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Abstract
In this work we present an intelligent system for the automatic categorization of
political documents, specifically the documents containing the parliamentary ques-
tions collected during the weekly Question Times at the Chamber of Deputies of
the Italian Republic. The proposed intelligent system leverages text classification
models to perform the document categorization. The system is aimed at support-
ing and facilitating the research activities of political science scholars, who deal with
comparative and longitudinal analysis of thousands of documents. To select the best
classification models for our specific task, several classical machine learning and deep
learning-based text classification models have been experimentally compared.
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1. Introduction

The pervasive availability of Internet-connected devices, and the digitalization of busi-
ness processes in public administrations, banks, hospitals and private companies,
has favored an ever-growing availability of digital contents in many contexts such
as medicine, social sciences, healthcare, psychology, law, engineering, etc (Hussain,
2017). Within political science, scholars of legislative studies increasingly resort to
the analysis of official documents generated within parliaments to study party pol-
itics, policy-making and broader questions related to political representation. In re-
cent times, most democratic parliaments have released the archives of their official
documents in different digital formats. In doing so, vast collections of textual data
regarding parliamentary debates, legislative bills and parliamentary questions are now
easily accessible. The availability of these information sources has stimulated the in-
terest of legislative and political researchers for computer-aided techniques able to
automatically extract information and to provide analytics and decision services from
the political texts (Grimmer & Stewart, 2013; Hillard, Purpura, & Wilkerson, 2008;
Slapin & Proksch, 2014; van Atteveldt, Welbers, & van der Velden, 2019).
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The Comparative Agendas Project1 (CAP) is a network of political scientists around
the world collecting and classifying various textual documents on political topics, in
order to detect the issues that are debated across countries over time (Baumgart-
ner, Breunig, & Grossman, 2019). CAP enables scholars, students, policy-makers and
the media to investigate trends in policy-making across time and between countries.
Among its activities, CAP collects information on policy activities and classifies them
into a single, universal and consistent coding scheme. The key to make the collected
data comparable is the adoption of a common coding system consisting of 21 major
topics and more than 200 sub-topics to code those activities. To date, CAP covers 21
political systems around the world, forming the CAP coding system or CAP master
codebook. CAP monitors policy processes by tracking the actions that governments
take in response to the challenges they face. These activities can take many different
forms, including debating a problem, delivering speeches, e.g., the Queen’s speech in
the United Kingdom, holding hearings, introducing or enacting laws, e.g., Bills and
Public Laws in the United States, or issuing judicial rulings, e.g. rulings from the Eu-
ropean Court of Justice. Among these activities, Parliamentary Questions (PQs) are
tools that can be used by members of parliaments to force ministers to justify their
actions and explain their policy choices. All democratic parliaments have at least one
procedure to allow their members to ask questions to the government. Scholars involved
in the CAP often monitor the policy content of PQs for oral answer dealt with during
plenary sittings to understand the issues emphasized by political parties (Borghetto
& Chaques-Bonafont, 2019). The PQ documents classified by CAP are provided as
semi-structured, heterogeneous textual data in many different formats. Scholars of the
CAP community initially relied on trained students to classify the content of doc-
uments, but the huge amount of data produced by political institutions made soon
apparent the need to perform document classification with automatic text analytics
systems (Burscher, Vliegenthart, & De Vreese, 2015; Collingwood & Wilkerson, 2012;
Loftis & Mortensen, 2020).

Text classification is a technology that allows us to categorize unstructured texts
encoded in digital documents. For this purpose, a text preprocessing phase plays a
key role. In fact, during this phase, unstructured texts are transformed into struc-
tured data suitable for feeding classification models (Khan, Baharudin, Lee, & Khan,
2010; Mirończuk & Protasiewicz, 2018; Onan, Korukoğlu, & Bulut, 2016). Over the
last few decade, text classification problems have been widely studied and addressed in
many real application contexts, such as smart cities (D’Andrea, Ducange, Lazzerini, &
Marcelloni, 2015), medicine (Hughes, Li, Kotoulas, & Suzumura, 2017), social media
analysis (Yoo, Song, & Jeong, 2018), psychology (Burdisso, Errecalde, & Montes-y
Gómez, 2019), sentiment & opinion identification (Onan, 2018, 2020a, 2020b), and
political science (Grimmer & Stewart, 2013). Most of text classification approaches
discussed in the specialized literature are based on machine learning and artificial in-
telligence models (Ikonomakis, Kotsiantis, & Tampakas, 2005; Kowsari et al., 2019),
such as Support Vector Machines, Bayesian classifiers, Logistic Regressions classifiers,
Convolutional Neural Networks, Long Short Term Memory Neural Networks and trans-
former architectures (Onan & Toçoğlu, 2021; Wolf et al., 2020). Moreover, in order to
provide a text as an input of a classifier, the text must be transformed into a numer-
ical vector. To this aim, several text representation approaches have been discussed
in the specialized literature. Among them, the most relevant are those based in Bag
Of Words (BOW) (Zhang, Jin, & Zhou, 2010) and Word Embeddings (WE) (Kusner,

1https://www.comparativeagendas.net
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Sun, Kolkin, & Weinberger, 2015; Liu, Liu, Chua, & Sun, 2015; Onan, 2019).
Within the context of the CAP community, scholars followed two approaches to uti-

lize machine learning. On the one hand, several researches demonstrated the usefulness
of text classifiers without specifying the software they used (Collingwood & Wilkerson,
2012; Hillard et al., 2008). On the other hand, a group of studies explicitly relied on
specialized packages to be used with the free software R. In particulr, the package
RTextTools (Jurka, Collingwood, Boydstun, Grossman, & van Atteveldt, 2013) has
been widely used within the CAP community, but it is no longer maintained. More re-
cently, political scientists are turning to the R package quanteda (Benoit et al., 2018),
which offers many tools for quantitative textual analysis including a Naive Bayes algo-
rithm for text classification. Both packages are primarily addressed to researchers with
some programming knowledge, limiting the target audience to a minority of political
scientists. Political scientists sometimes resort also to other R packages such as mlr
(Bischl et al., 2016) and CARET (Kuhn, 2008) to exploit machine learning techniques
in their research activities. However, both of them require solid programming skills.

In this work, we discuss the results of a multi-disciplinary research activity involving
political scientists and computer scientists researchers. Specifically, we describe the de-
sign, implementation and testing of an Intelligent System (IS) aimed at automatically
classifying and cataloguing political texts according to a predetermined classification
scheme. The purpose of the system is to make available a large set of state-of-the-
art text classification methods for political scientists with little or no programming
skills. In particular, the system was experimented to classify the text of Parliamentary
Questions presented during the weekly Question Time (QT) in the Italian Chamber
of Deputies according to the major topics of the CAP coding system. However, users
can train the system with different data according to their research goals.

The proposed IS is based on text classification models. Indeed, in order to determine
the most effective models to embed into our system, we carried out an experimental
study in which we implemented, trained and compared a collection of state-of-the-art
approaches for text representation and classification. The most accurate text classifica-
tion models were integrated into the actual final system, implemented as a user-friendly
Web application, that we called QTIS. Whenever a new collection of institutional doc-
uments, specifically PQs, is produced for the QT, the application allows users to upload
the documents and to automatically associate each PQ to a CAP topic. In order to
carry out the experimental campaign for selecting the most accurate text classifica-
tion models, we adopted a real dataset composed by 5,672 PQs, collected during the
QTs of the Italian Chamber of Deputies, spanning from 1996 to 2019. Moreover, af-
ter selecting the most accurate text classification models, we adopted the QTIS Web
application to classify 222 unlabelled PQs, from July 2019 to May 2020. A team of
political scientists belonging to the CAP Italian Team evaluated the report generated
by QTIS and confirmed that the systems allowed us to correctly recognize up to 73%
of the documents containing PQs and classified by the QTIS Web application.

