for suitable choices of the exponent p ≥ 1 (but also every p > 0 should be fine) and
of the coefficient β(x), provided that it is continuous and strictly positive.

In the sequel we focus on less trivial generalizations that involve the principal
part, and we discuss three possibilities.
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Different convex-concave Lagrangians. We can replace the function φ(p) :=
log(1 + p2) with different functions, for example those in (1.4) or (1.5). This leads
to functionals with principal part of the form

PMε(u) :=

∫ 1

0

{
ε6ω(ε)4u′′(x)2 + φ(u′(x))

}
dx,

where now ω(ε) := εφ(1/ε2)1/2. Under rather general assumptions on φ, the blow-
ups of minimizers at scale ω(ε) are local minimizers for the rescaled functionals

RPMε(Ω, v) :=

∫
Ω

{
ε6v′′(x)2 +

1

ω(ε)2
φ(v′(x))

}
dx,

and this family Gamma-converges to a suitable multiple of the functional Jσ(Ω, v),
which is the natural generalization of (3.6) obtained by replacing 1/2 with a different
exponent σ ∈ (0, 1) that depends on the growth at infinity of φ (actually in this
case we obtain only exponents in [1/2, 1)). All the results of this paper can be easily
extended, more or less with the same techniques.

Higher order singular perturbation. We can replace second order derivatives with
derivatives of higher order. This leads to functionals with principal part of the form

PMε(u) :=

∫ 1

0

{
ε4k−2ω(ε)2ku(k)(x)2 + log

(
1 + u′(x)2

)}
dx,

where u(k) denotes the derivative of u of order k ≥ 2, and ω(ε) is defined as in
(2.1). Also in this case the rescaled functionals

RPMε(Ω, v) :=

∫
Ω

{
ε4k−2v(k)(x)2 +

1

ω(ε)2
log
(
1 + v′(x)2

)}
dx

Gamma-converges to a suitable multiple of Jσ(Ω, v), now with σ = 1/k. Therefore,
it seems reasonable that the results of this paper can be extended, even if some
steps (for example the iteration argument in the compactness result) might require
some extra work.

Of course, one can also combine a higher order singular perturbation with a
different choice of φ, and/or choose a different exponent for the higher order deriv-
ative.

Space discretization. In a different direction, it is possible to consider a space dis-
cretization of the problem where derivatives are replaced by finite differences. This
leads to functionals of the form

PMε(u) :=

∫ 1−ε2ω(ε)

0

log

(
1 +

(
u(x+ ε2ω(ε))− u(x)

ε2ω(ε)

)2
)

dx,

possibly defined in the space of functions that are piecewise constant with steps
of length ε2ω(ε), where now ω(ε) is defined as in (2.1). This is equivalent to con-
sidering the original functional (1.2), depending on true derivatives, but restricted
to the space of functions that are piecewise affine, again with respect to some grid
with size ε2ω(ε). The natural rescaling corresponding to blow-ups at scale ω(ε)
leads to the family of functionals

RPMε(v) :=
1

ω(ε)2

∫
Ω

log

(
1 +

(
v(x+ ε2)− v(x)

ε2

)2
)

dx.
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Apparently this scaling of the Perona-Malik functional, although elementary,
never appeared in the previous literature on the discrete model (see [12,14,16,24]).
The Gamma-limit turns out to be a multiple of the functional J0(Ω, v), namely
the functional that simply counts the number of jumps of v in Ω, regardless of
jump heights. Again it is possible to extend the results of this paper, and some
steps are even easier, for example the iterative argument in Proposition 6.5 and the
classification of local minimizers for the limiting functional.

8. Future perspectives and open problems

In this final section we present some questions that remain open, and that may
deserve further investigation.

The first one concerns uniqueness of minimizers, which is always a challenging
question when the Lagrangian is non-convex. We recall that, for the model (1.7),
uniqueness is known in some cases (see [25, Theorem 1.1 and subsequent Remark 4]),
but, in that case, the forcing term is rather special and there are periodic boundary
conditions.

Open problem 1 (Uniqueness of minimizers). Let us consider the minimum prob-
lem (2.3), under the same assumptions of Proposition 2.1. Determine whether the
minimizer is unique, at least when ε is small enough and/or the forcing term f is
smooth enough.

Concerning Theorem 2.2, it may be interesting to investigate the asymptotic
behavior of minima under weaker regularity assumptions on the forcing term f .

Open problem 2 (Existence of the limit of rescaled minimum values). Charac-
terize all functions f ∈ L2((0, 1)) such that the limit in (2.4) exists, or exists and
is a real number, or exists and coincides with the right-hand side, up to defining f ′

in a suitable way.

The question is largely open. It is also conceivable that the vanishing order of
m(ε, β, f) as ε → 0+ depends on the regularity of f in terms of Hölder continuity,
Sobolev exponents or even fractional Sobolev spaces, which motivates the following
question.

Open problem 3 (Vanishing order of minima vs regularity of the forcing term).
Find any connection between the vanishing order of m(ε, β, f) as ε → 0+ and the
regularity of the forcing term f .

Here we present the results that we know at the present time.

