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Abstract
We give a direct proof of fractional Hardy inequality by means of Littlewood–Paley decom-
position and properties of singular homogeneous kernels of degree -d . A refinement when
q > 2 is proved.
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The classical Hardy inequality states that when d ≥ 3
∫
Rd

|u|2
|x |2 dx ≤ 4

(d − 2)2

∫
Rd

|∇u|2dx (0.1)

and it is clearly of fundamental importance in analysis. There are of course many different
proofs of (0.1), the simplest one consists in restrict by density to D(Rd \ {0}), to observe that
1

|x |2 = − 1
2 x · ∇( 1

|x |2 ), then to integrate by parts and eventually to apply Cauchy–Schwarz
inequality.

A natural extension of (0.1) is in the framework of fractional Sobolev spaces Ḣ s(Rd). In
this setting the following Hardy-type inequality holds

∫
Rd

|u|2
|x |2s dx ≤ C || f ||2

Ḣ s (Rd )
, (0.2)

provided that 0 ≤ s < d
2 . For a compact and nice proof of (0.2) we quote Theorem 2.57 in

[1] and the proof given by Tao in the Appendix of [16] while for an improvement involving
Besov spaces we quote [2].

If one is interested in proving an Lq estimate for | f |
|x |s we need to recall the definition

of the homogeneous Sobolev norm || f ||Ẇ s,q (Rd ) which is defined as |||D|s f ||Lq (Rd ) where
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668 M. Aldovardi, J. Bellazzini

(|̂D|s f )(ξ) = |2πξ |s û(ξ). In this notewe give a direct proof and a refinementwhen q > 2 for
the following class of Hardy-type inequalities that generalize the fractional Hardy inequality
(0.2).

Theorem 0.1 (Fractional Hardy inequality) Let 0 < s < d
q , 1 < q < ∞ and f ∈ Ẇ s,q(Rd),

then ∥∥∥∥ f

|x |s
∥∥∥∥
Lq (Rd )

≤ C(d, s, q)|| f ||Ẇ s,q (Rd ). (0.3)

The explicit value of the constant C(d, s, q) in (0.3) is due to Herbst [11]. The proof of (0.3)
goes back to the end of the fifties of the last century thanks to the work of Stein and Weiss
[15] who proved an even more general version of (0.3) called Stein–Weiss inequality given
by

(∫
Rd

(|Tλ f (x)||x |−β
)q

dx

) 1
q ≤ C(d, q, p, λ)

(∫
Rd

(| f (x)||x |α)p
dx

) 1
p

(0.4)

where

Tλ f (x) =
∫
Rd

f (y)

|x − y|λ dy 0 < λ < d,

and

0 < λ < d, 1 < p < ∞, α <
d

p′ , p ≤ q < ∞, β <
d

q
, α + β ≥ 0,

1

q
= 1

p
+

(
λ + α + β

d

)
− 1.

The fact that (0.4) implies (0.3) follows by the fact that Tλ f = c|D|−s f , with λ = d − s,

c = πd/2�((d−λ)/2)
�(λ/2) and choosing p = q and α = 0, β = s.

In order to state our result we recall the standard definition for Homogeneous Besov
norm || · ||Ḃs

p,q
and Tribel–Lizorkin norm || · ||Ḟs

p,q
(see e.g. [8] for general references).

Let f be a tempered distribution such that f̂ ∈ L1
loc and PN ( f ) the Littlewood–Paley

projector on the dyadic frequency N , i.e. P̂N ( f )(ξ) = ψN (ξ) f̂ (ξ) where ψN (ξ) = ψ(
ξ
N )

and
∑

N∈2Z ψN = 1, then we define

|| f ||Ḃs
p,q

=
⎛
⎝ ∑

N∈2Z
||Ns PN ( f )||qL p

⎞
⎠

1
q

,

|| f ||Ḟs
p,q

=
∥∥∥∥

⎛
⎝ ∑

N∈2Z
|Ns PN ( f )(x)|q

⎞
⎠

1
q ∥∥∥∥

L p
.

