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Abstract: Human-relevant three-dimensional (3D) models of cerebral tissue can be invaluable tools to
boost our understanding of the cellular mechanisms underlying brain pathophysiology. Nowadays,
the accessibility, isolation and harvesting of human neural cells represents a bottleneck for obtaining
reproducible and accurate models and gaining insights in the fields of oncology, neurodegenerative
diseases and toxicology. In this scenario, given their low cost, ease of culture and reproducibility,
neural cell lines constitute a key tool for developing usable and reliable models of the human brain.
Here, we review the most recent advances in 3D constructs laden with neural cell lines, highlighting
their advantages and limitations and their possible future applications.

Keywords: in vitro advanced brain models; neuroblastoma cell lines; glioblastoma cell lines

1. Introduction

Despite considerable efforts, we still have a very limited understanding of how the
brain works when it is healthy or sick. Non-invasive imaging methods performed in
humans lack the spatial and temporal resolution to probe its microscopic anatomy and
function. Thus, a simplified and accessible model of the human brain is urgently needed.

Although animal models have provided a significant boost to neuroscience research
and are still widely used, their limits have been extensively demonstrated. In fact, besides
the ethical issues, studies have shown that the results of animal experiments often fail
to translate into human clinical trials [1]. Moreover, microscopic studies of post-mortem
human brains have revealed neural structures, enhanced wiring, and forms of connectivity
among nerve cells not found in other animals [2–4]. In this scenario, it is crucial to develop
more reproducible models, exploiting human cells for facilitating the translatability of the
results obtained to humans [5]. Transitioning to non-animal models is also in compliance
with the 3R (Replacement, Reduction and Refinement) principles [6].

Human neural cells cultured in highly controllable and monitorable environments
have been widely used for investigating neurotoxicity, neuroprotection, drug screening
and therapeutic assessment for both brain tumors and neurodegenerative diseases, e.g.,
Parkinson’s and Alzheimer’s [7–9]. Possible sources of human cells are primary neurons,
immortalized neural stem cells from embryonic stem cells and cell lines. Adult neural stem
or progenitor cells have also been used to investigate neurodegenerative and neurological
disorders, brain cancer and ischemia in vitro [10–12]. However, primary neurons from
human brains are often prohibitively expensive, mainly because of a lack of accessibility and
the costs associated with harvesting and isolation. Indeed, in many countries, brain tissue is
practically unobtainable because of cultural issues [13], and there are challenges regarding
where it can be collected, obtaining ethical approval and access to donors. Moreover,
inter-individual variability among donors limits the standardization of procedures for
their characterization and culture. Furthermore, primary neurons do not undergo cellular
division, limiting the number of experiments that can be performed [14]. On the other
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hand, embryonic or induced pluripotent stem cells can be differentiated into neural cells.
Although these cells offer an unprecedented opportunity for investigating the pathogenesis
of neurodegenerative disorders, culturing and maintaining stem cells is, again, highly
expensive and technically challenging. Indeed, culture and environmental conditions can
alter their capacity for self-renewal and differentiation [15]. As an alternative to primary
or stem cells, researchers can also exploit established cell lines, which have important
benefits. They have lower costs, can be cultured more easily than primary neurons and
they can expand almost indefinitely. Hence, an (almost) unlimited number of cells are
available, as long as they are not induced to differentiate, allowing for experiments with
several duplicates and many different conditions [14]. Furthermore, cell lines are not beset
with the ethical issues associated with culturing human primary neurons and stem cells or
with experiments involving animals [16,17]. However, human neural cell lines often have
malignant origins, whose genetic drifts may hamper their physiology and integrity [14].

Since soma are unrealistically flattened and neuronal axonal and dendritic outgrowth
cannot occur in all directions in traditional monolayers [18], advanced models have been
developed where cellular protrusions arranged in space are characterized by more physio-
logical neural dynamics [19]. In particular, brain or cerebral organoids, which are derived
from human (usually pluripotent) stem cells, can mimic the 3D (three-dimensional) struc-
ture and salient functional features of the brain [20–22]. However, despite their use for
exploring developmental diseases and neurodegenerative disorders, brain organoids still
suffer from the so-called ‘batch syndrome’ (variability from batch to batch), thus they lack
reproducibility in generating cellular diversity and producing mature traits [23]. Moreover,
their physiological relevance and translational potential is often hindered by non-viable
cores, probably due to limitations in nutrient diffusion [23–25].