The paper is organized as follows. Section 2 describes the most recent works related
with the study carried out in this work. Section 3 briefly introduces the QT in Italy
and the dataset adopted in experimental comparison campaign. Section 4 describes the
experimented methods for text representation and classification. Section 5 discusses
the details of the experimental comparison campaign, by showing and comparing the
results achieved by 12 text classification models. Section 6 gives details on the design
and implementation of the proposed QTIS and presents the results of the analysis
carried out using QTIS on a previously unseen collection of unlabelled PQs. Finally,
Section 7 summarizes our findings and provides directions for future work.
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2. Related Work

To date, the CAP community has yielded a rich corpus of studies about policy pro-
cesses, the result of a shared time-consuming and costly human-labelling effort – ap-
proximately 400 publications (Baumgartner, Jones, & Mortensen, 2017). The increas-
ingly accessible and impressive body of textual data, along with the outstanding de-
velopment of computing power, have made the use of machine learning and artificial
intelligence techniques extremely appealing even for public policies researchers. Ad-
ditionally, because the policy agenda is not static over time because of the changing
dynamics and actors that drive its contents (Mettler, 2016), the use of such techniques
would also allow retroactive adjustments (Gilardi & Wüest, 2020), particularly useful
in case of long term projects such as the CAP, which are too costly to implement oth-
erwise. Broadly speaking, the crucial aspect of adopting machine learning and artificial
intelligence methods lies in the choice of using automatic tools, based on unsupervised
or supervised models, ”to classify documents into classes” (Loftis & Mortensen, 2020).
As discussed in the following paragraphs, these tools can be used as an alternative or
as a support to manual labelling.

Although the tools based on unsupervised models limit the involvement and the
tasks of policy agendas scholars in the initial design stages of the models, thereby
minimizing pre-analysis costs, a laborious ex-post validation process is often required.
Usually, this process needs to combine experimental, statistical and substantive evi-
dences to prove the conceptual validity of the classification results (Quinn, Monroe,
Colaresi, Crespin, & Radev, 2010). Moreover, since policy categories come out of data
inductively as results of mainly clustering algorithms (Grimmer & King, 2011) and
estimating statistical topic models Grimmer (2010), it may raise doubts about the va-
lidity of categories themselves. As matter of fact, unsupervised techniques seem rather
unfitting for the characteristics and purposes of the CAP, mostly because of the risk
of mismatching with the 21 major topics of the CAP master codebook (Baumgartner
et al., 2019).

Therefore, the tools based on supervised learning models are those where policy
agendas scholars have put much effort into (Burscher et al., 2015; Collingwood &
Wilkerson, 2012; Hansen, Navarretta, Offersgaard, & Wedekind, 2019; Hillard et al.,
2008; Jurka et al., 2013; Navarretta & Hansen, 2020; Purpura & Hillard, 2006), es-
pecially for the manual labelling of the texts. In the pioneering work discussed in
Purpura and Hillard (2006), the authors applied a two-phase hierarchical approach to
a prototype of a Support Vector Machine (SVM) to classify the US Congress legisla-
tive texts using the CAP coding scheme and human-labelled samples. In Hillard et al.
(2008) and Collingwood and Wilkerson (2012), the authors discussed the application
of ensemble models, including SVMs and bayesian classifiers, for the classification of
documents extracted from the The Congressional Bills Project.2 This project includes
more than 400,000 bills introduced in the U.S. Congress. Another interesting dataset
recently analyzed in a few works, such as those discussed in Hansen et al. (2019) and
in Navarretta and Hansen (2020), is the The Danish Parliament Corpus 2009 – 2017,
which contains transcripts of parliamentary speeches from the sittings in the Chamber
of the Danish Parliament3. In Hansen et al. (2019), the authors compared different
approaches for text representations and select bayesian classifiers as the most per-
forming solution for text classification. Experiments were carried out using a reduced

2http://www.congressionalbills.org
3https://repository.clarin.dk/repository/xmlui/handle/20.500.12115/8
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corpus of manually labelled documents which considers 19 subject areas. Moreover,
Navarretta and Hansen (2020) experimented different text classification models, based
on SVM, logistic regression classifiers and multinominal näıve bayes classifiers, to pre-
dict the party of the politicians from the speeches. A four-class classification task
was approached, considering the Danish People’s Party, the Liberal Party, the Social
Democratic Party and the Red-Green Alliance.

Because generalizability of the text classification models can be more easily achieved
using training data that are ”representative of all outlets, time periods, and document
types that one wants to study”, in Burscher et al. (2015) the authors experimented
with a collection of supervised text classification models, considering different types of
documents. More specifically, they extracted different training and test sets corpora
from three well-known Dutch newspapers and Dutch PQs, considering the period
between 1995 and 2011. The adopted models were based on passive aggressive learning
classifiers and different text representation schemes.

A number of recent contributions (Loftis & Mortensen, 2020; Wiedemann, 2019)
discussed the so-called active learning workflow, which alternates human labeling and
machine learning labeling. Specifically, firstly an initial text classification model was
built using a training set of documents manually labeled by policy agendas scholars.
Then, the initial model was adopted as a decision support system for supporting the
labeling of a new set of unlabeled documents: the system provides the estimation of the
major topic to associate to each document while scholars evaluate the correctness of the
provided estimation. In this way, the training set may be easily and quickly extended,
and more accurate models may be generated. Loftis and Mortensen (2020) carried out
experiments on a subset of texts of agenda items discussed in all Danish municipali-
ties, extracted from the Causes and Policy Consequences of Agenda Setting project,4

and on a subset of U.S. bills extracted for the aforementioned Congressional Bills
Project. Text classification models based on bayesian classifiers and bag-of-words for
text representation were adopted in the experimental analysis. Wiedemann (2019) in-
stead conducted experiments on a data selection from the Manifesto Project Database5,
which includes electoral party manifestos worldwide. Bag-of-words representation with
n-grams and latent semantic features were adopted for text representation along with
a logistic regression classifier. Finally, Courtney, Breen, McMenamin, and McNulty
(2020) tested automated translation of multilingual texts using supervised learning
techniques, by constructing four different independent binary class classifiers based
on the categories of the Comparative Agendas Project. They worked on a dataset of
4,485 randomly selected paragraphs of three different newspapers to perform computer
accuracy tests. Albeit different from pure political documents, the authors confirmed
the validity and reliability of machine learning-based models for text analysis.

However, despite all the studies discussed above, to the best of our knowledge, an
easy and ready-to-use application, either paid or free, for the classification of political
texts is not available for scholars. In fact, in each of the previously discussed studies,
specific analyses are performed using models appropriately trained with data related
to the context of the analysis. However, after the analyses no software has been re-
leased for allowing practitioners and researcher to repeat the analyses or make new
experiments. For this reason, in this work, we present all the stages that led us to
develop a user-friendly web application that allows CAP scholars to quickly categorize
the QT documents of the Italian Chamber of Deputies. In particular, we consider in

4https://ps.au.dk/forskning/forskningsprojekter/capcas/
5https://manifestoproject.wzb.eu
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our experimental comparison campaign the most promising text classification models
adopted in the previously discussed works. Moreover, we also include in our experi-
ments text classification models based on deep learning techniques, namely based on
word embeddings for text representation and deep neural networks for text classifica-
tion, deemed as a very promising venue for political science research (among others,
Iyyer, Enns, Boyd-Graber, and Resnik (2014)). It is worth noticing that the proposed
web application also allows users to easily carry out a text categorization analysis
considering new and different types of document. This can be done by training, saving
and using new text classification models for the user-specific type of document.

Overall, the main goal of this paper is not to propose a novel text classification
scheme: our objective is to present a real application for the categorization of political
documents, specifically those containing questions of Italian parliamentary QTs, based
on consolidated state-of-the-art methodologies for text classification. Therefore, even
though we also carried out a deep experimental campaign, in which we compared 12
different text classification models and a real world dataset of Italian parliamentary
QTs documents, a comprehensive comparison among the huge amount of techniques
for text classification, currently available in the literature, is out of the scopes of this
work. However, to the best of our knowledge, our experimental campaign represents the
first extensive text categorization analysis carried out on political documents written
in Italian.