• For every f ∈ PJ((0, 1)) with a finite number of jumps it turns out that

(8.1) lim
ε→0+

m(ε, β, f)

ω(ε)5/2
= 4

(
2

3

)1/2

53/4 · J1/2((0, 1), f).

The same should be true when J1/2((0, 1), f) < +∞.

• It should not be difficult to extend (2.4) to every f ∈ H1((0, 1)), and
probably also to forcing terms that are the sum of a function f1 ∈ H1((0, 1))
and a function f2 ∈ PJ((0, 1)) with J1/2((0, 1), f2) < +∞. This extension
should require only some technical adjustments in our proof, because the
key point (5.7) remains true.
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• Heuristically, when minimizing (3.2) we can replace the rescaled Perona-
Malik functional (3.1) by its Gamma-limit (3.6). This leads to a mini-
mization problem in the class of pure jump functions that we can further
simplify by restricting to competitors whose jump points are equally spaced
at some fixed distance δ, to be optimized with respect to ε. By formalizing
this idea we obtain the following two estimates from above.

– If f is a-Hölder continuous for some a ∈ (0, 1] and some constant H,
then it turns out that

lim sup
ε→0+

m(ε, β, f)

ω(ε)10a/(3a+2)
≤ caH

4/(3a+2).

– If f ∈ W 1,p((0, 1)) for some p ∈ [1, 2], then it turns out that

lim sup
ε→0+

m(ε, β, f)

ω(ε)(15p−10)/(7p−4)
≤ cp‖f ′‖(5p−2)/(7p−4)

Lp((0,1)) .

• The set of forcing terms f ∈ L2((0, 1)) for which the limit in (2.4) exists has
empty interior, even if we allow the limit to be +∞, and even if we restrict
ourselves to a sequence εn → 0+. Indeed, for every fixed εn ∈ (0, 1), the
function f → m(εn, β, f) is continuous in L2((0, 1)), and therefore also the
function

Ψn(f) := arctan

(
m(εn, β, f)

ω(εn)2

)
is continuous in the same space. Let us assume by contradiction that Ψn(f)
converges to some Ψ∞(f) for every f in some open set U ⊆ L2((0, 1)). Since
U is a Baire space, and Ψ∞ is the pointwise limit of continuous functions,
then necessarily Ψ∞ is continuous in some Gδ subset V ⊆ U . Now on
the one hand we know from (8.1) that Ψ∞(f) = 0 for every piecewise
constant function with a finite number of jumps, and this class is dense in
L2((0, 1)), and therefore Ψ∞(f) = 0 for every f ∈ V . On the other hand,
also functions of class C1 with right-hand side of (2.4) greater than 1 are
dense in L2((0, 1)), which implies that Ψ∞(f) ≥ 1 for every f ∈ V .

As for the convergence of minimizers, on the one hand we expect that the C1

regularity of f is required in order to characterize the blow-ups of minimizers with
ε-dependent centers as we did in Theorem 2.9. On the other hand, the statement
of Theorem 2.14 seems to require less regularity on f , in contrast with our proof
that heavily relies on Theorem 2.9.

Open problem 4 (Strict and varifold convergence of minimizers). Extend the
results of Theorem 2.14 to less regular forcing terms, and in particular determine
whether the results hold true for every f ∈ BV ((0, 1)) (up to a suitable extension
of identity (2.13) to bounded variation functions).

Finally, since this paper deals with the Perona-Malik functional in dimension
one, we conclude with the following natural and challenging question.

Open problem 5 (Any space dimension). Extend the results of this paper to
higher dimensions.
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Appendix A

In this final appendix we prove the results stated in section 3. To this end, we
need three preliminary technical lemmata. The first one is the classical estimate
from below for the rescaled Perona-Malik functional in an interval where |u′(x)| is
“large” (the argument is analogous to a step in the proof of [2, Proposition 3.3]).

Lemma A.1 (Basic estimate from below). Let (α, β) ⊆ R be an interval, and let
u ∈ H2((α, β)). Then the following statements hold true.

(1) Let us assume that there exists a real number D > 0 such that |u′(x)| ≥ D
for every x ∈ (α, β), and such that either |u′(α)| = D or |u′(β)| = D.

Then for every ε ∈ (0, 1) it holds that

(A.1) RPMε((α, β), u) ≥
M(ε,D)

21/2
(
|u(β)− u(α)| −D(β − α)

)1/2
.

where

(A.2) M(ε,D) := 4

(
2

3

)1/2 (
log(1 +D2)

| log ε|

)3/4

.

(2) Let us assume that there exists a real number D > 0 such that |u′(x)| ≥ D
for every x ∈ (α, β), and such that both |u′(α)| = D and |u′(β)| = D.

Then for every ε ∈ (0, 1) it holds that

(A.3) RPMε((α, β), u) ≥ M(ε,D)
(
|u(β)− u(α)| −D(β − α)

)1/2
,

where M is again defined by (A.2).

Proof. Let us observe that our assumptions imply that either u′(x) ≥ D for every
x ∈ (α, β), or u′(x) ≤ −D for every x ∈ (α, β). In both cases it turns out that
u′(x) has the same sign at the two endpoints of the interval.