Our result is a direct proof of the following

Theorem 0.2 Let 0 < s < d
q , 1 < q < ∞ then

∥∥∥∥ f

|x |s
∥∥∥∥
Lq (Rd )

≤ C(d, s, q)|| f ||Ḃs
q,q (Rd ), (0.5)

with the following corollary
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A note on the fractional Hardy inequality 669

Corollary 0.1 Let 0 < s < d
q , if 1 < q ≤ 2 then

∥∥∥∥ f

|x |s
∥∥∥∥
Lq (Rd )

≤ C(d, s, q)|| f ||Ẇ s,q (Rd ), (0.6)

if q > 2

∥∥∥∥ f

|x |s
∥∥∥∥
Lq (Rd )

≤ C(d, s, q)|| f ||
1
q

Ẇ s,q (Rd )
|| f ||

q−1
q

Ḟs
q,2(q−1)(R

d )
. (0.7)

The fact that || f
|x |s ||Lq (Rd ) can be controlled by homogeneous Besov norms is not a novely,

a proof of Theorem 0.2 can be found in [18], see also [19]. Here we present a direct proof
using the Schur test. We shall remark that our corollary when q > 2 is a refinement of Hardy
inequality (0.3). Indeed we have when 2(q − 1) > 2

|| f ||
q−1
q

Ḟs
q,2(q−1)(R

d )
≤ || f ||

q−1
q

Ḟs
q,2(R

d )
∼ || f ||

q−1
q

Ẇ s,q (Rd )

thanks to square function estimate

|| f ||Ḟs
q,2

=
∥∥∥∥

⎛
⎝ ∑

N∈2Z
|Ns PN ( f )(x)|2

⎞
⎠

1
2 ∥∥∥∥

Lq
∼ |||D|s f ||Lq (Rd ).

The case 1 < q < 2 is proved by duality and it requires proving the Lq continuity for singular
homogeneous kernels of degree-d . This fact is well known and is Lemma 2.1 in [15]. We
underline however that our strategy in proving Theorem 0.2 permits to skip the more delicate
lemmas in the Stein and Weiss paper [15] that are needed to prove (0.3).

As a final comment, recalling that |D| f = ∑d
j=1 R j (∂x j f ) with R j the Riesz transform

defined as (R̂ j f )(ξ) = −i
ξ j
|ξ | û(ξ) and that hence |||D| f ||Lq (Rd ) � ||∇ f ||Lq (Rd ) when

1 < q < ∞, we get

Corollary 0.2 Let 2 < q < d then

∥∥∥∥ f

|x |
∥∥∥∥
Lq (Rd )

≤ C(d, s, q)||∇ f ||
1
q

Lq (Rd )
|| f ||

q−1
q

Ḟs
q,2(q−1)(R

d )
. (0.8)

We underline that Corollary 0.2 is a refinement of the classical Hardy inequality involving
∇ f

∥∥∥∥ f

|x |
∥∥∥∥
Lq (Rd )

≤
(

q

d − q

)
||∇ f ||Lq (Rd ). (0.9)

by the fact that || f ||Ḟs
q,2(q−1)(R

d ) ≤ || f ||Ḟs
q,2(R

d ) � ||∇ f ||Lq (Rd ). In the literature there is a

lot of interest in proving improvements for (0.9), typically such improvement (in bounded
or unbounded domains) are in the direction to add a negative term in r.h.s of (0.9), see e.g.
[3–7, 9, 10, 13]. Our refinement, although obtained with different techniques, is more in the
spirit of [2, 17], i.e. to control r.h.s. of (0.9) with terms that are smaller (up to a multiplicative
constant) than the Sobolev norms.
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670 M. Aldovardi, J. Bellazzini

1 Proof of Theorem 0.2

A key argument in our proof is given by the following well known version of Schur test

Proposition 1.1 Let αN ,R ≥ 0, with N , R ∈ 2Z, 1 < q < ∞, then

∑
R

(∑
N

αN ,RCN

)q

�
∑
N

(CN )q

provided there exists a sequence of positive numbers pN such that

(∑
N

αN ,R p
q′
q
N

) q
q′

� pR (1.1)

∑
R

αN ,R pR � pN . (1.2)

Proof By Holder’s inequality with conjugated exponent (q, q ′)

∑
N

αN ,RCN =
∑
N

α
1
q
N ,Rα

1
q′
N ,R p

1
q
N
CN

p
1
q
N

≤
(∑

N

αN ,R p
q′
q
N

) 1
q′ (∑

N

αN ,R
Cq
N

pN

) 1
q

we get

∑
R

(∑
N

αN ,RCN

)q

≤
∑
R

(∑
N

αN ,R p
q′
q
N

) q
q′ (∑

N

αN ,R
Cq
N

pN

)

that, thanks to (1.1) and Fubini, implies

∑
R

(∑
N

αN ,RCN

)q

�
∑
R

pR

(∑
N

αN ,R
Cq
N

pN

)
=

∑
N

Cq
N

pN

(∑
R

αN ,R pR

)
.

