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Abstract: Self-melting ice asphalt pavement materials inhibit pavement freezing and improve driving
safety. This paper aims to study the long-term salt release characteristics of self-melting ice asphalt
mixtures and the impact on pavement after complete salt release. Firstly, a method to accelerate the
rapid release of salt based on the Los Angeles abrasion tester. Then, long-term salt release patterns
were elucidated under the influence of deicing agent dosage, type of asphalt, and type of gradation.
Finally, a quantitative analysis of the pavement performance after complete salt release is conducted.
The results indicate that the release efficiency of the Los Angeles abrasion tester method has increased
by 91 times compared to the magnetic stirrer immersion flushing method and by 114 times compared
to the natural soaking method. The SBS-modified self-melting ice asphalt mixture possesses a longer
duration of salt release, but the uniformity of salt release is inferior. Salt release duration is directly
proportional to the dosage of deicing agents. SMA-13 self-melting ice asphalt mixture exhibits poorer
uniformity in salt release. After complete salt release, high-temperature stability of self-melting
ice asphalt mixtures decreased by 31.6%, low-temperature performance decreased by 15.4%, water
stability decreased by 26.7%, and fatigue life decreased by 35.9%.

Keywords: self-melting ice asphalt mixture; Los Angeles abrasion tester; long-term salt release
patterns; pavement performance

1. Introduction

The formation of ice on pavement diminishes the surface’s traction [1,2], significantly
compromising pavement safety and transportation efficiency [3,4]. Addressing methods
to reduce winter pavement icing has become a focal point of interest among numerous
scholars [5,6]. Currently, pavement snow removal methods primarily involve manual
snow removal [7], mechanical snow removal [8,9], and the application of deicing salt [10].
However, these methods all, to varying degrees, consume traffic resources and suffer from
delayed deicing effects [11], thereby failing to address icy road surfaces promptly [12,13].
In this context, proactive snow melting and deicing technology for pavement has emerged
as a crucial research subject.

Presently, proactive snow melting and deicing technologies primarily include self-
stress elastic pavement technology [14–16], self-melting ice asphalt pavement [17], phase
change material pavement [18–20], and energy conversion pavement [21–23]. Compared to
the other three methods, self-melting ice asphalt pavement technology involves substituting
deicing agents for aggregates or mineral powders during asphalt mixtures, which are mixed
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and laid down on the road surface. Under the influence of capillary force, osmotic pressure,
and wheel “pumping,” solutes effectively diffuse from the confined spaces with higher
internal concentrations in the mixture to the lower salt concentration surface of the road.
As a result, this process disrupts the bond between ice and the road surface, lowering the
freezing point of ice and snow on the road surface [24,25], thus restoring the pavement’s
anti-skid functionality. Therefore, self-melting ice asphalt mixtures have sparked significant
interest among researchers. This study focuses on the long-term salt release characteristics
of self-melting ice asphalt mixtures and their impact on pavement performance.

To investigate the long-term salt release patterns of self-melting ice asphalt pavements,
Zhong et al. [26] utilized a conductivity meter to measure the salt leaching amount of
high-elasticity storage asphalt mixtures at various temperatures, studying the influence
of temperature on the salt release patterns. Zheng et al. [27] analyzed the variation in salt
release rate with temperature via the natural soaking method, obtaining the dissolution
patterns of salt at different temperatures. Li et al. [28] researchers utilized the solution
conductivity analysis method based on the principle of similarity to study the precipitation
variation in low-freezing-point fillers in low-freezing-point asphalt mixtures, proposing
a long-term prediction model. Yang Xiong [29] obtained the critical bonding force and
critical concentration by analyzing the relationship between bond strength and effective
components. Yu Yang [30] analyzed the deicing and snow-melting performance of low-
freezing-point pavements by continuously measuring the release of chloride ions from
soaked specimens. Wu et al. [31], using a Hamburg wheel-track device, simulated the
effects of factors such as rainfall and load on salt dissolution. They established a salt
precipitation prediction model with variables including anti-icing filler dosage, void ratio,
rainfall intensity, temperature, and time. The addition of anti-freezing materials can have
negative effects on the low-temperature cracking resistance and water stability of asphalt
mixtures. Additionally, salt release can weaken the pavement performance of self-melting
ice asphalt mixtures. Han et al. [32] utilized Mafilon (MFL) as a substitute for mineral
powder to prepare self-melting ice asphalt mixtures. They found that pavement perfor-
mance decreased with increasing MFL content. Using high-elasticity and high-viscosity
asphalt binders [33–35] and fibers [36] can mitigate the negative impact of deicing agents
on the pavement performance of asphalt mixtures. Zhang et al. [37] discovered via freeze–
thaw tests that after 14 freeze–thaw cycles, the water stability, high-temperature stability,
and low-temperature cracking resistance of self-melting ice asphalt mixtures decreased
by 14.19%, 18.79%, and 11.96%, respectively. Zhang et al. [38] pointed out that selecting
granular anti-freezing agents can alleviate the adverse effects of salt release on pavement
performance. The impact of anti-freezing materials on the pavement performance of asphalt
mixtures is mainly related to factors such as the dosage [39–41], type [42,43], application
method [44], and gradation type [45] of deicing agents.

