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Abstract— Tactile feedback is essential for upper-limb pros-
theses functionality and embodiment, yet its practical im-
plementation presents challenges. Users must adapt to non-
physiological signals, increasing cognitive load. However, some
prosthetic devices transmit tactile information through socket
vibrations, even to untrained individuals. Our experiments
validated this observation, demonstrating a user’s surprising
ability to identify contacted fingers with a purely passive, cos-
metic hand. Further experiments with advanced soft articulated
hands revealed decreased performance in tactile information
relayed by socket vibrations as hand complexity increased.
To understand the underlying mechanisms, we conducted nu-
merical and mechanical vibration tests on four prostheses of
varying complexity. Additionally, a machine-learning classifier
identified the contacted finger based on measured socket signals.
Quantitative results confirmed that rigid hands facilitated con-
tact discrimination, achieving 83% accuracy in distinguishing
index finger contacts from others. While human discrimination
decreased with advanced hands, machine learning surpassed
human performance. These findings suggest that rigid prosthe-
ses provide natural vibration transmission, potentially reducing
the need for tactile feedback devices, which advanced hands
may require. Nonetheless, the possibility of machine learn-
ing algorithms outperforming human discrimination indicates
potential to enhance socket vibrations through active sensing
and actuation, bridging the gap in vibration-transmitted tactile
discrimination between rigid and advanced hands.

I. INTRODUCTION

The loss or absence of a hand deprives a person of mul-

tiple functions that drive interaction with the outside world.

Those obliviously include motor functions, communications,

socialization and, prominently, sensory functions. Most com-

mercial prostheses do not provide a substitute for sensing

despite recent research efforts and technological improve-

ments in haptics. Bensmaia et al. [1] present a comprehensive

review of the current invasive and non-invasive methods

and challenges encountered in developing sensory feedback
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systems for bionic hands. There is experimental evidence

that non-invasive upper limb sensory feedback prostheses

would improve embodiment [2], [3] and reduce phantom

limb pain [2], [4]. Nevertheless, the discrepancy between

the several feedback solutions proposed in the literature [1],

[5] and the few commercially available sensorized bionic

hands [6] is evident because very few provide a substitution

for cutaneous feedback [1], [6]. One of the main technolog-

ical difficulties behind that limit is the integration of sensors

and actuators, which can compromise wearability and us-

ability [7]. Another fundamental obstacle is understanding

how to provide relevant feedback that does not require all

of a user’s attention. Indeed, results about the effect of

cutaneous feedback on prosthesis control performance are

contradictory. Some highlight improvements, whereas others

find no differences [2], [8]. The challenge consists of balanc-

ing the quantity of information to be communicated. Indeed,

the execution of everyday tasks should provide meaningful

information without confusing or increasing the conscious

attention effort required to interpret signals [9]. It should

also be noted that the solutions proposed in the literature

are evaluated in research laboratories rather than in daily

living tasks, where the user has to manage significantly more

exteroceptive and proprioceptive information [7].

Limited research has explored the natural transmission of

tactile signals through prosthetic devices despite its potential

to offer insights into users’ baseline perceptions and ulti-

mately contribute to the refinement and optimization of hap-

tic feedback systems. During tool-extended sensing, Miller et

al. [10] proved that a rod mechanically transduces impact lo-

cation into vibratory patterns decoded by the somatosensory

system. The mechanoreceptors in the human hand transduce

the vibratory cues into neural response patterns that preserve

the location-specifying information [10]. Thus, the authors

provide evidence of how handheld tools function as sensory

extensions of the human body. Likewise, as pointed out

by Farina et al. [9], a prosthetic user has natural sensory

feedback in addition to vision and, depending on the type

of prosthetic device, can hear and feel motor actuation, and

perceive vibrations conveyed through the prosthetic socket.

An evaluation of the threshold level for contact cues detec-

tion of socket-prosthetic limbs with respect to bone-anchored

prostheses is performed in [11]. The authors demonstrate

that bone-anchored and socket-prosthetic limbs can activate

stump-level receptors upon vibratory stimulation of the pros-

thetic thumb. Furthermore, according to the recent study by
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Fig. 1: The prosthetic hands adopted in this study: (from left to
right) a Cosmetic hand (CH) by Ottobock, a MyoHand VariPlus
Speed (VP) by Ottobock, the I-Limb Access (IL) by Össur and a
SoftHand Pro (SH). Hands reference planes are shown.

Amoruso et al. [12], the existence of intrinsic somatosensory

feedback by artificial body parts has been demonstrated

to be crucial in enabling precise motor commands. Thus,

for prosthetic users, vibration patterns are important tactile

information usually felt on the stump and partake in users’

strategies to compensate for the lack of sensory information

[7], [13].