3. Dataset of the Italian QT

The Italian Team of the Comparative Agendas Project has assembled a dataset in-
cluding information about PQs asked during the weekly question time session (In-
terrogazioni a risposta immediata in assemblea) in the Italian Chamber of Deputies
(Russo & Cavalieri, 2016). The rules governing this parliamentary procedure are set
by rule 135-bis of the Rules of Procedure of the Chamber of Deputies, which was intro-
duced in 1997. However, already in 1996 some sessions were held to test the new rules.
Since 1997 question time is held once per week, usually on Wednesday. All ministers,
including the President of the Council of Ministers, appear before the Chamber of
Deputies in rotation. Questions must be submitted the day before through the presi-
dent of the parliamentary group. Each parliamentary group can present only one oral
question per week. The questions must address a topic of general and urgent interest,
and the debate on these questions is televised on the public broadcast company. The
consolidated dataset, publicly available on the web-page of the CAP, includes 4,535
observations covering the period 1996-2014.6 The policy content of each question is
classified according to the CAP classification system, which has two levels: one level
corresponds to 240 detailed topics (sub-topics) which are then grouped into 21 major
topics (second level), identified by numbers ranging from 1 to 237. Through manual
labelling, each question has been assigned to a single major topic. In the experimental
comparison campaign, we adopted an extended version of the dataset which includes
5,672 PQs, spanning from 1996 to 2019. Table 1 and Figure 1 show the details of
the dataset. As we can see, also in the distribution of documents across the different
major topics is extremely unbalanced. Taken together, the three most numerous ma-

6https://www.comparativeagendas.net/italy
7The CAP coding scheme is based on the scheme developed in the early 1990s within the US Policy Agendas

Project (www.policyagendas.org). Over time some major topics were folded together, and this is the reason for

the missing major topics number 11 and 22.
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jor topics (Law and Crime, Government Operations, and Transportation) account for
more that one third of the documents. By contrast, the three least populated major
topics (Country Development, Public Lands, and Foreign Trade) jointly account for
about 3.3% of them. Moreover, for experimenting the developed web application, we
also adopted a very recent dataset composed by 222 PQs, spanning from July 2019 to
May 2020. Details on this dataset can be found in Section 6.2.8

Table 1.: Distribution of the major topics in the experimental dataset.

Code Description Count %

1 Domestic Macroeconomic Issues 452 7.97
2 Civil Rights and Minority Issues 150 2.64
3 Health 438 7.72
4 Agriculture 218 3.84
5 Labour and Employment 345 6.08
6 Education 292 5.15
7 Environment 255 4.50
8 Energy 115 2.02
9 Immigration 231 4.07

10 Transportation 549 9.68
12 Law and Crime 769 13.56
13 Welfare 116 2.05
14 C. Development and Housing Issues 78 1.38
15 Banking, Finance, and Commerce 437 7.70
16 Defence 143 2.52
17 Space, Science, Technology 104 1.83
18 Foreign Trade 31 0.55
19 International Affairs 264 4.65
20 Government Operations 524 9.24
21 Public Lands and Water Management 126 2.22
23 Cultural Policy Issues 35 0.62

Total 5,672

4. Text Representation and Classification

Text mining deals with extracting valuable knowledge from unstructured text con-
tained in digital documents. Specifically, in this work, we consider text classification
models, based on machine learning and artificial intelligence algorithms, for automat-
ically assign a document to a single class, namely a category, selected among a finite
set of different classes (Aggarwal & Zhai, 2012). To this aim, unstructured texts needs
to be first transformed into structured numeric representations. Then, these represen-
tations are exploited as features used as input for machine learning models, which are
in charge of estimating the class to assign to each specific text.

8The two datasets adopted in this work are still not publicly available. The Italian Team of the CAP plans

to release a new version of the dataset after the termination of the current legislative period.
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Figure 1.: Major topic distribution in the experimental dataset.

In the following, we describe the different text representation techniques and the
classification models we experiment with.

Text representation The textual representation of a document, i.e., a string, needs
to be transformed into a numeric vector before being elaborated by a classification
model. This transformation is usually composed by two steps: firstly, the string is pre-
processed to remove uninformative contents such as common words, punctuation and
special symbols. Secondly, the pre-processed text is transformed to obtain a numerical
representation of the original documents, i.e., a real-valued vector. More formally, given
a document collection D = {d1, . . . , dn}, every document di is pre-processed into a new
textual representation δi ∈ ∆ through a text transformation function f : D 7→ ∆, and
the resulting text is represented as a vector in Rd through a feature extraction function
g : ∆ 7→ Rd.

The text pre-processing steps implemented in the text transformation f include:
(1) normalization: punctuation marks and special symbols, e.g., accents, hyphen, are

removed from the original document text and the resulting text is lower-cased;
(2) tokenization: the stream of characters in the input text is transformer into an

ordered list of processing units called tokens, e.g., words in our case;
(3) stopwords filtering: common and/or uninformative words providing little of no

useful information, such as articles, conjunctions, prepositions and pronouns, are
removed from the token list;

(4) stemming: each token is reduced to its stem or root form, so to group words
having closely related semantics.

The feature transformation g aims at computing a numerical representation of the
pre-processed text. We distinguish between bag-of-words (BOW) representation and
word embeddings (WE) representation, characterized by different sizes d of the target
vector space Rd. In the BOW representation, every pre-processed text is represented
as a sparse vector in R|V |, where V is a term vocabulary, e.g., in the simplest form, the
set of all stems appearing in any pre-processed text. Given a pre-processed text δi, the
entries in its BOW representation xi ∈ R|V | corresponding to terms not appearing in
the text are set to 0. The entries corresponding to terms appearing in the document
can be computed according to some projection method, such as:
• term count: each entry corresponds to the number of occurrences of the term in

the document;
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• term frequency: each entry corresponds to the term count normalized by the
total number of words in the document;
• term frequency-inverse document frequency: the term frequency is weighted by

the inverse frequency of the term in the whole collection, a proxy of the term’s
specificity.

In the BOW representation, the dimension |V | of the feature space to represent
documents can be very large. In order to reduce the size of the feature space and
to avoid high variance in the model’s parameters estimation, several feature selection
strategies can be used. In these strategies a subset of relevant terms is selected to be
used in the model training. In our case, we set Fmax as the maximum number of selected
features, namely the maximum number of terms of the vocabulary used in the BOW
representation. The feature selection strategy we adopted exploits the information
gain as relevance measure for ranking all terms in the original vocabulary to select the
best Fmax terms to be used. More details on the BOW text representation and feature
selection can be found in D’Andrea, Ducange, Bechini, Renda, and Marcelloni (2019).

In the BOW representation, each term is treated independently from the other
terms, losing any relationships between terms appearing the same document. Con-
versely, in the embedding representation, every pre-processed text is represented in an
e-dimensional vector space, with e � |V |. The embedding representation is based
on the well-known word embeddings approach: each terms is represented in a p-
dimensional vector space in such a way that semantically-related terms are mapped
into closer vectors (Kusner et al., 2015). The elements of the WE vector space are
learned through deep learning techniques (Liu et al., 2015) and p usually spans from
50 to 300 (we used p = 300 in our experiments). Given a pre-processed text δi, its
constituent terms are mapped to the corresponding word embeddings, which are then
combined, e.g., concatenated or summed up together, to compute the text representa-
tion. The most commonly used WE models, pre-trained on the Wikipedia corpus and
available to be used directly for several languages (Grave, Bojanowski, Gupta, Joulin,
& Mikolov, 2018), are:
• Word2Vec9: the word embeddings are learned with a neural network given the

context of the word, i.e., a configurable window of co-occuring words;
• GloVe10: the word embeddings are learned by extending the Word2Vec learning

algorithm with the latent semantic analysis matrix factorization method;
• FastText11: the word embeddings are computed by considering n-grams at char-

acter level and surrounding n-grams instead of single word and its surrouding
words.