Currently, existing research on self-melting ice asphalt mixtures has several gaps:

a. There is a lack of test methods to determine salt release patterns quickly.
b. There is a lack of multifactor analysis, with the analysis of factors influencing salt

release being relatively limited in scope.
c. There is insufficient research on the pavement performance of self-melting ice asphalt

mixtures after complete salt release.

Therefore, this study designs indoor experiments to accelerate rapid salt release,
analyzing the long-term salt release characteristics of self-melting ice asphalt mixtures. It
investigates the effects of different salt release methods, deicing agent dosages, asphalt
types, and mixture gradation types on salt release. Furthermore, it analyzes the pavement
performance of asphalt mixtures after complete salt release. The research findings hold
important guiding significance for long-term evaluation methods of snow melting and
deicing, as well as sustainable research on self-melting ice asphalt pavements.
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2. Material and Experimental Design
2.1. Materials and Proportioning Design
2.1.1. Asphalt and Aggregates

In accordance with the JTG E20-2011 [46], an examination was conducted on the
Qilu brand 70# base asphalt and SBS-modified asphalt. As delineated in Table 1, the test
outcomes manifest that the 70# base asphalt and SBS-modified asphalt performance metrics
align with the technical requisites specified in the JTG F40-2004 [47].

Table 1. The 70# Base asphalt, SBS-modified asphalt technical property index.

Test Items Asphalt Kinds Test Results Technical
Requirements

Penetration (25 ◦C,
100 g, 5 s) (0.1 mm)

70# base asphalt 70.8 60~80
SBS-modified asphalt 52.5 40~60

Ductility
(5 cm/min)/cm

70# base asphalt >100 (15 ◦C) ≥100
SBS-modified asphalt 58.8 (5 ◦C) ≥50

Softening point (ring
and ball method) (◦C)

70# base asphalt 47.3 >46
SBS-modified asphalt 78.4 ≥60

Power viscosity (Pa·s) 70# base asphalt 215 (60 ◦C) ≥180
SBS-modified asphalt 1.5 (135 ◦C) ≤3

The mineral aggregates used in this experiment underwent basic technical index
testing in accordance with the requirements stipulated in the JTG E42-2005 [48]. The test
results are detailed in Tables 2 and 3. The experimental findings affirm that the properties
of various aggregates and mineral powder gradations all conform to the specifications.

Table 2. Indicators of technical properties of mineral powder.

Test Items Test Results Technical Requirements

Water content (%) 0.42 ≤1
Hydrophilicity coefficient 0.70 <1

Plasticity index (%) 2.5 <4

Table 3. Indicators of the technical properties of aggregates.

Test Items Test Results Technical
Requirements

Particle size (mm) - -

Apparent relative density
9.5~16.0 2.777

≥2.454.75~9.5 2.794
0~2.36 2.754

Water absorption (%) 9.5~16.0 0.65 ≤3.04.75~9.5 0.78
Sand equivalent (%) 0~2.36 77.8 ≥60

Crushing value (%) 21 ≤30
Wear value (%) 12.4 ≤35

Needle flake content (%) 5.67 ≤15
Adhesion Level 4 ≥Level 4

2.1.2. Deicing Agent

This study employed anti-freezing materials produced by a company in Henan,
Figure 1 shows the appearance of the sample. By the specifications outlined in JT/T1210.2-
2018 [49], the properties of the materials were tested. The test results are summarized in
Table 4.
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Figure 1. Deicing agent.

Table 4. Basic indicators for deicing agent.

Test Items Chloride
Content (%)

Heat Resistance
Index (%) Relative Density

Nominal
Maximum Particle

Size (mm)
Water Content (%)

Test results 58.9 0.30 2.25 0.075 0.7
Technical

requirements ≥35 ≤0.5 ≥1.7 ≤0.3 ≤1

2.1.3. Standard Steel Hangers

This study employs standard steel hangers produced by a steel company in Shanxi
Province. In accordance with the specifications outlined in GB/T 699-2015 [50] for Grade
20 steel, with dimensions of 50 × 25 × 5 mm3. Before conducting the experiment, re-
move the anti-corrosive oil from the surface of the standard steel hangers using filter
paper. Immerse the specimens in anhydrous ethanol, followed by placing them in an oven
for drying.

2.1.4. Mix Proportion Design

In this experiment, considering the pavement performance of self-melting ice asphalt
surfaces and the long-term release effectiveness of deicing agents in self-melting ice asphalt
mixtures, as well as the influence of different structural types of self-melting ice asphalt
mixtures on salt release, the study selected AC-13 dense-graded and SMA-13 stone mastic
asphalt mixtures for gradation design based on the JTG E20-2011 [46] specification, with
initial void ratios relatively small. The gradation data is presented in Table 5. Mineral
aggregate gradation. The initial anti-freezing agent was added to the asphalt mixture by
replacing 100% of the mineral powder in an equal volume manner. The optimal asphalt-
to-aggregate ratio was determined using the Marshall mix proportion design method,
resulting in ratios of 4.5% and 6.1%, respectively.