Three-dimensional constructs have also been generated from neural cell lines and may
provide a strategy for developing standardized models with better physiological relevance
compared with traditional 2D (two-dimensional) cultures. In this context, after an overview
of the neural cell lines commonly used in the literature, we describe recent approaches
exploiting cell lines for generating 3D models of brain tissue. Given the legislative and
public urge to reduce the use of animals in scientific experiments, we suggest their re-
evaluation in humane and human-relevant research, particularly for regulatory applications
where standardized and reproducible inter-laboratory outcomes are crucial.

2. Search Methodology

To identify articles dealing with three-dimensional in vitro human-relevant models
of brain tissue involving cell lines, we first conducted an analysis of the existing scientific
literature. Web of Science was used with the query: (((neur* OR brain OR cereb*) AND
model*) AND (neurosphere* OR 3d OR three-dimension*) AND human AND “cell* line*”).
Only studies published from 2000 to 2022 were selected, thus identifying 304 original
articles and 37 review papers.

Oncology (18%) and science technology (18%) are the research areas where cellular
models of human brain tissue are mainly involved (Figure 1). Scientific efforts are mostly
focused on improving cell culture methods (i.e., protocols for scaffold-based or scaffold-free
spheroid cultures, novel technologies for monitoring cell parameters, imaging techniques
suitable for cell cultures and genetic analyses of in vitro cells) and on applying such tech-
nologies to drug testing, the analysis of signaling pathways and subcellular mechanisms
crucial in cancer development.

After this general inspection, a more precise analysis was carried out. Each abstract
was read and assessed for inclusion according to whether its focus was on 3D models
of brain tissue or neural tissue generated from immortalized human cell lines. Thus, a
consistent number of papers was discarded because they focused on non-human models
(e.g., murine, canine or porcine models), in vivo models, models developed with induced
pluripotent stem cells and primary cells, or papers describing models of tissues different
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from the brain (e.g., colorectal, breast and pancreatic cancer models). Thus, a total of
96 papers (85 original articles and 11 review papers) was selected.
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3. Cell Lines in 3D Culture

Most of the cell lines used in 3D in vitro models in neuroscience research derive from
tumor tissues, in particular glioblastoma and neuroblastoma. In the following paragraphs,
we describe the studies identified with the literature search in which 3D in vitro mod-
els of brain tissue have been developed using cell lines derived from tumors and from
healthy tissues.

3.1. Cancer Cell Lines

The cancer cell lines most exploited in cellular neuroscience research derive from glioblas-
toma (52% of all papers) and neuroblastoma (35%). However, 3D models of brain tissue have
also been generated using cells from embryonal carcinoma and medulloblastoma.

3.1.1. Glioblastoma Cell Lines

Glioblastoma cell lines are used in 3D in vitro constructs for modeling gliomas, in
particular glioblastoma multiforme (GBM), the most common malignant brain tumor with
the poorest prognosis and survival [26,27]. Most of these 3D in vitro models are focused
on the development of new therapies. However, cancer treatments and the possibility of
unravelling cellular and subcellular mechanisms associated with cancer are also assessed
by culturing 3D glioblastoma models. The most common glioblastoma cell lines used
for 3D in vitro constructs are U-87MG [28], U-251MG, U-373MG [29,30], A 172 [28] and
T-98G [31]. Table 1 summarizes their origin, gender, and the age of the sample from which
the cell lines were derived, the cell morphology and the first ever citation, while a general
overview of the applications employing glioblastoma cell lines in 3D in vitro models is
reported in Table 2.
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Table 1. Characteristics of the most common glioblastoma cell lines and year first cited.