A WE captures the meaning of a given word, modeling it as a vector. In the case
of multiple meanings of a given word that depend on the context, the WEare not
able to correctly disambiguate the meaning. For example, the word apple may refer
to the fruit or to the company: in both cases, the word is represented by the same
WE. Recently, the introduction of the transformer architectures and contextualized
language models (Vaswani et al., 2017) has paved the way to contextualized word
embeddings, i.e., different representations of word, depending on the context of their
usage. The main advantage of the transformer architecture and its implementations
such as BERT (Devlin, Chang, Lee, & Toutanova, 2019) and GPT (Brown et al., 2020)
with respect to causal language models based on recurrent neural networks, e.g., long-
short term memories and gated recurrent units, lies in the adoption of an attention

9http://hlt.isti.cnr.it/wordembeddings/skipgram wiki window10 size300 neg-samples10.tar.gz
10http://hlt.isti.cnr.it/wordembeddings/glove wiki window10 size300 iteration50.tar.gz
11https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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mechanism (Vaswani et al., 2017). This technique processes entire sequences of words
at once, in contrast with the sequential processing of recurrent neural networks, re-
taining information about the position of each word and modifying the final word
embeddings depending on the surrounding words, e.g., the context, both at training
and at inference time. Moreover, contextualized language models based on transformer
architectures allow for the pre-training and fine-tuning learning paradigm: first, the
model is pre-trained on a general language learning task and a large training collection,
and then the model is fine-tuned for the specific downstream task, e.g., classification.
Currently, graph neural networks (Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini,
2009) are exploited in conjunction with BERT models for text classification tasks, but
with marginally better results on some datasets (Lin et al., 2021).

Text classification Models Using the input texts represented as real-values vectors,
supervised machine learning algorithms can be applied to classify new documents
into different classes. This work focuses on Italian PQ documents, that need to be
accurately and automatically classified according to 21 different major topics (see
Table 1). The following classification models have been trained and compared:
• support vector machine (SVM): a support vector machine constructs a set of

separating hyper-planes in the inputs’ vector space, which can be used for clas-
sification among other tasks (Cortes & Vapnik, 1995);
• complement näıve bayes (CNB): it is a modified version of the multinomial näıve

bayes classifier for texts, addressing word dependencies assumption and unbal-
anced classes (Rennie, Shih, Teevan, & Karger, 2003);
• passive aggressive classifier (PAC): an online machine learning algorithm building

a set of separating hyper-planes in the inputs’ vector space based on a single input
at a time (Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer, 2006);
• multi-layer perceptron (MLP): a artificial feedfoward neural network with one or

mutiple hidden layers composed by different perceptrons that learns a non-linear
function approximator for classification (Haykin, 1998);
• convolutional neural network (CNN): an artificial neural network with multiple

hidden layers, i.e., a deep neural network, where the layers exploit convolving
filters that are applied to local features (Kim, 2014);
• long-short term memory network (LSTM): an artificial recurrent neural network

with multiple hidden layers and feedback connections that can process sequences
of data, such as speech or text (Hochreiter & Schmidhuber, 1997).
• transformer network (BERT): a deep neural network with multiple attention

layers, encoding documents terms as contextualized word embeddings, using a
feed-forward layer at the top to perform document classification (Vaswani et al.,
2017).

As discussed by Aggarwal (2018) and D’Andrea et al. (2019), the BOW text repre-
sentation is usually adopted in combination with classical machine learning classifica-
tion algorithms, such as SVM, CNB, PAC, and MLP, whereas the word embendings are
used in combination with deep learning models, such as CNN and LSTM (Rosenthal,
Farra, & Nakov, 2017). Hence, in the following experiments, we consider the following
combinations of text classification models based on BOW and classical supervised ma-
chine learning models: BOW SVM, BOW CNB, BOW PAC, and BOW MLP. Regarding
the deep learning based CNN and LSTM text classification models, the texts are rep-
resented as input vectors using pre-trained Word2Vec and FastText embeddings (we
do not report experiments with GloVe word embedding due to poor results). Thus, we
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consider the following combinations of text classification models based on word em-
bedding and deep learning models: Word2Vec CNN, FastText CNN, Word2Vec LSTM,
and FastText LSTM. Finally, the BERT model processes directly the input document
text, exploiting a custom tokenizer, a pre-trained word embedding (dbmdz/bert-base-
italian-uncased)12 and a maximum sentence length equal to 128. As regards the word
embedding, as stated on the official repository page, a recent Italian Wikipedia dump
and various texts, in Italian, from the OPUS corpora collection13 were used for the
pre-training stage. The training of the classification layer, namely the fine tuning stage,
has been carried out, during each fold of the cross validation, considering the training
set portion of the dataset introduced in Section 3. No domain-specific training stage
has been carried out.

5. Experimental Comparison Campaign

In this Section, we discuss the results of the experimental comparison campaign that
we carried out for identifying the most effective text classification models to embed into
the QTIS Web application. First, in Sec. 5.1 we describe the experimental setup that
we adopted. Then, in Sec. 5.2 we discuss the overall effectiveness metrics achieved
by the different models along with a statistical comparison among them (Sec. 5.3).
Finally, in Sec. 5.4 we discuss the recognition capability of per-class of each model
and, for the sake of brevity, we focus on the least represented major topics in the
dataset discussed in Section 3. Indeed, these major topics are the most difficult to
recognize.

5.1. Experimental Setup

In order to compare the different text classification models discussed in Section 4,
we carried out a 2 × 10-fold stratified cross-validation considering the entire dataset
composed by 5,672 PQs discussed in Section 3. Indeed, we set two different values
of the seed for the random generation function and we repeated the cross-validation
procedure twice. In order to evaluate the performance of each classifier, we extracted
for each model the following metrics: Precision, Recall, and F1-measure per class.
Moreover we also extracted the overall accuracy and the weighted average values, con-
sidering all the classes, of Precision, Recall and F1-measure. Details on these metrics
can be found in Tharwat (2018). After the experimental campaign, for each models
and for each metric, we obtained a distribution composed by 20 values, corresponding
to the 20 test sets of the cross-validation procedure. For each distribution, we also cal-
culated the average value and the standard deviation. Moreover, in order to verify if
there exist statistically significant differences among the distributions, we carried out
non-parametric statistical tests, namely the Friedman test, the Iman and Davenport
test, and, when needed, the Holm post-hoc procedure (Garćıa, Molina, Lozano, & Her-
rera, 2009). For the sake of brevity, in this work we show the test results only on the
average values of the weighted average F1-measure. Actually, this measure allows us
to summarize the overall performance level of a classification model (Tharwat, 2018),
especially when dealing with imbalanced datasets.

In Table 2, we show, for each classification model, the parameters of the algorithms

12https://github.com/dbmdz/berts
13https://opus.nlpl.eu
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Table 2.: Classification model parameters: Grid Search Ranges and Selected Values

Model Tuned Parameters Range Values Selected Value

SVM kernel rbf, sigmoid, linear linear
γ −, 10−2, 10−3, 10−4, 10−5 −
C 0.001, 0.10, 0.1, 10, 25, 50, 100, 1000, 10000 10000

CNB α 0.3, 0.2, 0.1, 0.01, 0.001 0.2

PAC C 10.0, 2.0, 1.0, 0.1, 0.01, 0.001 1.0
tol 10−1, 10−2, 10−3, 10−4 10−3

MLP hidden layer sizes (128, 128), (192, 128) (128, 128)
activation tanh, relu relu
optimizer sgd, adam adam
α 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 10−3

learning rate constant, adaptive constant

CNN conv1D layer size 64, 128, 192 128
dense layer size 64, 128, 192 128
activation tanh, relu relu
optimizer sgd, adam adam

LSTM LSTM layer sizes 64, 128, 192 192
dense layer sizes 30, 50, 100 50
activation tanh, relu relu
optimizer sgd, adam adam

BERT Batch size 16, 32 32
Learning rate (Adam) 5e-5, 3e-5, 2e-5 2e-5
Number of epochs 2, 3, 4 4

that we have optimized and used for the learning procedure. In order to identify
the best parameter configurations, we carried out a grid search (Pontes, Amorim,
Balestrassi, Paiva, & Ferreira, 2016; Syarif, Prugel-Bennett, & Wills, 2016), and in
Table 2 we also show the values of the ranges used during the searching process. As
regards the models based on BOW and classical supervised machine learning models,
we carried out the experiments using the scikit-learn14 Python machine learning li-
brary, whereas for the model based on deep-learning, we adopted the Keras15 Python
library for deep learning. For more details on the parameters, please check the official
documentation of the aforementioned libraries. As regards the feature selection stage,
we set Fmax as the maximum number of features, namely the number of terms of the
vocabulary. This value was used as a threshold when we carried out the experiments
considering also a feature selection procedure stage, after the text representation stage
and before training the classifier. We experimented different values of Fmax, spanning
from 10, 000 to 50, 000. The best results were achieved, on average, considering Fmax

equal to 20, 000. In the following, the models generated considering the feature selec-
tion stage will be referred with the 20000 suffix.