Table 5. Mineral aggregate gradation.

Sieve size (mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing rate (%) SMA-13 100 95.9 64.8 27.6 21.3 18.1 16.2 14.7 13.2 11.5
AC-13 100 95.8 75.3 44.9 29.7 21.5 14.0 10.4 8.9 6.0

2.2. Experimental Design and Research
2.2.1. Design of Salt Release Experiment Method

Salt release in self-melting ice asphalt mixtures is the process by which salt continu-
ously precipitates from the surface or interior of the asphalt binder and dissolves in water to
form a saline solution. Refer to relevant literature [51,52]. The three salt release experiment
designs are as follows:
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1. Utilizing the Los Angeles abrasion tester YDMH-A to abrasively scrub the self-melting
ice asphalt mixture aggregates. Due to the disparity between gravity and barrel
wall resistance, facilitating the process of mixing-separation-mixing between the
self-melting ice asphalt mixture and water, achieving the repeated flushing effect of
moisture on self-melting ice asphalt mixtures. This accelerates the release of salt from
the asphalt surface or interior.

2. The molded specimens are placed into a magnetic stirrer, and the magnetic stirrer
is utilized to induce the rotation of water flow, thereby facilitating the release of salt
from the self-melting ice asphalt mixture.

3. Placing the self-melting ice asphalt mixture aggregates into a beaker and immersing
them in water to promote the release of salt.

The salt solutions obtained from the three experimental methods are all subjected to
salt concentration measurements using the conductivity meter DDSJ-308F. Figure 2 shows
the test device and process.
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2.2.2. Study of Parameters Influencing Salt Release Experiments

In this study, the added water’s magnitude determines the salt release rate. At the
same time, the Los Angeles abrasion tester’s rotational speed and the magnetic stirrer
dictate the water flushing frequency on the asphalt mixture within a given time frame.
Drawing insights from relevant experimental research, taking the Los Angeles abrasion
tester as an example, preparations were made for the dispersion of 70# base asphalt and
AC-13 self-melting ice asphalt mixture aggregates. The deicing agent was introduced in
a volumetric substitution of 100%, replacing mineral powder. The experimental design
involves setting the rotation speed of the Los Angeles abrasion tester and the magnetic
stirrer to a specific value denoted as ‘m’. Additionally, the mass ratio of the self-melting
ice asphalt mixture to water for each of the three test methods is represented by ‘n’, as
indicated in Table 6.

Table 6. Values of the factors in the accelerated salt precipitation test.

Serial Number Rotation Rate (m)/(r/min) Mix: Water Addition (n)

1 30 3:1
2 40 2:1
3 50 1:1

Utilizing the standard deviation of the concentration difference between adjacent unit
time single salt releases during the salt release period as a measure, the uniformity of salt
release is characterized. The calculation formula is given by Equation (1).

U =

√√√√∑T−1
i=2

(
ki − k

)2

T − 2
, (1)
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In the Formula (1), U represents the uniformity of salt release; ki denotes the slope of
salt release concentration change between adjacent times; k represents the average slope; T
is the salt release time, where T ≥ i ≥ 2, about i is an integer.

2.2.3. Research on Salt Release Patterns under the Influence of Multiple Factors

In this section, the authors analyze and study the salt release situation of self-melting
ice asphalt mixtures under different influencing factors using the three test methods de-
scribed in Section 2.2.1.

Deicing agents were incorporated into the aggregates in volumetric substitutions of
100%, 60%, and 30%, respectively, replacing mineral powder. A 70# base asphalt was used
to prepare the AC-13 asphalt mixture. The aggregates and the formed standard Marshall
specimens underwent dynamic water flushing, immersion flushing, and natural soaking
methods. The salt released was quantified, and the pattern of salt release was analyzed.

To investigate the influence of different types of asphalt on the salt release patterns
in self-melting ice asphalt mixture, AC-13 self-melting ice asphalt mixture aggregates and
standard Marshall specimens were prepared using 70# base asphalt and SBS-modified
asphalt. The deicing agent was incorporated in a volumetric substitution of 100%, replacing
mineral powder. Salt release experiments were conducted, revealing the salt release patterns
for different types of asphalt.

In engineering applications, the three most widely used gradation types for asphalt
mixtures are AC, SMA, and OGFC. The design void ratio of OGFC is generally greater than
18%, resulting in a higher void ratio. This leads to an excessive release of salt within a short
period, making it challenging to control. In this section, AC-13 and SMA-13 self-melting
ice asphalt mixtures were prepared using 70# base asphalt. To prevent the experimental
variables, AC-13, with a different gradation, was mixed with a deicing agent in a volumetric
substitution of 100%, replacing mineral powder. For SMA-13, the deicing agent quantity
was equivalent to the mass of AC-13, with a volumetric substitution replacing mineral
powder. The study explores the salt release under dynamic water flushing, immersion
flushing, and natural soaking methods for different gradation types.