Up to a change of sign and a reflection, we can assume that u′(x) ≥ D for every
x ∈ (α, β) and that u′(α) = D, while C := u′(β) ≥ D. As a consequence we have
that

|u(β)− u(α)| = u(β)− u(α) ≥ D(β − α).

From Lemma 6.2 we obtain that∫ β

α

u′′(x)2 dx ≥ (C −D)2

β − α
+

12

(β − α)3

(
u(β)− u(α)− C +D

2
(β − α)

)2

.

We estimate the right-hand side from below by its minimum with respect to C,
which is attained when

C =
3

2

u(β)− u(α)

β − α
− D

2
.

We conclude that∫ β

α

u′′(x)2 dx ≥ 3

(β − α)3
(u(β)− u(α)−D(β − α))2 ,

and therefore

RPMε((α, β), u) ≥
3ε6

(β − α)3
(
u(β)− u(α)−D(β − α)

)2
+

β − α

ω(ε)2
log
(
1 +D2

)
.
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Applying the classical inequality

A+ B ≥ 4

33/4
(
AB3

)1/4 ∀(A,B) ∈ [0,+∞)2,

we obtain exactly (A.1).
The proof of (A.3) is analogous, with the only difference that now C = D by

assumption. In this case from Lemma 6.2 it follows that∫ β

α

u′′(x)2 dx ≥ 12

(β − α)3
(u(β)− u(α)−D(β − α))

2
,

from which we obtain an additional factor 21/2 in the numerator. �

The second lemma shows that for every function u ∈ H2((a, b)) one can find
a function z ∈ PJ((a, b)) that is close to u in terms of the Lp norm and in total
variation, and such that the RPMε energy of u is controlled from below by the J1/2
energy of z. An analogous result is proved in [2, Proposition 3.3].

Lemma A.2 (Substitution lemma). Let (a, b) ⊆ R be an interval, let εn ⊆ (0, 1) be
a sequence such that εn → 0+, and let {un} ⊆ H2((a, b)) be a sequence of functions
such that

(A.4) sup {RPMεn((a, b), un) : n ≥ 1} < +∞.

Then there exist a sequence of functions {zn} ⊆ PJ((a, b)), and a sequence of
intervals (an, bn) ⊆ (a, b) with endpoints an → a+ and bn → b−, with the following
properties.

(1) For every positive integer n the points an and bn are not jump points of the
function zn, and when n is large enough it turns out that

(A.5) RPMεn((a, b), un) ≥ Mn ·
{
J1/2((an, bn), zn) +

J1/2((a, an) ∪ (bn, b), zn)

21/2

}
,

where

Mn := 4

(
2

3

)1/2{
1

| log εn|
log

(
1 +

1

ε4n| log εn|8

)}3/4

∀n ≥ 1.

(2) The function zn is asymptotically close to un in the sense that

(A.6) lim
n→+∞

‖un − zn‖Lp((a,b)) = 0 ∀p ∈ [1,+∞).

(3) The total variation of zn is asymptotically close to the total variation of un

in the sense that

(A.7) lim
n→+∞

∫ b

a

|u′
n(x)| dx− |Dzn|((a, b)) = 0.

Proof. Let us consider the set

An :=

{
x ∈ (a, b) : |u′

n(x)| >
1

ε2n| log εn|4

}
.
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Since An is an open set, we can write it as a finite or countable union of open
disjoint intervals (its connected components), namely in the form

An =
⋃
i∈In

(αn,i, βn,i),

where In is a suitable index set.
Let wn : [a, b] → R be the function of class C1 such that wn(a) = un(a), and

w′
n(x) :=

⎧⎨⎩0 if x ∈ (a, b) \An,

u′
n(x)−

sign(u′
n(x))

ε2n| log εn|4
if x ∈ An.

We observe that w′
n(x) is the difference between u′

n(x) and the truncation of
u′
n(x) between the two values ±ε−2

n | log εn|−4. We deduce that in each of the
intervals (αn,i, βn,i) the sign of w′

n(x) is constant and coincides with the sign of
u′
n(x) in the same interval, and, in any case, it holds that

(A.8) |wn(βn,i)− wn(αn,i)| = |un(βn,i)− un(αn,i)| −
βn,i − αn,i

ε2n| log εn|4
.

Finally, for every i ∈ In we consider the midpoint γn,i := (αn,i + βn,i)/2 of
the interval (αn,i, βn,i), and we introduce the function zn ∈ PJ((a, b)) whose jump
points are located at these midpoints, and have height that amounts to the variation
of wn in the corresponding intervals, and translated vertically so that zn(a) =
wn(a) = un(a). Such a function is given by

zn(x) := un(a) +
∑
i∈In

(wn(βn,i)− wn(αn,i))�(γn,i,b)(x) ∀x ∈ (a, b).

With these definitions, we are now ready to prove the required estimates.

Statement (1). Let us assume for a while that

(A.9) a < αn,i < βn,i < b ∀i ∈ In.