Now by (1.2) we conclude

∑
R

(∑
N

αN ,RCN

)q

�
∑
N

Cq
N

pN
pN =

∑
N

Cq
N .

	

The strategy of the proof for is an adaptation of proof of Hardy inequality in the case

q = 2 given by Tao [16], i.e. to prove the following estimate
∫
Rd

| f (x)|q
|x |sq dx �

∑
N

Nqs ||PN f ||q
Lq (Rd )

(1.3)

where PN f are the classical Littlewood–Paley projectors with N a dyadic number.
We divide R

d in dyadic shells obtaining
∫
Rd

| f (x)|q
|x |qs dx =

∑
R∈2Z

∫
R
2 ≤|x |≤R

| f (x)|q
|x |qs dx �

∑
R∈2Z

1

Rsq

∫
{ R
2 ≤|x |≤R}

| f |q dx . (1.4)
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A note on the fractional Hardy inequality 671

such that using the Littlewood-Paley decomposition we get

∑
R∈2Z

1

Rsq

∫
{ R
2 ≤|x |≤R}

| f |q dx ≤
∑
R∈2Z

R−sq

⎛
⎝ ∑

N∈2Z

(∫
{ R
2 ≤|x |≤R}

|PN ( f )|q
) 1

q
⎞
⎠

q

. (1.5)

By the Bernstein inequality ||PN ( f )||L∞(Rd ) ≤ N
d
q ||PN ( f )||Lq (Rd ) it follows that

(∫
R
2 <|x |<R

|PN ( f )|q
) 1

q

≤ R
d
q ‖PN ( f )‖L∞

≤ (N R)
d
q ‖PN ( f )‖Lq , (1.6)

and clearly

(∫
R
2 <|x |<R

|PN ( f )|q
) 1

q

≤ ‖PN f ‖Lq ,

such that we get

∫
Rd

| f (x)|q
|x |qs dx �

∑
R

R−qs

(∑
N

min{1, (N R)
d
q } ‖PN f ‖Lq

)q

=
∑
R

(∑
N

min{(N R)−s, (N R)
d
q −s} ‖ Ns PN f ‖Lq

)q

.

The last step is to apply the Schur test given by Proposition 1.1 in order to conclude that

∑
R

(∑
N

min{(N R)−s, (N R)
d
q −s} ‖ Ns PN f ‖Lq

)q

≤
∑
N∈2Z

Nsq ‖PN ( f )‖qLq

=
∑
N∈2Z

Nsq
∫
Rd

|PN ( f )|q =
∫
Rd

∑
N∈2Z

Nsq |PN ( f )|q .

Notice that
∑
N> 1

R

min{(N R)−s , (N R)
d
q −s} +

∑
N≤ 1

R

min{(N R)−s, (N R)
d
q −s}

= R−s
∑
N> 1

R

N−s + R
d
q −s

∑
N≤ 1

R

N
d
q −s � 1

such that (arguing in the same way when summing over R)
∑
N

min{(N R)−s, (N R)
d
q −s} � 1 (1.7)

∑
R

min{(N R)−s , (N R)
d
q −s} � 1. (1.8)

The hypoteses for Schur test given by Proposition 1.1 are hence fulfilled by choosing αN ,R =
min{(N R)−s , (N R)

d
q −s} and pN = 1 in Proposition 1.1. This proves (0.3).
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672 M. Aldovardi, J. Bellazzini

2 Proof of Corollary 0.1

In Theorem 0.2 we proved the following estimate

∫
Rd

| f (x)|q
|x |sq dx �

∑
N

Nqs ||PN f ||q
Lq (Rd )

(2.1)

where PN f are the classical Littlewood–Paley projectors with N a dyadic number. First we
prove that (2.1) implies the Fractional Hardy inequality. We have two cases: q ≥ 2, q < 2.

Case q ≥ 2:
Thanks to (2.1) we derive

∑
N

Nqs ||PN f ||q
Lq (Rd )

=
∫
Rd

∑
N

Nsq |PN f (x)|qdx ≤
∫
Rd

(∑
|Ns PN f (x)|2

) q
2
dx

from the elementary inequality
(∑

i a
p1
i

) 1
p1 ≤ (∑

i a
p2
i

) 1
p2 with p1 ≥ p2, obtaining

∫
Rd

| f (x)|q
|x |sq dx �

∑
N

Nqs ||PN f ||q
Lq (Rd )

≤
∫
Rd

(∑
N

|Ns PN f (x)|2
) q

2

dx ∼ |||D|s f ||q
Lq (Rd )

where the last equivalence is nothing but the classical square function estimate, see for
instance [14].