2.2.4. Study on the Impact of Salt Permeation on Pavement Performance
High-Temperature Stability Test

To accurately reflect the impact of salt infiltration on the high-temperature stability of
self-melting ice asphalt mixtures. Prepared specimens of 70# base asphalt and AC-13 type
self-melting ice asphalt mixtures for groups A and B, with deicing agent contents of 0%,
30%, 60%, and 100%. For group B specimens, the deicing agent was completely released
using the rotational scouring of the magnetic stirrer.

Group A and the released specimens from Group B were subjected to rutting tests
with specimen dimensions of 300 × 300 × 50 mm3 following the specifications outlined
in JTG E20-2011 T 0719 [46]. The test was conducted at 60 ◦C with a wheel pressure of 0.7
MPa. After 60 min, the dynamic stability was recorded. The calculation formula is given by
Equation (2). The average values from the three sets of experiments were used to evaluate
the high-temperature stability of self-melting ice asphalt mixtures with different deicing
agent contents after complete release.

DS =
(t2 − t1)× N

d2 − d1
× C1 × C2, (2)

In Formula (2), DS represents the dynamic stability (cycles/mm), d1 and d2, respec-
tively, correspond to the rut deformation at 45 min and 60 min, C1 denotes the coefficient
for the type of testing machine, C2 represents the experimental coefficient, and N represents
the testing wheel’s reciprocating rolling speed.
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Low-Temperature Stability Test

Utilizing low-temperature bending beam tests to study the low-temperature shrinkage
performance after the complete release of different deicing agent contents. The experi-
ments were conducted according to the specifications outlined in JTG E20-2011 T 0715 [46].
Preparing specimens of 70# base asphalt and AC-13 type self-melting ice asphalt mixtures
for groups C and D, with deicing agent contents of 0%, 30%, 60%, and 100%, for low-
temperature bending beam tests. For group D, low-temperature bending beam specimens
were subjected to rotational scouring using the magnetic stirrer to release the deicing agent
completely. The specimen dimensions were 250 × 30 × 35 mm3. The specimens were
loaded using a three-point bending method with a span of 200 mm until fracture occurred,
at a loading rate of 50 mm/min. The test was conducted at −10 ◦C, as shown in Figure 3.
The calculation formula is given by Equation (3).

SB =
L3PB

4bdh3 , (3)

Polymers 2024, 16, x FOR PEER REVIEW 7 of 19 
 

 

low-temperature bending beam tests. For group D, low-temperature bending beam spec-
imens were subjected to rotational scouring using the magnetic stirrer to release the de-
icing agent completely. The specimen dimensions were 250 × 30 × 35 mm3. The specimens 
were loaded using a three-point bending method with a span of 200 mm until fracture 
occurred, at a loading rate of 50 mm/min. The test was conducted at −10 °C, as shown in 
Figure 3. The calculation formula is given by Equation (3). 𝑆஻ = ௅య௉ಳସ௕ௗ௛య, (3)

In the formula (3), 𝑆஻ denotes the bending stiffness modulus, and 𝑃஻ denotes the 
maximum load at specimen failure. 

 
Figure 3. Pavement performance test graph. 

Water Stability Test 
The freeze–thaw splitting test can simulate the long-term effects of moisture on self-

melting ice asphalt mixtures in a short time. According to the specifications outlined in 
JTG E20-2011 T 0729 [46]. Preparing specimens for groups E and F with deicing agent 
contents of 0%, 30%, 60%, and 100%. These specimens were subjected to double-sided 
compaction 50 times to create Marshall specimens. For group F, the Marshall specimens 
were subjected to rotational scouring using the magnetic stirrer to release the deicing 
agent completely. Subsequently, groups E and F were each divided into two further 
groups, denoted as G, H, I, and J, respectively. 

Groups G and H were stored at room temperature for standby. Groups I and J un-
derwent vacuum saturation for 15 min at a vacuum level of 97.3–98.7 kPa. After returning 
to atmospheric pressure, they were left at room temperature for 0.5 h before being sub-
jected to a freezing treatment at −18 °C for 16 h. The specimens were immediately trans-
ferred to a constant-temperature water bath at 60 °C for 24 h. Subsequently, all groups (G, 
H, I, and J) were immersed in a water bath at room temperature (25 °C) for 2 h before 
measuring their splitting strength. The calculation formula is given by Equation (4). 𝑇𝑆𝑅 = ோത೅మோത೅భ × 100, (4)

In the Formula (4), 𝑇𝑆𝑅 denotes the strength ratio in freeze–thaw splitting tests, 𝑅ത்ଶ 
denotes the average tensile splitting strength after freeze–thaw cycling, and 𝑅ത்ଵ denotes 
the average tensile splitting strength before freeze–thaw cycling. 

Figure 3. Pavement performance test graph.

In the Formula (3), SB denotes the bending stiffness modulus, and PB denotes the
maximum load at specimen failure.

Water Stability Test

The freeze–thaw splitting test can simulate the long-term effects of moisture on self-
melting ice asphalt mixtures in a short time. According to the specifications outlined in JTG
E20-2011 T 0729 [46]. Preparing specimens for groups E and F with deicing agent contents
of 0%, 30%, 60%, and 100%. These specimens were subjected to double-sided compaction
50 times to create Marshall specimens. For group F, the Marshall specimens were subjected
to rotational scouring using the magnetic stirrer to release the deicing agent completely.
Subsequently, groups E and F were each divided into two further groups, denoted as G, H,
I, and J, respectively.