Cell Line Origin Gender and Age Morphology [Ref.], Year

U-87MG Malignant glioma
(likely glioblastoma) Male, unspecified Epithelial [28], 1968

U-251MG Glioblastoma-
astrocytoma Male, 75 years old Pleomorphic/

astrocytoid [29], 1984

U-373MG Glioblastoma-
astrocytoma Male, 75 years old Pleomorphic/astrocytoid [30], 1989

T-98G Glioblastoma
multiforme Male, 61 years old Fibroblast [31], 1979

A-172 Glioblastoma Male, 53 years old Fibroblast [32], 1973

Table 2. Three-dimensional models generated with glioblastoma cell lines.
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Self-assembled
spheroids in

agarose-coated 96-well
plates treated with

increasing
concentrations of

temozolomide

Spheroid growth influenced
by administered dose [33], 2015

Self-assembled
spheroids in

agarose-coated 96-well
plates treated with an

inhibitor of the NOTCH
signaling pathway

Reduced resistance of
treated cells within

spheroids to
chemotherapeutic agents

[34], 2016

Gene expression of
spheroids obtained in
low attachment wells

compared with
2D controls

Upregulated gene
expression of the inspected
molecular characteristics in

the 3D spheroid models
compared with the

2D model

[35], 2021

Self-assembled
spheroids laden with

wild-type and cells with
increased malignancy

implanted in
collagen-I gels.

Differences in the cell
proliferation between the
wild-type and the more
malignant ones due to

lower cell adhesion

[36] 2007

Spheroids with
PEG-based hydrogel

matrix with
characteristics
mimicking the

physiological and
glioblastoma-altered

properties of
in vivo ECM

Reduced cell proliferation
and spreading on

stiffer matrices
[37] 2014
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Table 2. Cont.
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monocytic cells

compared to 2D controls
for cancer drug

sensitivity

Optimization of the
bio-printing procedure to

promote a tumor
microenvironment; 3D
showed higher drug
resistance than 2D

[38] 2020

Co-culture of
glioblastoma and

endothelial-like cells in
scaffolds fabricated with
two-photon lithography,

with microtubes
resembling capillaries

Development of a realistic
and 1:1 scale system

mimicking the blood–brain
barrier with good adhesion

and covering by both
cell types

[39] 2018

Bioprinting of cell-laden
3D structures with a

bioink made of fibrin,
alginate and genipin

Good viability and
tendency to form spheroids

resulting in a more
physiologically relevant

glioblastoma model

[40] 2019
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Multicellular spheroids
supplemented with B27,
human basic fibroblast
and epidermal growth

factors, treated with
EGCG for evaluating

inhibition of
cell stemness

Efficacy of the EGCG
treatment in inhibiting cell
viability and migration and

inducing cell apoptosis,
hence of potential in

assessing
glioblastoma therapy

[41] 2015

U
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,T
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W
47

3 Compact multicellular
spheroids formed with

type-I collagen colloidal
solutions (with

increasing collagen
concentration from 0 to

80 mg mL−1)

Development of a cheap
and accessible method for

building multicellular
spheroids, usable for drug
screening and glioblastoma

cell infiltration

[42] 2022
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Spheroids obtained
encapsulating cells in

alginate, with
concentration of 0.25 or
1% weight/volume and

exposed to different
toxins for 24 hr for
testing cell viability

Higher sensitiveness to the
toxins of the cells within the
soft matrices than those in
the stiffer ones, suggesting
a role of matrix stiffness in

neurotoxicity regulation

[43] 2014

PEG: poly(ethylene-glycol); ECM: extracellular matrix; EGCG: epigallocatechin gallate.

As detailed in Table 2, glioblastoma cell lines have been widely used for generating
spheroids, even in co-cultures, mainly for oncological applications, e.g., for evaluating the
effects of chemotherapeutic agents at the microscale [33,34] and for better characterizing
the effects of microenvironment on cell invasive behavior [37]. However, attempts at
exploiting such cells in 3D environments for toxicological applications are also present in
the literature [43].
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3.1.2. Neuroblastoma Cell Lines

Neuroblastoma is the most common extracranial solid tumor observed in childhood
(less than five years old) [44,45], originating from precursor cells of the neural crest. Table 3
summarizes the origin, gender and age of the sample from which cell lines were derived,
as well as salient information about cell morphology and their first introduction, while
Table 4 recaps the main findings for neuroblastoma-derived cell lines. Where 3D models
are concerned, the most widely used neuroblastoma-derived cell line is the SH-SY5Y cell
line (68%, versus IMR-32 (24%), HTLA-230 (4%) and Kelly (4%)).

Table 3. Characteristics of neuroblastoma-derived cell lines and year first cited.