14http://scikit-learn.org
15https://keras.io/
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5.2. Overall Performance Analysis

Table 3 summarizes the results achieved by each text classification model. Specifically,
for each model, we show the average value (avg), the standard deviation (std dev) and
the maximum value (max) (over the 20 test sets of the cross validation) of the accuracy
and of the weighted average Precision, Recall and F1-measure. More specifically, when
we calculated the average values, we weighted Precision, Recall and F1-measure of each
class by the number of samples from that class.

In order to better visualize the comparison among the different classification models,
we show in Figure 2, a bar plot of the average values of each metric, which include
also a dash for the standard deviation.

Table 3.: Overall results of the cross-validation procedure. The weighted average values of
Precision, Recall and F1-measure are reported in %.

Model
Accuracy Precision Recall F1-measure

avg (std dev) max avg (std dev) max avg (std dev) max avg (std dev) max

BOW SVM 70.6 (±1.5) 73.1 70.8 (±1.5) 73.8 70.6 (±1.5) 73.1 70.1 (±1.5) 72.7
BOW CNB 72.3 (±1.5) 74.9 72.5 (±1.6) 75.3 72.3 (±1.5) 74.9 71.0 (±1.6) 73.7
BOW PAC 71.7 (±1.5) 73.8 71.6 (±1.6) 74.3 71.7 (±1.5) 73.8 71.1 (±1.5) 73.5
BOW MLP 71.7 (±1.3) 73.9 72.2 (±1.4) 75.2 71.7 (±1.3) 73.9 71.2 (±1.3) 73.7

BOW SVM 20000 62.4 (±1.8) 65.4 63.0 (±1.8) 66.1 62.4 (±1.8) 65.4 62.1 (±1.8) 65.2
BOW CNB 20000 71.6 (±1.5) 74.6 71.8 (±1.7) 75.3 71.6 (±1.5) 74.6 70.2 (±1.7) 73.3
BOW PAC 20000 66.3 (±1.7) 69.3 66.7 (±1.8) 70.4 66.3 (±1.7) 69.3 65.8 (±1.7) 69.0
BOW MLP 20000 70.4 (±1.1) 72.1 70.8 (±1.1) 72.6 70.4 (±1.1) 72.1 69.8 (±1.1) 71.3

Word2Vec CNN 63.6 (±2.8) 69.0 65.6 (±1.7) 69.0 63.6 (±2.8) 69.0 63.0 (±2.7) 68.3
FastText CNN 63.5 (±2.4) 68.7 65.2 (±2.3) 71.6 63.5 (±2.4) 68.7 62.9 (±2.7) 68.8
Word2Vec LSTM 65.8 (±2.9) 69.5 64.5 (±2.4) 66.8 65.8 (±2.9) 69.5 64.2 (±2.6) 67.4
FastText LSTM 66.2 (±2.1) 69.2 65.8 (±1.8) 68.0 66.2 (±2.1) 69.2 64.7 (±2.1) 67.1
BERT 69.5 (±2.3) 73.8 70.2 (±2.4) 73.3 69.5 (±2.3) 73.8 68.5 (±2.4) 72.9

As a general overview, considering all the metrics, the method based on BOW text
representation and classical machine learning classification algorithms, namely SVM,
CNB, PAC and MLP, achieved higher performance than text classification models based
on deep learning. With regard to the latter, in most cases, the average values of accu-
racy and the weighted average values of Precision, Recall and weighted F1-measure are
lower than 65%, whereas the comparison models achieve values of the performance met-
rics higher than 70%. Also the standard deviations associated to deep learning-based
text classification models are higher than the ones of the comparison models. Thus,
we can state that the learning procedures of the models based on BOW and classical
machine learning classifiers are more stable than the ones of the deep learning-based
models. However, it is worth noticing that the results achieved by BERT are much
closer to those achieved by the models based on BOW and classical machine learn-
ing algorithms, than those achieved by other deep learning models. Regarding these
results, we can state that they are in line with those achieved in the specialized litera-
ture (Burscher et al., 2015; Hillard et al., 2008; Loftis & Mortensen, 2020; Navarretta
& Hansen, 2020), although the latter were not obtained using the same datasets and
experimental setup of those considered in our work.
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Figure 2.: Overall performance scores of the text classification models (reported in %).

5.3. Statistical Comparison of the Model Performance

In the following, we also discuss the results of non-parametric statistical tests. First,
we divide the distributions of the weighted F1-measure metric, achieved on each test
set of the cross-validation procedure by each model, into three groups: i) the ones of
the models based on BOW and classical machine learning classifiers, without feature
selection stage; ii) the ones of the the models based on BOW and classical machine
learning classifiers, with feature selection stage; and iii) the ones of the deep learning-
based models. We refer to these three distributions as Distribution Group 1 (DG1),
Distribution Group 2 (DG2) and Distribution Group 3 (DG3), respectively. Then, for
each distribution group, we perform the Friedman test to compute a ranking among
the distributions, and the Iman and Davenport test to evaluate whether there exists a
statistically significant difference among the distributions. If the Iman and Davenport
p-value is lower than the level of significance α (it is assumed the standard threshold
value α = 0.05), we can reject the null hypothesis of equivalence and conclude that
there exist statistical differences among the multiple distributions. Otherwise, no sta-
tistically significant difference exists. In case of a statistically significant difference, we
apply a post-hoc procedure, namely the Holm test. This test allows detecting effective
statistically significant differences between the control approach, i.e., the one with the
lowest Friedman rank, and the remaining approaches. Details on the aforementioned
tests may be found in Garćıa et al. (2009).

Table 4 shows the results of the Friedman test (F-Rank, in bold the models with the
best rank) and Iman and Davenport test’s p-values, obtained considering the aforemen-
tioned distribution groups DG1, DG2 and DG3. All the tests highlighted statistically
significant differences among the models, thus we carried out the Holm post hoc pro-
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cedures, considering, respectively, BOW PAC BOW CNB 20000 and BERT as control
models.

Table 5 shows the results of the Holm post hoc procedures on DG1, DG2 and DG3.
We recall that, for this procedure, when comparing the control model against each
other model, the level of significance is scaled as α/i, where i is the position of the
specific comparison model in the Friedman ranking. As regards DG2, the statistical
hypothesis of equivalence is rejected only for BOW SVM, thus we can state that the
remaining models which generate the distribution in DG1 are statistically equivalent.
As regards DG1, only BOW MLP 20000 is statistically equivalent to the control model,
namely to BOW CNB 20000. Thus, we can state that the two other models performs
statistically worse than BOW CNB 20000. Finally, regarding DG2 the statistical hy-
pothesis of equivalence is rejected for all the comparison models, thus we can state
that BERTis the best model among those based on deep learning.