Groups G and H were stored at room temperature for standby. Groups I and J
underwent vacuum saturation for 15 min at a vacuum level of 97.3–98.7 kPa. After returning
to atmospheric pressure, they were left at room temperature for 0.5 h before being subjected
to a freezing treatment at −18 ◦C for 16 h. The specimens were immediately transferred to
a constant-temperature water bath at 60 ◦C for 24 h. Subsequently, all groups (G, H, I, and
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J) were immersed in a water bath at room temperature (25 ◦C) for 2 h before measuring
their splitting strength. The calculation formula is given by Equation (4).

TSR =
RT2

RT1
× 100, (4)

In the Formula (4), TSR denotes the strength ratio in freeze–thaw splitting tests, RT2
denotes the average tensile splitting strength after freeze–thaw cycling, and RT1 denotes
the average tensile splitting strength before freeze–thaw cycling.

Four-Point Bending Fatigue Life Test

To accurately portray the change in fatigue life following the complete release of salt
content from the self-melting ice asphalt mixture. According to specification JTG E20-2011
T 0739 [46], specimens of 70# base asphalt and AC-13 self-melting ice asphalt mixture with
deicing agent contents of 0%, 30%, 60%, and 100% for groups M and N were prepared. The
dimensions of the specimens are 380 × 50 × 63 mm3. For group N specimens, the deicing
agent was completely released using the rotational scouring of the magnetic stirrer.

The specimens from groups M and N were placed in an environmental chamber
maintained at a test temperature of ±0.5 ◦C for 4 h for conditioning. The displacement
sensor was adjusted with its pulley in contact with the surface of the specimen and then
positioned at the midpoint of the specimen. Under the target test strain level, preloading of
50 cycles was conducted, and the specimen’s modulus of elasticity at the 50th loading cycle
was calculated to be equal to the initial modulus of elasticity. Once the initial modulus is
determined, the four-point bending fatigue testing machine automatically adjusts and stabi-
lizes to the target tensile strain level required for the test while simultaneously monitoring
and recording the test results. Automatically cease loading when the specimens reach the
termination criteria of the fatigue test. The calculation formula is given by Equation (5).

S =
12δLP

ωh(3L2 − 4α2)
, (5)

In the Formula (5), S denotes the bending stiffness modulus, δ denotes the maximum
strain at the center of the beam, L denotes the beam span, P denotes the peak load, ω
denotes the width of the beam, h denotes the height of the beam, α denotes the distance
between the centers of adjacent clamps.

2.2.5. Study of the Influence of Salt Precipitation Extract on Steel

Based on the change in mass of the standard steel hangers before and after corrosion.
Assess the influence of salt precipitation extract on steel corrosion. Figure 4 shows a
standard steel hanger placed in a salt precipitate. Label the standard steel hangers as
Group X, Group Y, Group Z, and Control Group, respectively. Three specimens per group.
Immerse t the standard steel hangers labeled as Group X, Group Y, and Group Z completely
in the precipitation solution released from the self-melting ice asphalt mixture with deicing
agent concentrations of 30%, 60%, and 100%, respectively, for 12 h. Then, suspend the
standard steel hangers in the air for 12 h. Group X undergoes 4 cycles, equivalent to 4 days;
Group Y undergoes 6 cycles, equivalent to 6 days; Group Z undergoes 8 cycles, equivalent
to 8 days. The control group is treated with deionized water.

After the cycling period, immerse the rusted hanger specimens in a rust removal
solution. After cleaning, place the specimens in an oven for drying. Use an analytical
balance with a precision of 0.1 mg to accurately measure the mass of each of the standard
steel hangers and record the mass loss. It should be noted that the concentration of the
salt precipitation extract obtained from the experiment is much higher than that of the salt
precipitation extract from actual self-melting ice asphalt pavement. The corrosion of steel is
much more severe under experimental conditions compared to a real-world environment.
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3. Results and Discussions
3.1. Salt Release Test Method Analysis

Figure 5 shows that at the same proportion, the salt release time decreases as the
rotation speed increases. With the amplification of the rotational velocity, the frequency
of water impacting the mixture intensifies. Accelerating the release of salt content within
the asphalt. This results in a reduction in the release time for salt content in self-melting
ice asphalt mixtures. Excessive rotational speed may lead to premature detachment of
asphalt from the aggregate surface. The asphalt, once detached, sinks into the water, with
salt release occurring at an extremely sluggish pace. Resulting in diminished uniformity
in salt release. From Figure 6, it is evident that when the rotation speed is 40 r/min, the
process of mixing, separation, and re-mixing of the mixture with water is fully achieved,
resulting in the best uniformity. At the same rotational speed, Excessive water content can
also lead to premature detachment of asphalt from the surface of the mixture. Insufficient
water content impedes the complete realization of the mixing–separation–mixing process
between the mixture and water. In summary, a series of experiments have determined that
the optimal process parameters for both the Los Angeles abrasion tester and the magnetic
stirrer involve a rotational speed of 40 revolutions per minute (rpm). The water-to-mixture
mass ratio for all three experimental methods is 1:2.
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3.2. Analysis of Regulatory Patterns in Salt Release Affected by Various Factors

Utilizing the methods of the Los Angeles abrasion tester, magnetic stirrer, and natural
soaking, this study investigates the impact of varying deicing agent concentrations, asphalt
types, and asphalt mixture structures on salt release.