Cell Line Origin Gender and
Age Morphology [Ref.], Year

SH-SY5Y

Thrice cloned
subline of the

neuroblastoma
cell line

SK-N-SH

Female, 4 years
old Neuroblast [46], 1973

IMR-32 Neuroblastoma Male, 13 months
old

Neuroblast;
fibroblast [47], 1970

HTLA-230 Neuroblastoma Male, 11 months
old

Round to
bi-polar

morphology
[48], 1992

Kelly Neuroblastoma Female, 1 year
old

Round to
fusiform with
polar neurite

processes

[49], 1982

Table 4. Three-dimensional models involving neuroblastoma cell lines.
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Cells grown either on Matrigel or ECM
scaffolds, differentiated with retinoic acid

3D models of the alpha-synuclein
pathology associated with PD [50–52], 2016, 2019, 2022

RA-differentiated SH-SY5Y cells grown in
silk-hydrogel or Matrigel, exposed

to neurotoxicants

Model exploitable for studying the
pathogenesis of PD [53], 2022

Cells grown on 3D nanoscaffold
fabricated with polyacrylonitrile and
Jeffamine® doped polyacrylonitrile

Improved survival, growth and sensitivity
to treatments mimicking PD features [54], 2020

Wild type and tau-mutated cells seeded
on well plates, placed on a shaker to

generate spheroids

Salient features of AD at the microscale
recapitulated better by the spheroid

model than 2D cultures
[55,56], 2010, 2012

3D printed structures laden with cells in
alginate and gelatin, using

commercial printer

Good cell viability, maintenance of the 3D
structure and spatial organization [57], 2019

Conductive and porous scaffolds
fabricated by electro-polymerization
using carbon nanotubes and PEDOT

Good biocompatibility shown by the
improved tubulin expression on

conductive scaffolds
[58], 2020

Bacterial nanocellulose scaffolds coated
with collagen I for promoting cell

adhesion and differentiation

Functional action potentials were
observed thanks to

electrophysiological recordings
[59], 2013
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Table 4. Cont.
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Collagen sponges (BIOPAD™) seeded
with cells for investigating the

neuroprotective effect of phytochemicals

Improved cell viability, upregulated
antioxidant and insulin-degrading

enzymes and reduced glutathione levels
[60], 2019

0.3 % w/v alginate beads, obtained via
syringe-pump-controlled extrusion from
15 to 27G needles, coated with 0.1% w/v

poly-L-ornithine or 0.3% w/v
hyaluronic acid

Suitability for CNS implantation and
delivery of therapeutic cells for the

treatment of neurodegenerative disorders
[61], 2022

3D bioprinting of cells with bioinks
composed of nanofibrils alginate and

single-walled carbon nanotubes

Conductive scaffold-promoted cell
differentiation (TUBB3 and

NESTIN expression)
[62], 2020

Cells seeded on scaffold generated by
two-photon lithography of

gelatin–methacryloyl and impregnated
with magnetoelectric NPs

Electrostimulation allowed cell
differentiation in the absence of chemical

factors (neurite outgrowth with
multipolar shape)

[63], 2020

O
nc
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og

y

Cells encapsulated in 2% w/v alginate
thanks to electrohydrodynamic jetting

and cultured for 4 weeks

Tissue maturation and higher cell viability,
metabolic activity and proliferation level

than cells cultured on TCP
[64], 2018

Generation of chitosan (CH)–graphene
oxide (GO) nanocomposite hydrogels

seeded with cells

Cell differentiation (extensive neurite
outgrowth) promoted by the

CH–GO hydrogels
[65], 2021

N
eu

ro
to

xi
ci

ty

3D hyaluronic acid-based hydro-scaffold
(BIOMIMESYS®) seeded with cells

Higher neuronal differentiation and lower
sensitivity to neurotoxic compounds with

respect to 2D cultures
[66], 2021

Microporous silk scaffolds coated with
poly-L-ornithine and laminin, seeded

with cells, encapsulated with collagen or
Matrigel, and exposed to

1-methyl-4-phenylpyridinium

During differentiation, reduced
proliferation and higher sensitivity to

neurotoxins in comparison with
2D cultures

[67], 2020

Cells encapsulated in 1 mg/mL collagen
gels obtained by casting in Petri dishes

and differentiated

Lower responsiveness of cells in 3D to
potassium-induced cell depolarization

with respect to 2D
[68], 2006

IM
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Cells in collagen-based porous scaffold.
Assessment of cell proliferation, viability

and spatial within the scaffolds

Precise manipulation of cells and ECM
components allowed by the 3D culture

system; environment more
physiologically similar to tumor tissue

[69], 2021

H
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A
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d
SH
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Y