In this case it turns out that necessarily |u′
n(x)| = D := ε−2

n | log εn|−4 at both the
endpoints of each interval (αn,i, βn,i), and hence from statement (2) of Lemma A.1
we deduce that

RPMεn((αn,i, βn,i), un) ≥ Mn

(
|un(βn,i)− un(αn,i)| −

βn,i − αn,i

ε2n| log εn|4

)1/2

= Mn |wn(βn,i)− wn(αn,i)|1/2

= Mn |Jzn(γn,i)|
1/2

(A.10)

for every i ∈ In. Summing over all indices we conclude that

RPMεn((a, b), un) ≥ RPMεn(An, un)

=
∑
i∈In

RPMεn((αn,i, βn,i), un)

≥ Mn

∑
i∈In

|Jzn(γn,i)|
1/2

= Mn J1/2((a, b), zn),

which proves (A.5) with (an, bn) := (a, b).
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If (A.9) is not true, it means that either An = (a, b), or one or two of the
connected components of An have exactly one endpoint which is either a or b. At
the beginning of the proof of the second statement below we show that the measure
of An tends to 0 as n → +∞, and this rules out the first possibility when n is large
enough.

In the second case we denote the “lateral components” by (a, an) and (bn, b), with
the understanding that a = an or b = bn if there is only one such component, and
we call I ′n ⊆ In the set of indices corresponding to the remaining components. Now
the estimate (A.10) remains true for every i ∈ I ′n, while in the “lateral components”
we can apply statement (1) of Lemma A.1 because |u′| is equal to D in at least one
of the endpoints. In this way we obtain that

RPMεn

(
(a, an) ∪ (bn, b), un

)
≥ Mn

21/2
J1/2

(
(a, an) ∪ (bn, b), zn

)
,

while as before

RPMεn

(
(an, bn), un

)
≥ Mn J1/2((an, bn), zn).

Adding the last two inequalities we obtain (A.5) also in this last case.

Statement (2). In order to prove (A.6), we show that

(A.11) un(x)− wn(x) → 0 uniformly in [a, b]

and that for every p ∈ [1,+∞) it follows that

(A.12) wn − zn → 0 in Lp((a, b)).

In order to prove (A.11) we introduce the sets

Bn :=

{
x ∈ (a, b) :

1

| log εn|
≤ |u′

n(x)| ≤
1

ε2n| log εn|4

}
and

Cn :=

{
x ∈ (a, b) : |u′

n(x)| <
1

| log εn|

}
.

Let us estimate the measure of An, Bn, Cn. For Cn we consider the trivial
estimate |Cn| ≤ b− a. As for An and Bn we consider the term with the logarithm
in (3.1) and obtain that

|An| ≤
ε2n| log εn|

log(1 + ε−4
n | log εn|−8)

RPMεn((a, b), un)

and

|Bn| ≤
ε2n| log εn|

log(1 + | log εn|−2)
RPMεn((a, b), un).

Recalling (A.4), these estimates imply that

lim
n→+∞

|An|
ε2n| log εn|4

= lim
n→+∞

|Bn|
ε2n| log εn|4

= 0.

Now let us consider the function u′
n − w′

n. In An it holds that∫
An

|u′
n(x)− w′

n(x)| dx =

∫
An

1

ε2n| log εn|4
dx =

|An|
ε2n| log εn|4

.
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In Bn and Cn it holds that w′
n(x) = 0, and hence∫

Bn

|u′
n(x)− w′

n(x)| dx =

∫
Bn

|u′
n(x)| dx ≤ |Bn|

ε2n| log εn|4

and ∫
Cn

|u′
n(x)− w′

n(x)| dx =

∫
Cn

|u′
n(x)| dx ≤ |Cn|

| log εn|
≤ b− a

| log εn|
.

From all these estimates we conclude that

(A.13) lim
n→+∞

∫ b

a

|u′
n(x)− w′

n(x)| dx = 0,

which implies (A.11) because un(a) = wn(a) = 0 for every n ≥ 1.
In order to prove (A.12), we begin by observing that for every x ∈ (a, b) \An it

holds that

wn(x) = wn(a) +

∫ x

a

w′
n(t) dt

= un(a) +
∑

{i∈In:βn,i≤x}

∫ βn,i

αn,i

w′
n(t) dt

= un(a) +
∑

{i∈In:βn,i≤x}
(wn(βn,i)− wn(αn,i))

= zn(x),

which implies that wn(x) − zn(x) = 0 when x �∈ An. On the other hand, when
x ∈ An it holds that

|wn(x)− zn(x)| ≤ |wn(βn,i)− wn(αn,i)| = |Jzn(γn,i)| ≤
(
J1/2((a, b), zn)

)2
,

and therefore from (A.5) we conclude that∫ b

a

|wn(x)− zn(x)|p dx =
∑
i∈In

∫ βi,εn

αi,εn

|wn(x)− zn(x)|p dx

≤
∑
i∈In

(βi,εn − αi,εn) ·
(
J1/2((a, b), zn)

)2p
= |An| ·

(
J1/2((a, b), zn)

)2p
≤ |An| ·

(
1

Mn
RPMεn((a, b), un)

)2p

,

which implies (A.12) because RPMεn((a, b), un) is bounded from above, Mn is
bounded from below, and |An| → 0.