In the figure, showed that 70# base asphalt, AC-13 type asphalt mixture, with deicing
agent contents of 100%, 60%, and 30%; SBS-modified asphalt, AC-13 type asphalt mixture,
with a deicing agent content of 100% and 70# base asphalt, SMA-13 type asphalt mixture,
with a deicing agent content of 100%.

It can be seen from Figures 7–9, using the Los Angeles abrasion tester to accelerate the
salt release of self-melting ice asphalt mixtures, the salt release rate increased by 91 times
compared to the magnetic stirrer immersion flushing method and by 114 times compared
to the natural soaking method. Analyze the reasons for this phenomenon, due to the high
rotational speed of the Los Angeles abrasion tester driving the water flow, resulting in a
strong flushing force exerted by the water flow on the self-melting ice asphalt mixture. Salt
is continuously released from the surface or interior of the asphalt emulsion.
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In the analysis of salt release trends across the three testing methods, it was observed
that self-melting ice asphalt mixtures using SBS-modified asphalt exhibited a longer salt
release duration compared to those using 70# base asphalt. However, SBS-modified asphalt
mixtures showed poorer uniformity in salt release. Analyze the reasons for this phe-
nomenon. Deicing agents primarily exist within the asphalt emulsion, while SBS-modified
asphalt is a three-dimensional structure formed by adding an SBS modifier to the base
asphalt and then subjecting it to shear and mixing. Some deicing agents are placed within
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a mesh-like structure, constrained by the mesh-like structure, the release process of salt is
more challenging, salt cannot be fully released, and the release time is prolonged, resulting
in poor uniformity of salt release.

Regarding different deicing agent contents in self-melting ice asphalt mixtures, the
salt release time was directly proportional to the deicing agent content, with minimal
impact on the uniformity of salt release. When comparing asphalt types and deicing agent
contents, it was found that, under similar conditions, SMA-13 asphalt mixtures exhibited
poorer uniformity in salt release compared to AC-13 asphalt mixtures. Analyze the reasons
for this phenomenon. SMA-type asphalt mixtures belong to a skeletal-dense structure,
characterized by a high proportion of coarse aggregates, mineral filler, and asphalt, with
fewer fine aggregates; compared to AC-type asphalt mixtures, SMA-type asphalt mixtures
have a large flushing area, the excessive area causes the mixture to be initially affected by
moisture, resulting in an excessive release of salt, resulting in poor uniformity of release.

3.3. Analysis of the Impact of Salt Seepage on Pavement Performance
3.3.1. Analysis of High-Temperature Stability

The impact of deicing agent concentrations on the high-temperature performance
variation in self-melting ice asphalt mixture after complete salt release was investigated
via trajectory testing. It can be seen from Figure 10. With an increase in deicing agent
concentration, the high-temperature performance of the self-melting ice asphalt mixture
experiences a decline. Before salt release, the dynamic stability of deicing agent concentra-
tions D30, D60, and D100 decreased by 14.9%, 30.2%, and 41.5%, respectively, compared to
the D0 concentration. This decline can be attributed to the less effective interaction between
the deicing agent and asphalt compared to the interaction between alkaline limestone
filler and asphalt. Consequently, the adhesion between asphalt mortar and aggregate is
compromised, leading to a reduction in the dynamic stability of the mixture.
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Salt release adversely affects the high-temperature performance of self-melting ice
asphalt mixture, and an increase in the blending ratio exacerbates the degradation of
high-temperature performance. After salt release, the self-dynamic stability of D0, D30,
D60, and D100 concentrations decreases by 10.3%, 16.5%, 22.7%, and 31.6%, respectively.
The emergence of porous silica pores after salt release increases the specimen’s porosity.
Simultaneously, salt precipitation alters the properties of the asphalt binder, resulting in a
decline in adhesion between asphalt and aggregate, thereby reducing the high-temperature
resistance to rutting of the asphalt pavement.
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3.3.2. Analysis of Low-Temperature Stability