5Y

O
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ol
og

y Cells suspended in alginate and manually
extruded for mimicking the extracellular
microenvironment experienced by tumor

cells in in vivo settings

Reduced sensitivity to imatinib
mesylate—a cytotoxic drug—with respect

to cells cultured in monolayer and
characteristics similar to the in vivo
immunophenotype of tumor cells

[70], 2019

PD: Parkinson’s disease; AD: Alzheimer’s disease; PEDOT: poly(3,4-ethylenedioxythiophene); ECM: extracellular
matrix; RA: retinoic acid; CNS: central nervous system; TCP: tissue culture plate; NP: nanoparticle.

As regards the applications, even for neuroblastoma cell lines, most of the efforts have
been directed towards characterizing the effects of the microenvironment on cell behavior,
e.g., in terms of proliferation, cell invasiveness and differentiation. However, it is interesting
to note that SH-SY5Y cells have been successfully exploited for neurodegenerative studies,
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and in particular Parkinson’s and Alzheimer’s diseases, accounting for 14% of the articles.
Indeed, they are usually chosen for their catecholaminergic (though not strictly dopamin-
ergic) neuronal properties [71], which the cells manifest after treatment with retinoic acid
(RA), a derivative of vitamin A and serum deprivation. It has also been demonstrated
that SH-SY5Y cells possess two distinct populations, an N-type which differentiates to
the neural lineage, and an S-type of substrate adherent cells which express characteristics
of glial cells [72]. SH-SY5Y cells have been characterized as neurosteroid-producing cells
expressing key steroidogenic enzymes, and were exploited for determining whether neu-
rosteroidogenesis may be an endogenous mechanism involved in the protection against
neurodegenerative processes [73]. Recently, Martin et al. [74] showed that this cell line
can express glutaminergic markers when supplemented with B-27, which widens its field
of application.

Once differentiated, SH-SY5Y cells show the formation of neural processes and func-
tional synapses, as well as the production of neuron-specific enzymes, neurotransmitters
and neurotransmitter receptors [68,75,76]. In addition, unlike other neural cell lines (e.g.,
the IMR-32), SH-SY5Y cells can develop a resting membrane potential and have been shown
to possess voltage gated calcium channels upon differentiation. Moreover, the expression
and localization of key molecules involved in the pathogenesis of Alzheimer’s disease has
been shown to be dramatically altered in fully differentiated SH-SY5Y cells [77].

3.1.3. Other Cancer Cell Lines

In addition to glioblastoma and neuroblastoma cell lines, 3D human brain models have
been generated using cells originating from embryonal carcinoma and medulloblastoma.
Human pluripotent embryonal carcinoma NTera2 (NT2) cells are widely used for in vitro
neurotoxicity studies thanks to their ability to differentiate into post-mitotic neurons after
treatment with RA [78,79]. NT2-laden spheroids differentiated with RA are known to
express neural markers, such as tubulin and synaptophysin [80]. NT2 cells were also
bioprinted, demonstrating their adhesion to fibrin gels [81].

The UW228-3 cell line was established from human posterior fossa medulloblas-
toma [82]. This line has been used in combination with human neural stem cells in ultra-low
cell attachment plates for generating spheroids, which are exploited as an assay to test
the effects of the cytotoxic drug etoposide. The spheroids comprise both cancer and stem
cells, allowing the optimization of drug delivery for brain tumors in a more physiologically
relevant model [83,84]. The Daoy cell line also derives from human medulloblastoma.
Neurospheres laden with Daoy cells were cultured and compared with 2D monolayers
grown on soft agar, revealing a higher expression of a protein related to cancer development
in the 3D constructs [85].