Statement (3). It remains to prove (A.7). To this end, we just observe that

|Dzn|((a, b)) =
∑
i∈In

|wn(βn,i)− wn(αn,i)| =
∫
An

|w′
n(x)| dx =

∫ b

a

|w′
n(x)| dx,

and ∣∣∣∣∣
∫ b

a

|u′
n(x)| dx−

∫ b

a

|w′
n(x)| dx

∣∣∣∣∣ ≤
∫ b

a

|u′
n(x)− w′

n(x)| dx,

and conclude thanks to (A.13). �
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The last preliminary result is the classical lower semi-continuity of J1/2 (see for
example [5, Theorems 4.7 and 4.8]). Here we include an elementary proof in the
one dimensional case, different from the original proof in [4], because we need to
deduce the stronger statement (true in dimension one) that convergence of the
energies implies strict convergence of the arguments.

Lemma A.3 (Lower semi-continuity of J1/2). Let (a, b) ⊆ R be an interval, and
let {zn} ⊆ PJ((a, a)) be a sequence with the following properties:

(i) there exists a constant M such that

(A.14) J1/2((a, b), zn) ≤ M ∀n ≥ 1,

(ii) there exists p ≥ 1 and z∞ ∈ Lp((a, b)) such that zn → z∞ in Lp((a, b)).

Then the following two statements hold true.

(1) (Lower semi-continuity). It turns out that z∞ ∈ PJ((a, b)) and

(A.15) lim inf
n→+∞

J1/2((a, b), zn) ≥ J1/2((a, b), z∞).

(2) (Strict convergence). If, in addition, we assume that

(A.16) lim
n→+∞

J1/2((a, b), zn) = J1/2((a, b), z∞),

then actually zn �� z∞ in BV ((a, b)).

Proof. For every n ≥ 1, let us write zn(x) in the form

(A.17) zn(x) = cn +

∞∑
i=1

Jn(i)�(sn(i),+∞)(x) ∀x ∈ (a, b),

where cn := zn(a) (the boundary value is intended in the usual sense), {sn(i)}i≥1 ⊆
(a, b) is a sequence of distinct points, and {Jn(i)}i≥1 is a sequence of real numbers
such that |Jn(i + 1)| ≤ |Jn(i)| for every i ≥ 1. We observe that, even when the
function zn has only a finite number of jump points, we can always write it in the
form (A.17) by introducing infinitely many “jumps” of vanishing height.

From assumptions (i) and (ii) we derive two types of estimates.

• (Uniform bounds). From assumption (i) and the subadditivity of the square
root we deduce that

(A.18)
∞∑
i=1

|Jn(i)| ≤
( ∞∑

i=1

|Jn(i)|1/2
)2

≤ M2 ∀n ≥ 1.

Combined with assumption (ii), this implies that there exists a constant
M1 such that

(A.19) |cn| ≤ M1 ∀n ≥ 1.

Finally, from (A.18) and (A.19) we deduce that there exists a constant
M2 such that

(A.20) ‖zn‖L∞((a,b)) ≤ M2 ∀n ≥ 1.

• (Uniform smallness of the tails). We claim that for every ε > 0 there exists
a positive integer iε such that

(A.21)
∞∑

i=iε

|Jn(i)| ≤ M
√
ε ∀n ≥ 1.
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Indeed, if we define iε as the smallest integer greater that M/
√
ε, then

from (A.14) it holds that |Jn(i)| ≤ ε for at least one index i ≤ iε. At this
point, from the monotonicity of |Jn(i)| we conclude that

|Jn(i)| ≤ ε ∀n ≥ 1, ∀i ≥ iε,

and therefore
∞∑

i=iε

|Jn(i)| =
∞∑

i=iε

|Jn(i)|1/2 · |Jn(i)|1/2 ≤
√
ε ·

∞∑
i=iε

|Jn(i)|1/2 ≤
√
ε ·M,

which proves (A.21).

From the uniform bounds we obtain that, up to subsequences (not relabeled),
the following limits exist as n → +∞:

cn → c∞, Jn(i) → J∞(i), sn(i) → s∞(i) ∈ [a, b].

From these limits we deduce that

(A.22) lim inf
n→+∞

J1/2((a, b), zn) = lim inf
n→+∞

∞∑
i=1

|Jn(i)|1/2 ≥
∞∑
i=1

|J∞(i)|1/2,

and, due to the uniform smallness of the tails,

(A.23) lim
n→+∞

|Dzn|((a, b)) = lim
n→+∞

∞∑
i=1

|Jn(i)| =
∞∑
i=1

|J∞(i)|.

We can now introduce the function

(A.24) ẑ∞(x) := c∞ +

∞∑
i=1

J∞(i)�(s∞(i),+∞)(x) ∀x ∈ (a, b).

Exploiting again (A.21) we can show that zn(x) → ẑ∞(x) for every x ∈ (a, b)
that does not appear in the sequence {s∞(i)}. This almost everywhere pointwise
convergence, together with the uniform bound (A.20), implies that zn → ẑ∞ in
Lp((a, b)) for every p ∈ [1,+∞), and hence in particular that z∞ = ẑ∞.