The variations in the low-temperature performance of self-melting ice asphalt mixtures
before and after salt release were investigated via beam flexural testing and can be seen in
Figure 11. The addition of deicing agents adversely affected the low-temperature perfor-
mance of self-melting ice asphalt mixtures, with a more significant decrease observed as
the anti-freezing agent dosage increased. Prior to salt release, the maximum bending strain
of D30, D60, and D100, relative to D0, decreased by 7.1%, 21.1%, and 26.9%, respectively.
This decline is primarily attributed to the weakening of the interaction between aggregates
and asphalt due to the addition of deicing agents, reducing low-temperature performance.
Additionally, deicing agents are primarily distributed in the asphalt, and their dispersal
characteristics may reduce the continuity of asphalt on the fracture surface, diminishing
its toughness and consequently affecting the low-temperature performance of the mixture.
After complete salt release, the maximum bending strain of self-melting ice asphalt mix-
tures is somewhat reduced, with a significantly greater decrease than conventional asphalt
mixtures. Following salt release, the maximum bending strain of D0, D30, D60, and D100
concentrations decreases by 5.2%, 9.3%, 11.2%, and 15.4%, respectively. This reduction
may be attributed to the release of deicing agents after immersion, causing partial damage
to the internal structure of the asphalt mixture. Furthermore, the porosity increases with
the release of chloride ions in the mixture, further disrupting the adhesive relationship
between asphalt and aggregate and weakening crack resistance performance.
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3.3.3. Analysis of Water Stability

Based on the variation in the freeze–thaw splitting strength of the self-melting ice
asphalt mixture with the release of salt, an analysis was conducted on the influence of
deicing agent dosage and salt precipitation on the water stability performance of the asphalt
mixture. The experimental results are depicted in Figure 12. It is evident that with the
increase in deicing agent dosage, the splitting strength significantly decreases, indicating
an adverse impact of the deicing agent on the water stability of the mixture. Before salt
release, the freeze–thaw splitting strength ratios of D30, D60, and D100 to D0 decreased by
4.9%, 6.4%, and 8.4%, respectively. This is attributed to the deicing agent being unfavorable
for moisture resistance, as its increased dosage leads to a reduction in structural asphalt
within the asphalt, consequently compromising the integrity of the asphalt mixture and
causing a decline in moisture resistance performance.
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Furthermore, after the deicing agent dissolves in water, the micro-pores of the asphalt
mixture enlarge, making it easier for water to penetrate the interior of the asphalt mixture.
This could be one of the reasons for the decrease in the residual stability ratio. With the
complete release of salt, the freeze–thaw splitting strength of all specimens significantly
decreases, with a more pronounced decrease in the freeze–thaw splitting strength of
asphalt mixture specimens with an added deicing agent. After salt release, the maximum
bending strain of D0, D30, D60, and D100 concentrations decreases by 8%, 15.1%, 21.6%,
and 26.7%, respectively. A plausible explanation is that the deicing agent continues to
release underwater immersion conditions, and chloride salt solution erodes the interface
between asphalt and aggregate. Simultaneously, the permeation of chloride ions leads to
the dissolution of the light components of asphalt, accelerating the aging of asphalt binder
and further reducing the adhesive properties between asphalt and aggregate. This results
in asphalt being more prone to detach from the aggregate surface, leading to a deterioration
in the water stability performance of the mixture.

3.3.4. Analysis of Four-Point Bending Fatigue Life Test

Using a four-point bending fatigue testing machine to determine the fatigue life of com-
pacted asphalt mixtures under repeated bending loads. From Figure 13, it is evident that
prior to salt release, the fatigue life of D30, D60, and D100 decreased by 15.1%, 20.5%, and
20.75%, respectively, compared to D0. The addition of de-icing agents is demonstrated to
diminish the fatigue resistance of asphalt mixtures. This is due to the infiltration of chloride
ions, leading to a decrease in the content of lightweight components in asphalt, resulting in
the hardening and brittleness of the asphalt mixture. Therefore, under repeated loading,
fatigue failure is more likely to occur, resulting in a lower fatigue life being manifested.

After complete salt release, the fatigue life of D0, D30, D60, and D100, respectively,
decreased by 9.1%, 13.4%, 20.1%, and 35.9%. This phenomenon arises from the ease with
which cations such as sodium and magnesium in the salt solution interact with the polar
components in asphalt, forming organic metal salts with high solubility. The organic
metal salts erode the adhesive interface between asphalt and aggregates, significantly
weakening the adhesive strength formed between the aggregates and asphalt. This results
in the asphalt on the surface of the mixture detaching from the aggregate surface, further
reducing the fatigue life of the self-melting ice asphalt mixture.



Polymers 2024, 16, 1379 15 of 18

Polymers 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

repeated loading, fatigue failure is more likely to occur, resulting in a lower fatigue life 
being manifested. 

After complete salt release, the fatigue life of D0, D30, D60, and D100, respectively, 
decreased by 9.1%, 13.4%, 20.1%, and 35.9%. This phenomenon arises from the ease with 
which cations such as sodium and magnesium in the salt solution interact with the polar 
components in asphalt, forming organic metal salts with high solubility. The organic metal 
salts erode the adhesive interface between asphalt and aggregates, significantly weaken-
ing the adhesive strength formed between the aggregates and asphalt. This results in the 
asphalt on the surface of the mixture detaching from the aggregate surface, further reduc-
ing the fatigue life of the self-melting ice asphalt mixture. 

 
Figure 13. Four-point bending fatigue life test results comparison. 