3.2. Cell Lines Derived from Healthy Tissues

Although the majority of cell lines identified by the literature search had tumor origins,
cell lines derived from healthy tissue can be used in 3D in vitro models of the human brain.
Among these, the Lund human mesencephalic (LUHMES) line, which originates from the
mesencephalon of a human subject, was established in 1998. The LHUMES neuron-like
immortalized cells have been extensively characterized as a robust neuronal model suitable
for neurodevelopmental studies, neurotoxicity and the modeling of brain diseases [86,87].
Indeed, they can be differentiated into dopaminergic neurons and thus are particularly
suitable for modeling Parkinson’s disease in vitro.

Neural Progenitor Cells (NPCs) have a self-renewal capability and can give rise
to healthy neural cell lineages. They can be obtained from iPSCs or derived directly
from brain tissues [88,89]. In the context of this review, we considered the immortalized
NPC lines because their reproducibility and proliferative potential can be exploited for
the standardization of culture protocols for regulatory or preclinical tests. Commercial
immortalized NPC lines employed in 3D neural in vitro models are ReNcell VM and
ReNcell CX, derived, respectively, from the ventral mesencephalic and cortical region of
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the developing human brain and capable of differentiating into neurons and glial cells after
the administration of growth factors.

Table 5 summarizes the studies where the above-mentioned cell lines derived from
healthy tissues were used for generating 3D in vitro models.

Table 5. Three-dimensional models with cell lines derived from healthy neural tissues.
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with differentiation medium
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(80 rpm). Treatment with different
NP concentrations

Alteration of cell physiology and
morphology of the spheroid surface

provoked by the NPs, with induction of
neurotoxic effects at the
highest concentrations

[91], 2019

3D constructs obtained by shaking
(80 rpm) followed by 24 h exposure

to rotenone

Recovery of ATP levels, mitochondria
functions and neurite outgrowth after

rotenone wash out showing good
functional recovery

[92], 2018
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Cells encapsulated in alginate and
Matrigel and bioprinted on microarray

chip platforms

Successful establishment of miniaturized
3D culture of cells in alginate–Matrigel
matrices useful for assessing toxicity

[93], 2018

Microarray chip-based platform for the
screening of the effect of 12 toxicants on

neuronal differentiation

Enhanced neurogenesis and decreased
astrocyte differentiation with the

combined treatment of RA and CHIR
[94], 2019
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Direct write printing of a conductive
polymer for the development of a 3D

electrical stimulation tool of cells
encapsulated within a conductive biogel

In situ differentiation of the NPCs into
neurons and neuroglial cells and

formation of tissue with high density and
mature neurons

[95], 2019
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Direct write printing of cells over a
supporting polysaccharide (alginate,

carboxymethyl-chitosan, and agarose)

In situ differentiation of NPCs to neurons
with synaptic connections and
spontaneous electrical activity

[96], 2016

NP: nanoparticle; RA: retinoic acid; CHIR: GSK3 inhibitor CHIR-99021; NPCs: neural progenitor cells.

4. Discussion

Over the last few decades, numerous studies have highlighted the superiority of 3D
cultures with respect to monolayers as they are able to better recapitulate the morphology
and architecture of tissues and cells in their native environment, both in physiological and
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diseases conditions. 3D systems based on human neural cell lines exhibit specific cellular
and molecular features which occur in vivo [71,97] and support the expression of typical
neural phenotypes and markers. Given their higher reproducibility with respect to primary
cells, neural cell lines are fundamental for the definition of a standard brain environment
useful for regulatory applications.

Such 3D models can be realized using both scaffold-less and scaffold-based strate-
gies [83,84]. The former typically exploits the predominance of cohesive forces with respect
to adhesion forces when cells are cultured on low attachment plates or in suspension
conditions (i.e., the hanging drop method or dynamic suspension culture with bioreactors
and orbital shakers) [84]. On the other hand, the scaffold-based strategy is usually obtained
through cell encapsulation in polymeric solutions which undergo gelation in cytocom-
patible conditions or through cell seeding and colonization of pre-formed scaffolds [98].
Scaffold-based constructs can be obtained either by casting or rapid prototyping methods
(e.g., bioprinting) [99,100]. Among the materials used to replicate a tissue 3D matrix, al-
ginate is widely used for its mild and rapid gelation in contact with aqueous solutions
containing divalent ions [101,102], enabling the formation of spheroids with controlled
shapes through the tuning of different bioprinting parameters, such as solution viscosity,
extrusion speed and needle dimension [102,103].