To prove (0.7) we notice that

∫
Rd

∑
N

Nsq |PN f (x)|qdx

≤
∫
Rd

(∑
N

N 2s |PN f (x)|2
) 1

2
(∑

N

N 2s(q−1)|PN f (x)|2(q−1)

) 1
2

dx

≤
⎛
⎝

∫
Rd

(∑
N

N 2s |PN f (x)|2
) q

2

dx

⎞
⎠

1
q

⎛
⎝

∫
Rd

(∑
N

N 2s(q−1)|PN f (x)|2(q−1)

) q
2(q−1)

dx

⎞
⎠

q−1
q

by applying twice the Holder’s inequality, first in the serie with conjugated exponent (2, 2)
and then in the integral with conjugated exponent (q,

q
q−1 ). By definition

⎛
⎝

∫
Rd

(∑
N

N 2s(q−1)|PN f (x)|2(q−1)

) q
2(q−1)

dx

⎞
⎠

q−1
q

= || f ||q−1
Ḟs
q,2(q−1)

.

Case q < 2:
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A note on the fractional Hardy inequality 673

For the case q < 2 we use the dual characterization of Lq norms, i.e.∥∥∥∥ f

|x |s
∥∥∥∥
Lq

= sup
‖g‖q′=1

〈
f (x)

|x |s , g

〉
= sup

‖g‖q′=1

〈
f (x),

g(x)

|x |s
〉

= sup
‖g‖q′=1

〈
|D|−s(|D|s f (x)), g(x)

|x |s
〉

= sup
‖g‖q′=1

〈
|D|s f , |D|−s

(
g(x)

|x |s
)〉

≤
∥∥∥∥|D|s f ‖Lq ‖|D|−s

(
g(x)

|x |s
)∥∥∥∥

Lq′
.

Now we aim to prove that∥∥∥∥|D|−s
(
g(x)

|x |s
)∥∥∥∥

Lq′
(Rd )

� ‖g‖Lq′
(Rd )

, (2.2)

for all g ∈ Lq ′
with q ′ > 2 such that we could conclude that∥∥∥∥ f

|x |s
∥∥∥∥
Lq (Rd )

= sup
‖g‖q′=1

〈 | f (x)|
|x |s , g

〉
� ‖D|s f ‖Lq (Rd ).

Now we prove (2.2). We recall that |D|−s f ∼ ∫
Rd

f (y)
|x−y|d−s dy, see Theorem 5.9 in [12],

such that we have (renaming q ′ by q to simplify the notation)

|D|−s
(
g(x)

|x |s
)

|q ∼
∣∣∣∣
∫
Rd

g(y)

|x − y|d−s |y|s dy
∣∣∣∣
q

≤
∣∣∣∣
∫
Rd

|g(y)|
|y|s |x − y|d−s

dy

∣∣∣∣
q

�
∣∣∣∣∣
∫
Rd

|g(y)|1{|y|> |x |
2 }(y)

|y|s |x − y|d−s
dy

∣∣∣∣∣
q

+
∣∣∣∣∣
∫
Rd

|g(y)|1{|y|≤ |x |
2 }(y)

|y|s |x − y|d−s
dy

∣∣∣∣∣
q

� 1

|x |qs
∣∣∣∣∣
∫
Rd

|g(y)|1{|y|> |x |
2 }(y)

|x − y|d−s
dy

∣∣∣∣∣
q

+
∣∣∣∣∣
∫
Rd

|g(y)|1{|y|≤ |x |
2 }(y)

|y|s |x − y|d−s
dy

∣∣∣∣∣
q

� 1

|x |qs
∣∣∣∣
∫
Rd

|g(y)|
|x − y|d−s

dy

∣∣∣∣
q

+
∣∣∣∣∣
∫
Rd

|g(y)|1{|y|≤ |x |
2 }(y)

|y|s |x − y|d−s
dy

∣∣∣∣∣
q

:= |S1(g)|q + |S2(g)|q

By previous estimates using Paley–Littlewood decomposition and the square function
equivalence we get when q > 2

∫
Rd

|S1(g)|q dx ∼
∫
Rd

∣∣∣∣ |D|−s |g(x)|
|x |s

∣∣∣∣
q

dx �
∥∥|D|s(|D|−s |g|)∥∥qLq (Rd )

= ‖g‖q
Lq (Rd )

.