3.4. Analysis of the Influence of Salt Precipitation Extract on Steel 
The investigation focuses on the corrosion of standard steel hangers caused by 

leachates with varying salt concentrations. Based on the results of the corrosion test de-
picted in Figure 14. The saline solution used for precipitation accelerates the corrosion of 
the standard steel hangers. Under equivalent immersion durations, when the concentra-
tion of the deicing agent is at 100%, the corrosion of standard steel hangers is most severe. 
By the eighth day, the corrosion rate can reach 0.06%. Through the analysis of the reasons, 
As the concentration of salt precipitates increases, the rate of electrochemical reaction of 
standard steel hangers is accelerated. As a result, the corrosion of standard steel hangers 
has deepened. The experimental design considers the most adverse conditions. The actual 
concentration of salt in the runoff from self-melting ice asphalt pavement is significantly 
lower than the concentration of precipitated solution in the experiment. Thus, the corro-
sion rate of steel caused by the salt analysis runoff from self-melting ice asphalt pavement 
should be less than 0.06%. Hence, in actual environmental conditions, the impact of self-
melting ice asphalt mixture on the corrosion rate of steel is minor. 

Figure 13. Four-point bending fatigue life test results comparison.

3.4. Analysis of the Influence of Salt Precipitation Extract on Steel

The investigation focuses on the corrosion of standard steel hangers caused by leachates
with varying salt concentrations. Based on the results of the corrosion test depicted in
Figure 14. The saline solution used for precipitation accelerates the corrosion of the stan-
dard steel hangers. Under equivalent immersion durations, when the concentration of
the deicing agent is at 100%, the corrosion of standard steel hangers is most severe. By
the eighth day, the corrosion rate can reach 0.06%. Through the analysis of the reasons,
As the concentration of salt precipitates increases, the rate of electrochemical reaction of
standard steel hangers is accelerated. As a result, the corrosion of standard steel hangers
has deepened. The experimental design considers the most adverse conditions. The actual
concentration of salt in the runoff from self-melting ice asphalt pavement is significantly
lower than the concentration of precipitated solution in the experiment. Thus, the corrosion
rate of steel caused by the salt analysis runoff from self-melting ice asphalt pavement should
be less than 0.06%. Hence, in actual environmental conditions, the impact of self-melting
ice asphalt mixture on the corrosion rate of steel is minor.
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4. Conclusions

This paper uses the Los Angeles wear meter to accelerate the salt release of self-melting
ice asphalt mixture and obtains the long-term salt release rules of different anti-icing agent
dosages, asphalt type, and gradation type from the conventional test piece immersion
flushing method and natural soaking method and evaluates the pavement performance
of self-melting ice asphalt mixture after the complete release of salt. The conclusion is
as follows:

• Based on the Los Angeles abrasion tester, dynamic water flushing was conducted
on the aggregates of self-melting ice asphalt mixtures too thoroughly mix, separate,
and re-mix the asphalt mixture with water. The optimal process parameters were
determined to be a rotation speed of 40 r/min and a water-to-mixture mass ratio of 1:2.

• Accelerating the release of salt from self-melting ice asphalt mixtures was achieved
using the Los Angeles abrasion tester. Compared to conventional tests using the
magnetic stirrer immersion flushing method, the efficiency was increased by 91 times,
and compared to the natural soaking method, it was increased by 114 times.

• Self-melting ice asphalt mixtures using SBS-modified asphalt exhibit longer salt re-
lease durations, demonstrating poorer uniformity. The salt release time is directly
proportional to the dosage of the deicing agent. The dosage of the deicing agent has
minimal effect on the uniformity of salt release. When the type and dosage of asphalt
are consistent, SMA-13 asphalt mixtures exhibit poorer salt release uniformity than
AC-13 asphalt mixtures.

• As the proportion of deicing agents replacing mineral powder increases, the perfor-
mance of self-melting ice asphalt mixtures gradually deteriorates. After the complete
release of the salt, the pavement performance tends to deteriorate compared to its
original state. When replacing the mineral powder with a 100% deicing agent, the
high-temperature stability of the self-melting ice asphalt mixture decreased by 31.6%,
the low-temperature performance decreased by 15.4%, the water stability decreased
by 26.7%, and the fatigue life, respectively, decreased by 35.9% after the complete
salt release.

• Under laboratory conditions, when the deicing agent entirely substitutes the mineral
powder in the asphalt mixture, The standard steel hangers immersed in the fully
precipitated saline solution for 8 days exhibited a weight loss rate of 0.06%. Due
to the significantly higher salt concentration in the extracted solution compared to
that generated by the self-melting ice asphalt pavement in actual environmental
conditions, The corrosion impact on steel materials in actual road surface environments
is relatively minor.

The indoor experimental methods mentioned can accelerate the release of salt con-
tent. The salt release characteristics observed in indoor experiments differ from those
encountered in using self-melting ice asphalt pavements.

5. Future Research

The research on self-melting ice asphalt mixtures should also investigate how deicing
agents are released in a more uniform manner. For instance, whether they can be incorpo-
rated into slurry sea. Additionally, existing deicing agents contain a significant amount of
chlorine elements. Studying environmentally friendly self-melting ice asphalt mixtures is
highly necessary.
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