Table 4.: Results of the Friedman (F-Rank) and of the Iman and Davenport (p-value) tests
on the weighted average values of F1-measure computed on DG1, DG2 and DG3. The best
model per DG is denoted in bold.

Group Model F-Rank p-value Null hypotesis

DG1

BOW SVM 3.23

0.017 reject
BOW CNB 2.48
BOW PAC 2.00
BOW MLP 2.30

DG2

BOW SVM 20000 4.00

0.000 reject
BOW CNB 20000 1.38
BOW PAC 20000 3.00
BOW MLP 20000 1.63

DG3

Word2Vec CNN 2.80

0.000
reject

FastText CNN 3.80
Word2Vec LSTM 3.20
FastText LSTM 3.03

BERT 1.30

In order to carry out a more in-depth analysis, we considered another distribution
group, labeled as DG4, composed by the distribution of DG1 and DG2, except for the
distribution generated by models build using BOW and SVM, with and without feature
selection stage. Indeed, the models based on SVM achieved the worst ranks both in DG1
and DG2. Table 6 shows the results of the Friedman test (F-Rank, in bold the model
with the best rank) and the Iman and Davenport test’s p-value carried out considering
DG4. Since the null hypothesis of statistical equivalence has been rejected, we carried
out also the Holm post hoc procedure, considering BOW PAC as control model. As
shown in the Table 7, the null hypothesis of statistical equivalence has been rejected
for BOW PAC 20000 and BOW MLP 20000, whereas the other models of DG4 result
to be statistically equivalent to BOW PAC. Among them, only BOW CNB 20000 is the
one generated considering a reduced vocabulary composed by 20,000 terms. For all the
remaining models, the feature selection stage led to a decrease of the performance, in
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Table 5.: Results of the Holm post hoc procedures on the weight-averaged F1-measure
computed on DG1, DG2 and DG3.

Group i Model p-value α/i Null hypothesis

DG1
3 BOW SVM 0.003 0.017 reject
2 BOW CNB 0.245 0.025 not reject
1 BOW MLP 0.462 0.050 not reject

DG2
3 BOW SVM 20000 0.000 0.017 reject
2 BOW PAC 20000 0.001 0.025 reject
1 BOW MLP 20000 0.540 0.050 not reject

DG3

4 Word2Vec CNN 0.0000 0.013 reject
3 FastText CNN 0.0000 0.017 reject
2 Word2Vec LSTM 0.0001 0.025 reject
1 FastText LSTM 0.0005 0.050 reject

terms of F1-measure, statistically confirmed by the tests.
Finally, we conducted the statistical tests on a distribution group, labeled as DG5,

composed by the distributions of weighted average values of F1-measure generated by
the best models in DG4 and the best model in DG5,namely BERT. Also the results
of these tests are shown in Tables 6 and 7. The tests demonstrate that, even though
BERT is the best method among those based on deep learning, it statistically performs
worse than the best model based on BOW for text representation and classical machine
learning classifiers, namely BOW PAC. As expected, the remaining models of DG5 are
statistically equivalent to BOW PAC.

Table 6.: Results of the Friedman (F-Rank) and of the Iman and Davenport (p-value) tests
on the weighted average values of F1-measure computed on DG4 and DG5. The best model
per DG is denoted in bold.

Group Model F-Rank p-value Null hypotesis

DG4

BOW CNB 2.40

0.000 reject

BOW PAC 2.38
BOW MLP 2.45

BOW CNB 20000 3.63
BOW PAC 20000 6.00
BOW MLP 20000 4.15

DG5

BOW CNB 2.45

0.000 reject
BOW PAC 2.35
BOW MLP 2.45

BOW CNB 20000 3.60
BERT 4.15

16



Table 7.: Results of the Holm post hoc procedures on the weight-averaged F1-measure
computed on DG4 and DG5.

Group i Model p-value α/i Null hypothesis

DG4

5 BOW PAC 20000 0.000 0.010 reject
4 BOW MLP 20000 0.003 0.013 reject
3 BOW CNB 20000 0.035 0.017 not reject
2 BOW MLP 0.899 0.025 not reject
1 BOW CNB 0.966 0.050 not reject

DG5

4 BERT 0.0003 0.013 reject
3 BOW CNB 20000 0.0124 0.017 reject
2 BOW MLP 0.8410 0.025 not reject
1 BOW CNB 0.8410 0.050 not reject
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Figure 3.: Average values of the F1-measures for the 3 major topics less represented
(reported in %).

5.4. Per-Class Performance Analysis

For the sake of brevity, in the following we discuss the capability of each model of
recognizing the three minority classes, namely major topic 14 (C. Development and
Housing Issue), major topic 18 (Foreign Trade), and major topic 23 (Cultural Policy
Issues). However, on a web repository16, we show for each major topic the average
values of the Precision, Recall and F1-measure associated to each text classification
model.

In Figure 3, we show for the three minority classes the average values of the F1-
measure associated to each text classification model.

The plots highlight that the models based on LSTM cannot recognize at all doc-
uments belonging to major topic 18 and major topic 23. However, the classification
models based on CNN manage to recognize some of the documents belonging to major
topic 18 and major topic 23, even if with average values of F1-measure lower than

16https://bit.ly/39HP2ss
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the models based on BOW representation and classical machine learning classifiers.
Finally, it is worth to notice that BERT is not able recognize the document belonging
to major topic 18 whereas its level of F1 measure is very close to that of the models
based on BOW representation and classical machine learning classifiers. As regards the
documents belonging to major topic 23, they are scarcely recognized by BERT.

Overall, in most of cases, the values of F1-measure associated to deep learning-
based models are lower than the ones associated with the comparison models. As
regards the models based on BOW representation and classical machine learning clas-
sifiers, all but BOW SVM 20000, achieve an F1-measure higher than 50% on major
topic 14, where the best F1-measure, equal to 66%, is achieved to BOW CNB and
BOW CNB 20000. On major topic 18 the best value of F1-measure, equal to 34%, is
achieved by BOW CNB. Finally, on major topic 23 the best F1-measure, equal to 48%,
is achieved by BOW CNB 20000. In conclusion, we can state that all models still have
difficulties in recognizing major topic 18, which is the less represented major topics.
However, major topic 14 is almost well recognized by most of the models based on
BOW representation and classical machine learning classifiers. Finally, major topic 23
is enough well recognized by only BOW CNB 20000.

On the basis of the analysis carried out in this Section, the BOW CNB 20000 text
classification model achieves the highest values of the average F1-measure for the two
of the three minority major topics in the dataset and, in terms of weighted average F1-
measure, it is statistically equivalent to the best performing model, namely BOW PAC.
Thus, we decided to adopt it as default text classification method in our QTIS Web
application. For the sake of completeness, we show in Table 8 the average values of
Precision, Recall and F1-measure, per major topic, associated to the BOW CNB 20000.

Table 8.: Per-class average scores of BOW CNB 20000. Precision, Recall and F1-measure
are reported in %

Code Major Topics
CV Scores for Classes

Precision Recall F1-measure

1 Domestic Microeconomic Issues 58.4 (±6.1) 66.0 (±6.2) 61.9 (±5.9)
2 Civil Right, Minority Issues, and Civil Liberties 67.4 (±17.4) 27.7 (±10.7) 38.4 (±11.6)
3 Health 83.3 (±4.8) 90.8 (±4.5) 86.8 (±4.0)
4 Agriculture 77.9 (±6.6) 88.8 (±7.7) 82.9 (±6.3)
5 Labour and Employment 65.5 (±7.2) 65.2 (±6.8) 65.2 (±6.2)
6 Education 72.9 (±6.3) 95.8 (±3.4) 82.6 (±4.1)
7 Environment 68.6 (±4.0) 86.9 (±7.3) 76.5 (±4.0)
8 Energy 73.7 (±11.7) 78.1 (±16.5) 75.5 (±13.3)
9 Immigration 75.0 (±6.8) 79.6 (±9.7) 77.0 (±6.9)