Now we use the representation (A.24) in order to compute the total variation of
z∞ and J1/2((a, b), z∞). This is not immediate, because in the representation (A.24)
the points s∞(i) are not necessarily distinct, and some of them might even coincide
with the endpoints of the interval (a, b), in which case they do not contribute to
the total variation or to J1/2. In any case, the function defined by (A.24) belongs
to PJ((a, b)), and its jump set is contained in the image of the sequence {s∞(i)}
intersected with the open interval (a, b). Moreover, for every s in this set, the jump
height of z∞ in s is given by

Jz∞(s) =
∑

{i≥1:s∞(i)=s}
J∞(i),

where of course the sum (or series) might also vanish. In particular, for every jump
point s of z∞ we obtain that

(A.25) |Jz∞(s)| ≤
∑

{i≥1:s∞(i)=s}
|J∞(i)|,
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with equality if and only if all terms in the sum have the same sign. Analogously,
we obtain that

|Jz∞(s)|1/2 ≤
∑

{i≥1:s∞(i)=s}
|J∞(i)|1/2,

with equality if and only if at most one term in the sum is different from 0 (here
we make use of the fact that the square root is strictly subadditive).

From (A.25) it follows that

(A.26) |Dz∞|((a, b)) =
∑

s∈Sz∞

|Jz∞(s)| ≤
∞∑
i=1

|J∞(i)|,

with equality if and only if s∞(i) ∈ (a, b) for every i ≥ 1 such that J∞(i) �= 0,
and J∞(i) · J∞(j) ≥ 0 for every pair (i, j) of distinct positive integers such that
s∞(i) = s∞(j) ∈ (a, b).

Analogously, it holds that

(A.27) J1/2((a, b), z∞) =
∑

s∈Sz∞

|Jz∞(s)|1/2 ≤
∞∑
i=1

|J∞(i)|1/2,

with equality if and only if s∞(i) ∈ (a, b) for every i ≥ 1 such that J∞(i) �= 0,
and J∞(i) · J∞(j) = 0 for every pair (i, j) of distinct positive integers such that
s∞(i) = s∞(j) ∈ (a, b). In particular, in all cases where equality occurs in (A.27),
then equality occurs also in (A.26).

At this point we are ready to complete the proof. Indeed, (A.15) follows from
(A.22) and (A.27), provided that we start with the subsequence of {zn} that real-
izes the liminf in (A.15). As for the strict convergence, under assumption (A.16)
we have necessarily equality both in (A.22) and in (A.27), and hence we have
equality also in (A.26). At this point from (A.23) and (A.26) we conclude that
|Dzn|((a, b)) → |Dz∞|((a, b)) (to be overly pedantic, what we actually proved is
that every subsequence of {zn} has a further subsequence with this property),
which is what we need in order to conclude that the convergence is strict. �

Remark A.4. The only properties of the square root that are relevant for Lemma A.3
are that it is a nonnegative function that is strictly subadditive and satisfies

√
σ/σ →

+∞ as σ → 0+.

A.1. Proof of Theorem 3.2.

Statement (1). Let us start with the liminf inequality. We need to prove that

(A.28) lim inf
n→+∞

RPMεn((a, b), un) ≥ α0 J1/2((a, b), u)

for every sequence {un} ⊆ H2((a, b)) such that un → u in L2((a, b)), and every
sequence {εn} ⊆ (0, 1) such that εn → 0+. Up to subsequences (not relabeled),
we can assume that the left-hand side is bounded and that the liminf is actually a
limit, and in particular that the sequence {RPMεn((a, b), un)} is bounded. When
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this is the case, from Lemma A.2 we obtain a sequence {zn} ⊆ PJ((a, b)) such that
zn → u in L2((a, b)) and

RPMεn((a, b), un) ≥ Mn · J1/2((an, bn), zn) ∀n ≥ 1.

Now we consider any interval (a′, b′) whose closure is contained in (a, b). Since
an → a+ and bn → b−, and since Mn → α0 as n → +∞, from the lower semiconti-
nuity of J1/2 (with respect to any Lp convergence) we conclude that

lim inf
n→+∞

RPMεn((a, b), un) ≥ lim inf
n→+∞

Mn · J1/2((an, bn), zn) ≥ α0 J1/2((a
′, b′), u).

Letting a′ → a+ and b′ → b− we obtain (A.28).
For the limsup inequality, we refer to the proof of [7, Theorem 4.4]. The idea

is rather classical. First of all, we reduce ourselves to the case where u has only a
finite number of jump points, because this class is dense in L2((a, b)) with respect to
the energy J1/2. Given any function u ∈ PJ((a, b)) with a finite number of jumps,
we consider the function uε that coincides with u outside some small intervals that
contain a single jump point, and in each of these small intervals coincides with the
cubic polynomial that interpolates the values at the boundary of the interval. From
Lemma 6.2 we obtain the exact value of the integral of u′′

ε (x)
2, and an estimate from

above for the integral of log(1 + u′
ε(x)

2). If we optimize the length of each small
interval in terms of ε and of the jump height, the resulting family is the required
recovery family.

We stress that, in the case where u has a finite number of jumps, there exists
a recovery family that coincides with u in a fixed neighborhood of the boundary
points x = a and x = b.

Statement (2). Let us apply again Lemma A.2. We obtain a sequence {zn} ⊆
PJ((a, b)) satisfying (A.6) and

RPMεn((a, b), un) ≥
Mn

21/2
· J1/2((a, b), zn)

when n is large enough. In particular, since Mn is bounded from below by a positive
constant, from (3.8) we deduce that this sequence satisfies

sup
n∈N

{
J1/2((a, b), zn) +

∫ b

a

zn(x)
2 dx

}
< +∞.