Concerning ‖S2(g)‖Lq we follow the strategy of Stein and Weiss [15] proving the Lq

continuity for singular homogeneous kernels of degree-d . The proof of this fact is Lemma
2.1 in [15] that we show for reader convenience. First notice that |y|

|x | ≤ 1
2 implies

|x − y| ≥ |x | − |y| ≥ |x |
2

,

such that ∫
|y|≤ |x |

2

|g(y)|
|x − y|d−s |y|s dy �

∫
|y|≤ |x |

2

|g(y)|
|y|s |x |d−s

dy. (2.3)
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674 M. Aldovardi, J. Bellazzini

Now we introduce following [15] the function,

K (x, y) =
{

|y|s |x |d−s |y| ≤ |x |
2

0 otherwise

and

Ug(x) :=
∫

|y|≤ |x
2 |

|g(y)|
|y|s |x |d−s

dy =
∫
Rd

K (|x |, |y|)|g(y)| dy.

To conclude the proof it suffices hence to show that∫
Rd

|Ug|qdx �
∫

|g|qdx .

Fixing η ∈ Sd−1 and calling |x | = R we define

Uηg(R) :=
∫ +∞

0
rd−1 K (R, r) · |g(r η)|dr ,

such that

Ug(x) =
∫
R

K (|x |, |y|)|g(y)|dy =
∫ +∞

0

(∫
Sd−1

K (R, r)|g(r η)| dση

)
rd−1 dr

=
∫
Sd−1

∫ +∞

0
K (R, r)|g(rη)| rd−1 dr dση =

∫
Sd−1

Uηg(R) dση.

By the substitution r = t R we obtain

Uηg(R) =
∫ +∞

0
K (R, Rt) |g(t R η)| Rd−1 td−1 R dt

=
∫ +∞

0
K (1, t) |g(t R η)|td−1 dt,

thanks to the fact that K is homogeneous of degree −d , i.e. that

K (λx, λy) = |λ|−d K (|x |, |y|).
Let h be the function in Lq ′

((0,+∞); Rd−1 dR) of unitary norm such that

(∫ +∞

0
|Uηg(R)|q Rd−1 dR

) 1
q

=
∫ +∞

0
Uηg(R)h(R) Rd−1 dR

=
∫ +∞

0

{∫ +∞

0
K (1, t) |g(t R η)| td−1 dt

}
Rd−1 h(R) dR

=
∫ +∞

0
K (1, t) td−1

{∫ +∞

0
|g(t Rη)| h(R) Rd−1 dR

}
dt

≤
∫ +∞

0
K (1, t) td−1

{∫ +∞

0
|g(t R η)|q Rd−1 dR

} 1
q

dt

=
(∫ +∞

0
K (1, t)td−1− d

q dt

)
·
{∫ +∞

0
|g(Rη)|q Rd−1 dR

} 1
q

=
(∫ 1

0
td− d

q −1−s dt

)
·
{∫ +∞

0
|g(Rη)|q Rd−1 dR

} 1
q

=: J ·
{∫ +∞

0
|g(Rη)|q Rd−1 dR

} 1
q

,
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A note on the fractional Hardy inequality 675

where the last integral J converges due to the fact that by our assumptions s < d
q ′ (remember

that we skipped q ′ with q).
Now we estimate Lq(Rd) norm of Ug. By Jensen inequality

|Ug(R)|q =
∣∣∣∣
∫
Sd−1

|Uηg(R)| dση

∣∣∣∣
q

≤ {|Sd−1|}q−1
∫
Sd−1

|Uηg|q dση,

such that integrating with respect to the measure Rd−1dR we get
∫ +∞

0
|Ug(R)|q Rd−1 dR

≤ Jq |Sd−1|q−1
(∫ +∞

0

{∫
Sd−1

|Uηg(R)|q dση

}
Rd−1 dR

)

= Jq |Sd−1|q−1
∫
Sd−1

∫ +∞

0
|Uηg(R)|q Rd−1 dR dση

≤ Jq |Sd−1|q−1
∫
Sd−1

∫ +∞

0
|g(R η)|q Rd−1 dR dσ = Jq |Sd−1|q−1

∫
Rd

|g(x)|q dx .

By the fact that U f (x) is radial we can conclude that
∫
Rd

|Ug(x)|q dx = |Sd−1| ·
∫ +∞

0
|Ug(R)|q Rd−1 dR ≤ Jq |Sd−1|q

∫
|g(x)|q dx .

This concludes the proof in the case q < 2.
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