10 Transportation 79.0 (±4.3) 92.2 (±3.2) 85.0 (±3.0)
12 Low and Crime 71.5 (±3.9) 87.1 (±4.0) 78.5 (±2.1)
13 Welfare 83.3 (±16.1) 33.6 (±15.6) 45.5 (±16.7)
14 C. Development and Housing Issue 83.8 (±14.3) 58.6 (±20.6) 66.4 (±17.3)
15 Banking, Finance, and Domestic Commerce 68.7 (±7.4) 48.5 (±5.9) 56.7 (±5.5)
16 Defence 76.0 (±15.4) 52.0 (±10.9) 61.0 (±10.5)
17 Space, Science, Technology, and Communications 73.2 (±11.4) 64.5 (±13.1) 67.9 (±10.4)
18 Foreign Trade 50.0 (±48.7) 17.9 (±16.7) 26.0 (±24.4)
19 International Affairs 68.7 (±8.9) 62.7 (±8.1) 65.2 (±6.8)
20 Government Operations 67.9 (±7.8) 51.0 (±8.8) 58.0 (±7.7)
21 Public Lands and Water Management 71.4 (±14.2) 53.1 (±13.2) 59.8 (±11.6)
23 Cultural Policy Issues 78.3 (±40.9) 38.8 (±27.9) 49.6 (±30.6)
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6. The QTIS Web application

In this Section we discuss the design, implementation and testing of the QTIS Web
application used to classify new PQs into CAP topics. This application is designed
and implemented as a microservices architecture (Sec. 6.1) and includes all the text
classification models based on BOWrepresentation and classical machine learning clas-
sifiers. Then, we discuss the performance of the default text classification models,
namely BOW CNB 20000, on a previously unseen dataset (Sec. 6.2).

6.1. Design and Implementation of the QTIS Web application

In this Section, we argue about the design and implementation stage that we carried
out for developing and QTIS Web application17. First, we discuss the main functional
requirements that we have identified. Then, we discuss the application architecture
and the main technologies that we adopted to implement it.

6.1.0.1. Application requirements. We identified two main actors that can inter-
act with the QTIS Web application, namely the CAP Researcher (CAPR) and the
Data Scientist (DS) users. Each user has a different scope. The CAPR is allowed to
upload a set of PQs and to ask to the application to associate to each PQ a code, which
describes a specific major topic, as shown in Tab. 1. The DS is allowed to create and
train new text classification models. After training, the new model will be embedded
into the application and may be selected by the CAPR to classify each text of PQ into
a specific major topic. Moreover, the DS user also acts as system administrator.

In details, the main functionalities offered to the CAPR user are:
• to upload a set of unlabeled PQs;
• to select a text classification model, from a list of pre-loaded and pre-trained

models;
• for each uploaded PQ, to estimate the code which describes a specific major

topic;
• to generate a report which resumes the text classification outcomes. Specifically,

a table is generated containing a record for each uploaded PQ text. Each record
includes the PQ text and the corresponding estimated code;
• to export the report.

The main functionalities offered to the DS user are:
• to upload a set of labeled PQs, containing, for each PQ, the actual code associ-

ated to a specific major topic;
• to train a new text classification model, using the uploaded set of labeled PQs;
• to tune the parameters to train a new text classification model, which include

the text representation and the specific algorithm for learning the classification
model;
• to evaluate the performance of the trained classification model, using different

metrics (see Sec. 5.2 for more details);
• to add the trained classification model to the list of models available for being

used by the CAPR user.

17The QTIS web application will be publicly available upon acceptance.
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Figure 4.: Multi-tier Architecture of the QTIS Web application.

6.1.0.2. Application architecture. The QTIS Web application has been designed
and developed as an event-driven infrastructure, built on REST microservices (Neu-
mann, Laranjeiro, & Bernardino, 2018). This architectural style has been chosen be-
cause of the following advantages:
• client’s access to RESTful API services is independent of client type and encod-

ing, e.g., web application, mobile app, command line tools, etc.;
• loose coupling of the presentation layer and processing layer on the server;
• decomposition of the processing layer into several loosely-coupled and indepen-

dently deployable services;
• better fault isolation w.r.t. classical tree-tiers applications
• high scalability of the different services.

Figure 4 shows the multi-tier architecture that we adopted for developing a proto-
type of the QTIS Web application.

In the following we briefly describe each layer:
• Interface Access layer: represents the users interface for accessing REST services.

Two main services are offered to the web clients, namely i) the service for esti-
mating the major topics of a collection of PQ documents (CAPR user) and ii)
the service for training a new text categorization model, exploiting a collection
of labeled PQ documents (DS user).
• REST APIs layer: is in charge of publishing the API REST endpoints to submit

the requests to the processing layer.
• Messaging layer: stores both the requests coming from the Interface Access layer

through the REST APIs layer and the replies to the requests provided by the
underlying processing layer. It decouples the exchange of data between the web
client, e.g., the REST APIs layer and the processing, through an in-memory data
structure storage, used as a message broker.
• Processing layer: is in charge of actually executing the tasks for providing answers

to the requests, namely to classify the PQ documents or to train a new text
classification model.

For the implementation of the QTIS Web application we exploited a set of state-of-
the-art IT technologies. We mainly exploited the Python ecosystem, including Flask18

for implementing the Interface Access (along with HTML5, CSS and Javascript) and
the REST API layers. The scikit-learn machine learning Python library was adopted
for developing the Processing layer. Finally, Redis19, an open source (BSD licensed)
and in-memory data structure store, was used as cache and message broker.

18http://flask.palletsprojects.com
19http://redis.io/
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6.2. Testing of the QTIS Web application

The QTIS Web application, together with the trained BOW CNB 20000 text classi-
fication model, has been tested on a previously unseen collection of PQs. This test
dataset includes 222 observations collected from 1 July 2019 to 8 May 2020. The tar-
get classes have been manually identified, and their distribution among the 21 major
topics are reported in Table 9 (column Count). The different major topics are strongly
unbalanced: as in the training dataset, the three most numerous major topics (Law
and Crime, Government Operations, and Transportation) account for more than 40%
of the documents.

As reported in Table 9, the performance of the BOW CNB 20000 model on the test
dataset, namely 74% in Precision, 73% in Recall, and 71% in F1-measure, are close
to the corresponding average performance of the same model in the cross-validation
analysis, reported in Table 3. Moreover, the overall accuracy, namely the percentage
of correctly recognized PQs, is equal to 73%.

With respect to the single major topics, the BOW CNB 20000 model achieved com-
pletely satisfactory results (all metrics equal to 100%) for the major topics 6 (Edu-
cation) and 17 (Space, Science, Technology, and Communication) and it is extremely
reliable (F1-measure ≥ 80%) also for the major topics 3 (Health), 8 (Energy), 9 (Im-
migration), 10 (Transportation) and 12 (Law and Crime). By contrast, the least ad-
equate results (F1-measure ≤ 50%) were achieved for the the major topics 14 (C.
Development and Housing Issue), 15 (Banking, Finance, and Domestic Commerce),
18 (Foreign Trade), 21 (Public Lands) and 23 (Cultural Policy Issues). These results
are broadly consistent with those achieved by the BOW CNB 20000 model in the ex-
perimental campaign (see Table 8). In general there is a positive relation between the
popularity of a the major topic and the performance of the application on the test
set: with respect to the three most popular the major topics, the performance scores
are higher than overall weighted average performance with the exception of the class
20 (Government Operations), whose F1-measure is limited by a Recall score as low as
45%. Figure 5 shows that the BOW CNB 20000 model is especially prone to commit a
few types of mistakes. There are 5 instances in which questions falling within the major
topic 15 (Banking, Finance and Domestic Commerce) have been predicted as pertain-
ing to the major topic 1 (Domestic Macroeconomic Issues). The opposite situation, i.e.
questions falling in the major topic 1 but predicted in the major topic 15, is still quite
common, having occurred in three cases. The difficulty to discriminate between these
two major topics is not surprising because both major topics concern economic issues,
although framed in a different perspective: however it is worth noticing that CAP
scholars sometimes collapse the two major topics in a single “economic” dimension
(Borghetto & Russo, 2018), containing the severity of this problem. Finally, despite
the acceptable level of recognition achieve by BOW CNB 20000 in cross-validation
(average F1-measure for class 14 = 66%), class 14 (C. Development and Housing Is-
sue), represented in the test set by 4 PQs, is never correctly recognized and confused
with class 1 (Domestic Macroeconomics Issues), 7 (Environment), 10 (Transportation)
and 20 (Government Operation), respectively. It is worth noting that all those ques-
tions concerned rather new policy instruments to foster the economic development of
disadvantaged geographical areas, namely the ”National Strategy for Inland Areas”,
the ”National plan for the social and cultural regeneration of degraded urban areas”
and the ”Institutional Contracts of Development”. The text of the questions included
several references to transport infrastructures, environmental or economic issues and
the capacity of the government to manage European funds which, together with the
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scarcity of references to these policy instruments in the training dataset, has probably
reduced the capacity of the application to correctly label these questions.