From the classical compactness result for the functional J1/2 (whose proof in
dimension one is more or less contained in the proof of Lemma A.3 above), it
follows that {zn} is relatively compact in Lp((a, b)) for every p ∈ [1,+∞). Due to
(A.6), the same is true for {un}.

Statement (3). Let us apply again Lemma A.2. The resulting sequence {zn} con-
verges to u. Now let us fix any interval (a′, b′) whose closure is contained in (a, b).
From the lower semicontinuity of J1/2, estimate (A.5), and assumption (3.9), we
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deduce that

J1/2((a
′, b′), u) ≤ lim inf

n→+∞
J1/2((a

′, b′), zn)

≤ lim inf
n→+∞

J1/2((an, bn), zn)

≤ lim inf
n→+∞

{
RPMεn((a, b), un)

Mn
−

J1/2

(
(a, an) ∪ (bn, b), zn

)
21/2

}

≤ lim sup
n→+∞

RPMεn((a, b), un)

Mn
− lim sup

n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)
21/2

=
1

α0
· α0 J1/2((a, b), u)−

1

21/2
lim sup
n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)
,

which implies that

lim sup
n→+∞

J1/2

(
a, an) ∪ (bn, b), zn

)
≤ 21/2

{
J1/2((a, b), u)− J1/2((a

′, b′), u)
}
.

Letting a′ → a+ and b′ → b− we conclude that

lim
n→+∞

J1/2

(
(a, an) ∪ (bn, b), zn

)
= 0.

Now in an analogous way we obtain that

J1/2((a, b), u) ≤ lim inf
n→+∞

J1/2((a, b), zn)

≤ lim sup
n→+∞

J1/2((a, b), zn)

= lim sup
n→+∞

{
J1/2((an, bn), zn) + J1/2

(
(a, an) ∪ (bn, b), zn

)}
= lim sup

n→+∞
J1/2((an, bn), zn)

≤ lim sup
n→+∞

1

Mn
RPMεn((a, b), un)

≤ J1/2((a, b), u),

and hence J1/2((a, b), zn) → J1/2((a, b), u). At this point from Lemma A.3 we
conclude that zn �� u in BV ((a, b)), and therefore also un �� u in BV ((a, b))
because of (A.7).

Statement (4). As in the proof of the limsup inequality for the Gamma-convergence
result, we can assume that u is a pure jump function with a finite number of jump
points. When this is the case, we already know that there exists a recovery sequence
ûn → u that coincides with u in a neighborhood of the boundary, namely there
exists η > 0 such that for every n ≥ 1 it holds that ûn(x) = u(x) = u(a) for every
x ∈ (a, a+ η), and similarly ûn(x) = u(x) = u(b) for every x ∈ (b− η, b).

Now the idea is to modify ûn in the two lateral intervals (a, a+ η) and (b− η, b)
in order to fulfill the given boundary conditions (3.10). To this end, we set

un(x) :=

⎧⎪⎨⎪⎩
u(a) + w1,n(x) if x ∈ (a, a+ η],

ûn(x) if x ∈ [a+ η, b− η],

u(b) + w2,n(x) if x ∈ [b− η, b),
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where w1,n is the function given by Lemma 6.3 applied to the interval (a, a + η)
with boundary data(

w1,n(a), w
′
1,n(a), w1,n(a+ η), w′

1,n(a+ η)
)
= (A0,n − u(a), A1,n, 0, 0),

and w2,n is the function given by Lemma 6.3 applied in the interval (b− η, b) with
boundary data(

w2,n(b− η), w′
2,n(b− η), w2,n(b), w

′
2,n(b)

)
= (0, 0, B0,n − u(b), B1,n).

We observe that un ∈ H2((a, b)) and

RPMεn((a, b), un) = RPMεn((a, a+ η), w1,n)

+ RPMεn((a+ η, b− η), ûn)

+ RPMεn((b− η, b), w2,n).

The second term coincides with RPMεn((a, b), ûn), and therefore it converges to
α0 J1/2((a, b), u) when n → +∞. Therefore, it is enough to show that the other
two terms vanish in the limit. To this end, we observe that in the interval (a, a+η)
the assumptions of Lemma 6.3 are satisfied with

H = Hn := |A0,n − u(a)| and D = Dn := |A1,n|.

Since Hn and Dn tend to 0, we conclude that

lim
n→+∞

RPMεn((a, a+ η), w1,n) ≤ lim
n→+∞

80
(√

Hn + ε2nDn

)
= 0.

In the same way we obtain that

lim
n→+∞

RPMεn((b− η, b), w2,n) = 0,

which completes the proof. �

A.2. Proof of Proposition 3.4.