Several examples of alginate-based spheroids laden with the cell lines described in
this review can be found in the literature, in combination with different cell adhesive
materials such as gelatin and collagen [36,57,61,64,70,93]. Interestingly, some tests have
never been reported; for example there are no reports on SH-SY5Y differentiation in alginate-
based spheroids, although studies have been carried out in other 3D gels fabricated with
different methods and geometries. Some examples include collagen gels [68], collagen-
coated nanocellulose [104] or silk scaffolds [53], hyaluronic acid scaffolds [66] and chitosan–
graphene oxide nanocomposite hydrogels [65]. These methods, materials and geometries
could enable the creation of more physiologically relevant models, because they allow cells
to grow and connect to each other directly in 3D.

Although the results obtained with the generation of spheroids are promising, more
systematic studies are still needed to exploit their versatility. For instance, 3D constructs
may differ significantly in terms of mechanical and transport properties. This is mainly
due to the high variability of the biomaterials used for fabricating them. Matrigel- and
ECM-derived matrices are known to suffer from ‘batch syndrome’; on the other hand,
alginate is more reproducible, but it is available in different molecular weights, and the
protocols for obtaining spheroids involve different concentrations and crosslinking methods.
Moreover, as alginate is a marine-plant-derived material, it lacks cell binding sites such
as RGD motifs. For this reason, some attempts to combine alginate with cell adhesive
materials, e.g., gelatin [58], can be found in the literature. The use of composite materials
and biofabrication strategies is increasing as they enable finer control of the geometrical
features of the scaffold and tuning of material mechanical properties [81], both of which are
known to influence cell behavior [83,105,106]. This is even more important for brain tissue
which has a low elastic modulus that increases with age (from around 110 Pa in neonate up
to ≈1 kPa in adults [107]), and which changes significantly in some neuropathologies [108].

The applications of the 3D in vitro models described in Tables 2, 4 and 5 can be divided
into three main fields: oncology, neurodegenerative diseases, and neurotoxicity. Most of the
studies described in this review employ 3D neural models for inspecting their responses
against drugs, treatments, and chemotherapeutic agents (e.g., temozolomide, epigallocat-
echin gallate, natural killer cells, nanoparticles, and rotenone) [33–35,41,42,70,91,92]. For
these studies, the 3D models represent an advanced tool more closely resembling the char-
acteristics of in vivo tumor tissues. Indeed, the resistance of human tissues to anticancer
drugs is a crucial factor which needs to be assessed and characterized for developing
more efficient treatments. The delivery of such compounds should be investigated and
optimized considering the whole microenvironment [109]. Furthermore, the possibility of
tailoring some microenvironment features, e.g., matrix stiffness [37,38], for assessing the
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cell response to different conditions is supported by 3D models and represents one of their
advantages over conventional monolayers. Finally, cell proliferation and invasion patterns
can be studied in a more relevant context in 3D models [36,39,40,64,65,69].

The development of 3D in vitro models mimicking the in vivo cell environment and
behavior is also essential to obtain relevant results in toxicity testing [68,110]. A number
of studies compare cell responses to toxic compounds in 3D and 2D models developed
with human neural cell lines. Differentiated neuroblastoma SH-SY5Y cells exhibit lower
sensitivity to toxins when cultured in 3D constructs than in 2D ones [66,67]. Furthermore,
3D models allow the inspection of the influence of the micro-environment on the cell
response and sensitivity to neurotoxins [84]. For example, matrix stiffness is responsible
for regulating cell sensitivity to toxins, with softer matrices reducing cell viability [43].
Chemicals or materials used in therapy (e.g., gold nanoparticles) should also be assessed to
reveal any adverse effects on cell physiology when administered in different concentrations.
Three-dimensional models enable the assessment of cell responses and their capability for
recovery after washing out the compound in a more physiological context than monolay-
ers [91,92]. When generated from human neural cell lines, 3D models can be judiciously
employed for the high throughput screening of neurotoxic compounds, to gain as much
knowledge as possible about the potential adverse effects and risks of chemicals and drugs
on cell viability [80,93,94].