Table 9.: Per-class PQs count and performance evaluation of the BOW CNB 20000 text
classifier on the test dataset. Precision, Recall and F1-measure are reported in %.

Code Major Topic Precision Recall F1-measure Count

1 Domestic Microeconomic Issues 57.9 64.7 61.1 17
2 Civil Right, Minority Issues, and Civil Liberties 100.0 50.0 66.7 4
3 Health 78.9 100.0 88.2 15
4 Agriculture 71.40 83.3 76.9 6
5 Labour and Employment 57.1 100.0 72.7 4
6 Education 100.0 100.0 100.0 13
7 Environment 62.5 71.4 66.7 14
8 Energy 66.7 100.0 80.0 2
9 Immigration 72.7 100.0 84.2 8
10 Transportation 76.9 90.9 83.3 33
12 Low and Crime 82.8 96.0 88.9 25
13 Welfare 100.0 40.0 57.1 5
14 C. Development and Housing Issue 0.0 0.0 0.0 4
15 Banking, Finance, and Domestic Commerce 46.7 46.7 46.7 15
16 Defence 100.0 50.0 66.7 2
17 Space, Science, Technology, and Communications 100.0 100.0 100.0 1
18 Foreign Trade 100.0 25.0 40.0 4
19 International Affairs 76.9 71.4 74.1 14
20 Government Operations 73.7 45.2 56.0 31
21 Public Lands and Water Management 25.0 100.0 40.0 1
23 Cultural Policy Issues 100.0 25.0 40.0 4

Overall (weighted average) 74.0 73.0 71.0 222

7. Conclusions and future work

In this work, we have presented an Intelligent System, based on text classification
models, for the automatic categorization of political documents. Specifically, we have
focused our attention on documents containing the Parliamentary Questions, for oral
reply, collected during the weekly Question Time at the Chamber of Deputies of the
Italian Republic. We have described the design and the implementation of a web
application, that we named QTIS, developed exploiting some of the most recent IT
software architecture and technologies, such as Rest microservices and libraries of the
Python ecosystem.

In order to select the most effective text classification models to embed as engine
of the proposed Intelligent Systems, we have carried our an intensive experimental
comparison campaign. Indeed, we have compared the performance achieved, in terms
of accuracy, Precision, Recall and F1-measure, of 12 text classification models. Specifi-
cally, we have considered 4 models based on BOW for text representation and classical
machine learning classifiers. Moreover, we considered also the versions of the afore-
mentioned 5 models that exploits a reduced version of the terms vocabulary, namely
that embeds a feature selection stage in the training process. Finally, we also experi-
mented 4 methods based on consolidated deep-learning techniques, namely based on
WE for text representation and deep neural networks as classifiers (CNN, LSTM and
transformer-based models).
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1

Figure 5.: Confusion matrix of the BOW CNB 20000 text classifier on the test dataset
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Results have shown that text classification models based on deep-learning techniques
have achieved the worst text classification performance. These results confirmed that
deep-learning models are not suitable for approaching problems similar to ones dis-
cussed in this work, in which the dimension of the training set is limited to a few
thousands of documents. In such a situation it is impossible to estimate all the pa-
rameters of the deep neural networks. Within the field of political science recursive
neural networks have been successfully applied, albeit to a different type of problem
(Iyyer et al., 2014)20 Despite their limited performance in this occasion, classifiers
based on deep-learning have been also integrated in the QTIS Web application for
their increasing popularity and for giving the possibility to the user to re-train them
if larger datasets will be available. As regards the other text classification models, we
have statistically demonstrated that models based on SVM are worse than the ones
based on CNB, PAC and MLP. Moreover, the adoption of a reduced set of terms in the
vocabulary have led to a statistically appreciable reduction of the performance of the
text classification models, except for the model based on Bayesian Classifiers, namely
BOW CNB 20000.

Although we have integrated in the proposed QTIS Web application all the 9 mod-
els based on BOW for text representation and classical machine learning classifiers, we
select the BOW CNB 20000 as default models. Adopting this model, we have experi-
mented the QTIS Web application for the categorization of a collection of previously
unseen PQs documents, spanning from July 2019 to May 2020. Political scientists,
which have manually analyzed the results of the automatic categorization, have con-
firmed that the models correctly classified up to 73% of the documents. However, it is
worth noting that some major topics can suffer from being correctly recognized, due
to the fact that they are underrepresented in the dataset that we adopted for training
the text classification models

As the QTIS Web application has produced satisfactory results, the next step will
be to utilize them to update the QT dataset in preparation for its next official release.
With regard to this purpose, future works will benefit from the cooperation between
human coders and the QTIS Web application to achieve increasingly reliable results.
To begin with, the new 222 questions that have been manually labelled to evaluate
the performance of the BOW CNB 20000 text classifier will be added to the original
dataset. At the end of the current legislative term, which is planned for March 2023
except in case of early elections, we expect to have about 800 new questions to analyze.
We plan to collect and label them with the support of QTIS Web application, which
will be re-trained for the occasion with a new training dataset including the 222
questions used here as test dataset.

In future research activities, we envision to test the capability of the QTIS Web
application, trained with QT questions, to correctly predict policy issues in a differ-
ent type of political documents, namely PQs for written reply. Within the Italian
case, parliamentary questions for written reply have been analyzed so far only with
a dictionary-based approach because they are too numerous to be manually labelled
(in an average 5 years legislative term about 40,000 of such questions are asked in
the Italian Chamber of Deputies). Even though previous attempts to label political
texts with applications trained with different data yielded unsatisfactory results, the
similarity between the structure and content of questions for written reply and QT
questions makes this experiment worth trying. Moreover, we plan to train innovative

20It is worth specifying that the study conducted by Iyyer et al. (2014) applied recursive neural network

framework to identify political ideology instead of analysing political documents.
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word embedding representations for the italian language, such as regularized word
embeddings (Novotný, Ayetiran, Štefánik, & Sojka, 2020), to study their classifica-
tion performance on our models, despite their reported slowdowns at inference time.
We also plan to exploit graph neural networks on top of BERT models as in (Lin
et al., 2021) to assess the effectiveness improvements and the efficiency costs of such
solutions.

As a final discussion item, we argue that, even though we have designed and imple-
mented QTIS Web application for the categorization of the Italian QT, and therefore
we have focused our experimental campaign using such documents, the application
can be used also for carrying out a new text categorization analysis considering other
political documents, such as additional types of parliamentary questions (PQs for
written reply, PQs in committees, interpellations) and a wide range of different texts
produced in parliament (bills, laws, investiture speeches, debates). This is a substan-
tial improvement, as political scientists have the possibility to train and integrate new
text classification models, providing any type of labeled texts as training set. However,
the current version of QTIS Web application does not allow to train text classifica-
tion models for texts written not in Italian. This is due to the fact that data text
pre-processing steps have been implemented using tools for the Italian language. Fur-
ther future extensions of QTIS Web application may include the support of multiple
languages
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