Statement (1). In the case of με, μ
∗
ε and μ0, existence is a standard application

of the direct method in the calculus of variations. The case of μ∗
0 is less trivial

because boundary conditions in PJ((0, L)) do not pass to the limit, for example,
with respect to L2 convergence. This issue, however, can be fixed in a rather
standard way. To this end, we relax boundary conditions by allowing “jumps at
the boundary”, namely we minimize

α J1/2((0, L), v) + β

∫ L

0

(v(x)−Mx)2 dx+ α
(
|v(0)|1/2 + |v(L)−ML|1/2

)
over PJ((0, L)), without boundary conditions. In this case the direct method works,
and we claim that any minimizer v satisfies v(0) = 0 and v(L) = ML. Indeed, let
v be any minimizer, and let us consider the value in x = 0 (the argument in x = L
is symmetric). Let us assume that M > 0 (the case M = 0 is trivial, and the case
M < 0 is symmetric). Arguing as in the beginning of section 6.2 we can show that
the set of jump points of v is finite, and comparing with a competitor vτ (x) which
is equal to 0 in (0, τ ), and equal to v(x) elsewhere, we can conclude that v(0) = 0.
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Statement (2). We prove the result in the case of με, but the argument is analogous
in the other three cases.

The symmetry follows from the simple remark that, if v is a minimizer for some
M , then −v is a minimizer for −M .

Continuity follows from the fact that, if Mn → M∞, then the fidelity term in
RPMFε(β,Mnx, (0, L), v) converges to the fidelity term in RPMFε(β,M∞x, (0, L), v)
uniformly on bounded subsets of L2((a, b)).

As for monotonicity, let us consider any pair 0 ≤ M1 < M2. Let us choose any
minimizer v2 ∈ H2((0, L)) in the definition of με(β, L,M2), and let us consider the
function v1(x) := (M1/M2)v2(x). Elementary computations show that

RPMε((0, L), v1) ≤ RPMε((0, L), v2),

and∫ L

0

(v1(x)−M1 x)
2 dx =

M2
1

M2
2

∫ L

0

(v2(x)−M2 x)
2 dx ≤

∫ L

0

(v2(x)−M2 x)
2 dx,

and therefore

με(β, L,M1) ≤ RPMFε(β,M1x, (0, L), v1)

≤ RPMFε(β,M2x, (0, L), v2)

= με(β, L,M2).

Statement (3). Let us consider any pair 0 < L1 < L2, and let us examine separately
the behavior of the four functions.

In the case of με, let v2 be any minimizer for με(β, L2,M). Then the restriction
of v2 to (0, L1), which we call v1, is a competitor in the definition of με(β, L1,M),
and therefore as before we conclude that

με(β, L1,M) ≤ RPMFε(β,Mx, (0, L1), v1)

≤ RPMFε(β,Mx, (0, L2), v2)

= με(β, L2,M).

The same argument works in the case of μ0.
In the case of μ∗

0 we have to take into account boundary conditions, and therefore
we define

(A.29) v1(x) =
L1

L2
v2

(
L2x

L1

)
∀x ∈ (0, L1),

and we observe that J1/2((0, L1), v1) ≤ J1/2((0, L2), v2) and∫ L1

0

(v1(x)−Mx)2 dx =

(
L1

L2

)3 ∫ L2

0

(v2(x)−Mx)2 dx,

which again implies the conclusion.
Finally, the monotonicity of μ∗

ε with respect to L is in general false (the minimum
diverges when L → 0+ due to the term with second order derivatives). In this case
the natural definition (A.29), that preserves the boundary conditions (both on the
function and on the derivative), reduces the fidelity term and the term with the
logarithm, but increases the term with second order derivatives. What we do in this
case is the opposite. We consider a minimizer v1 in the definition of μ∗

ε(β, L1,M),
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and we define a function v2 in (0, L2) in such a way that (A.29) holds true. With
a simple change of variable we see that∫ L2

0

v′′2 (x)
2 dx =

L1

L2

∫ L1

0

v′′1 (x)
2 dx,∫ L2

0

log
(
1 + v′2(x)

2
)
dx =

L2

L1

∫ L1

0

log
(
1 + v′1(x)

2
)
dx,

and ∫ L2

0

(v2(x)−Mx)2 dx =

(
L2

L1

)3 ∫ L1

0

(v1(x)−Mx)2 dx,

so that in particular

RPMFε(β, (0, L2),Mx, v2) ≤
(
L2

L1

)3

RPMFε(β, (0, L1),Mx, v1).

Since v2 is a competitor in the definition of μ∗
ε(β, L2,M), this is enough to

establish (3.16).

Statement (4). Pointwise convergence, namely convergence of minima, is a rather
standard consequence of Gamma-convergence and equi-coerciveness. We point out
that in the case of (3.14) and (3.15) the functionals have to take the boundary
conditions into account (the usual way is to set the functionals equal to +∞ when
the argument does not satisfy the boundary conditions), and in this case the limsup
inequality in the Gamma-convergence result is slightly more delicate because it
requires the control of boundary conditions for recovery sequences.

Statement (5). The pointwise convergence (3.17) is actually uniform with respect
to M (on bounded sets) because of the continuity and monotonicity with respect
to M of both με and μ0. An analogous argument applies in the case of (3.18). �
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[16] Selim Esedoḡlu, An analysis of the Perona-Malik scheme, Comm. Pure Appl. Math. 54
(2001), no. 12, 1442–1487, DOI 10.1002/cpa.3008. MR1852979
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