A wide class of pathologies is included under the definition of neurodegenerative
diseases, all of them characterized by the degeneration and death of neural cells [111,112].
The development of models closely resembling in vivo neural tissues is fundamental to
advance our understanding of the pathogenesis and progress of neurodegenerative diseases,
as well as to assess treatment efficacy. Most of the studies analyzed in this review regarding
neurodegenerative diseases employ the neuroblastoma SH-SY5Y cell line to develop 3D
models where cells are differentiated into mature neurons. The efforts are directed at
creating more in vivo-like models to better understand features of neurodegenerative
diseases [50–52,54,57], pathogenesis [53] and treatment effects [60,61]. Some investigations
are focused on the optimization of the differentiation protocols, and assess the capability
for obtaining differentiated cells with electrically active behavior [58,59,62,63,90]. Three-
dimensional models can recapitulate the salient features of neurodegenerative diseases
at the microscale and, with respect to 2D models, they better resemble features of in vivo
tissues [55,56]. The use of NPC lines in 3D models allows the generation of a greater level
of physiological relevance since different types of neural cells can be represented [95,96].

5. Conclusions and Future Perspectives

The ability to produce in vitro models with neural cells has been fundamental to
advancing the understanding of the central nervous system’s (CNS) function at the mi-
croscale, as well as of the disease mechanisms underlying neuropathologies and neuro-
toxicity [14,113]. We argue that some of the challenges associated with culturing primary
neural cells or stem cells could be overcome with the use of neural cell lines. Indeed, since
these cells express human-specific proteins and have a complete human genomic profile,
they have successfully been used for different applications, as reported in this review.

From our literature search, the first thing that stands out is the heterogeneity of the
studies reported and the fact that many of them do not carry on a systematic charac-
terization of the cell lines or materials involved. Long-term culture often leads to the
accumulation of mutations in such cells, resulting in outcomes which are difficult to re-
produce in laboratories [114]. We also underline that most of the human cell lines used in
3D neural models originate from tumors; hence, they may not recapitulate the properties
of neural cells in vivo [14]. For example, they usually show a higher sensitivity toward
oxidative stress with respect to primary cells [115]. Unless characterized and quantified,
these factors may limit the translatability of the results, particularly when considering
clinical applications.
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The regulatory testing of chemical substances to define their limits of safety for hu-
mans and the environment using in vitro methods requires a high degree of inter-lab repro-
ducibility and throughput, with tightly defined experimental protocols. This is necessary
for compliance with the Guidance on Good Cell Culture Practice (GCCP) standards [116].
Risk and hazard assessments are then carried out, using a tiered approach which considers
the integration of data from different endpoints and routes, rates, and duration of exposure.
Safe doses are always estimated conservatively with built in precautions, which does not
account for experimental variability [117]. Most regulatory authorities do agree that animal
tests should be minimized and encourage the development of alternative or non-animal
methods for chemical safety assessment. Although very few in vitro methods for chemical
safety assessment have been approved by the Organization for Economic Co-operation
and Development (OECD), the USA’s Environmental Protection Agency (EPA) and the
European Chemical Agency (ECHA) to date, several are based on cell lines. This is partly
because of their accessibility and reproducibility, as well as a great deal of investment in
characterization and protocol development.

We suggest that the 3D culture of neural cell lines should be improved to promote
their use in safety and toxicity testing of chemicals at a regulatory level, leveraging the ver-
satility of cells such as SH-SY5Y to exploit their full potential. Further investigations should
be performed towards the standardization of protocols and towards the identification of
supplements able to generate different classes of neurons in a controlled manner. Alterna-
tively, since glial cells modulate neuron function and signaling, while neurons generate
and propagate electrical and chemical signals [118], neuroblastoma and glioblastoma cell
lines could be co-cultured with the aim of delivering a more physiologically relevant model
of the human brain. Additionally, 3D models based on NPC lines should be exploited for
their ability to differentiate into the cell types that constitute the brain. In this way, we will
be able to deliver a cellular model where both the main actors in the CNS—neurons and
glia—are present. The future perspectives that we suggest for improving the development
of more physiologically relevant 3D in vitro models of the human brain, leveraging neu-
ronal cell lines, are summarized in Figure 2. Once standardized and characterized [119],
their full-blown reproducibility can be exploited for generating large-scale studies based
on 3D spheroids for high-throughput chemical safety and toxicity testing, as well as for
oncological or neurodegenerative pre-clinical screening applications [75,120–122].
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