We posit that investigating natural tactile information

transmission is crucial for developing intuitive, non-invasive

haptic prosthetic devices, aiming to optimize conveyed in-

formation and reduce users’ cognitive load. In our experi-

ence, meaningful texture information is transmitted through

socket-based prosthetic devices [14], [15]. During empiri-

cal observations, users exhibited the capability to discern

minor tactile interactions on the digits of their prosthetic

limb and, notably, to reconstruct the specific finger that

had been contacted with a degree of reliability significantly

exceeding random chance. Considering the complexity of

bionic hands, it is evident that the transmission of tactile

cues differs depending on the point of contact and the shape

of the prosthesis. Moreover, the mechanical characteristic

of a given prosthesis is also expected to affect vibration

propagation and, therefore, the intensity and quantity of

cues. The factors we expect to influence this phenomenon

include the prosthesis design, the presence of articulations,

the rigidity of the assembled mechanisms, and the stiffness

of the materials used. To the best of the authors’ knowledge,

no study ever investigated how and to what extent these

baseline perceptions occur in socket-based prosthetic devices

nor provided a quantitative assessment of the roles of the

influencing factors.

This study examines the perception and transmission of

tactile cues through four prosthetic hands with different

characteristics (Fig. 1). Specifically, we compare hands rang-

ing from rigid, characterized by lower degrees of freedom

(DoF), rigid mechanisms, and stiff materials, to advanced

ones with more articulations, flexible mechanical designs,

and softer materials. We first report on a pilot study with

a prosthetic user, assessing their capability to discriminate

which finger is contacted based only on vibration patterns

passively transmitted by different hands through the same

socket to a user’s stump. Then, we quantitatively characterize

the phenomenon of mechanical vibration transmission of the

four prosthetic hands in terms of impact forces and socket-

level vibration generated by impacting them with a test

machine on the five fingers. To do so, we design and place a

set of vibration sensors in the socket. Our aim is to correlate

those data with user perceptual performance and the different

hand designs. Finally, we examine the information content

of the acceleration signals recorded at the stump level to

determine whether acceleration data can be used to improve

tactile perception and partially compensate for the sensory

loss in the softer, more articulated hands. In other terms, we

ask ourselves whether the signals retrieved by the vibration

sensors on the socket contain enough information to enable

more advanced hands to the same level of discrimination that

a user exhibits with rigid hands.

II. MATERIALS: PROSTHETIC HANDS

We tested four bionic hands, representative of the most

common mechanical and kinematic characteristics of the

currently available prosthetic hands. The four prosthetic

hands selected for the experiments are (Fig. 1):

• a Cosmetic hand (CH) by Ottobock1;

• a MyoHand VariPlus Speed (VP) by Ottobock2 (1 DoF);

• a I-Limb Access (IL) by Össur3 (5 DoF);

• a SoftHand Pro (SH) [16] (19 DoF).

The four hands range from rigid designs with fewer DoF,

rigid mechanisms, and stiff materials to advanced designs

with more articulations, flexible designs, and softer materials.

The Cosmetic hand is a passive hand mainly made of

plastic with a silicone glove. The VariPlus is a tridigit myo-

electrically controlled hand with a single actuated degree of

freedom opposing a thumb to two fingers, with two passive

fingers and a five-finger glove. The three active fingers

(index, middle, thumb) are rigid, made with metallic compo-

nents, and mechanically coupled (i.e. close simultaneously),

and the remaining two follow passively. The I-Limb is a

myo-electrically controlled hand with metallic components

and a soft silicone glove with thicker tips. The five fingers

are individually powered. Each finger, except for the thumb,

has a small mechanical play on the hand sagittal plane (see

Fig. 1), while they are rigid in the other directions. The

thumb has a transverse mechanical play. The SoftHand Pro is

mainly made of plastic components with a silicone glove. A

system of elastic ligaments connects the different phalanxes

and makes the hand adaptable to all objects, especially in

the sagittal hand plane. At the same time, each finger has a

small mechanical play in the coronal plane. The mechanical

structure of the fingers of the four test hands represents four

of the main types of finger joints [17]: the rigid joint (found

in the index, thumb and middle fingers of VP), the continuous

1Cosmetic hand by Ottobock, [Online], Available: https://www.

ottobockus.com/prosthetics/upper-limb-prosthetics/

solution-overview/custom-silicone-prosthetics/
2MyoHand VariPlus Speed by Ottobock, [Online], Available: https:

//www.ottobock.com/en-us/product/8E385˜59
3I-Limb Access by Össur, [Online], Available: https://www.ossur.

com/en-au/prosthetics/arms/i-limb-access
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Fig. 2: Impact response analysis of a prosthetic-shaped system
modelled as a continuous plastic body to an impulse (with a
force of 2N) on each fingertip. Acceleration propagation is shown.
Grey circles highlight the differences in acceleration propagation
depending on the finger contacted. The prosthetic system has
a constraint on the end surface of the socket. Simulations are
performed on Creo Parametric.

joint (in CH, and ring and little fingers of VP), the flexible

joint (in IL) and the dislocatable joint (in SH).

III. PERLIMINARY ANALYSIS

We speculate vibrations to play an important role in

the natural tactile information transmission through socket-

based prosthetic devices. As a preliminary exploration of this

phenomenon, we conduct a response analysis of a simplified

generic prosthetic-shaped system. The system is modelled

as a continuous body consisting of a socket and hand

plastic model (ρ = 1.33
kg

mm3
,ν = 0.475,E = 32400KPa),

resembling a typical cosmetic prosthesis. Our investigation

revealed that different acceleration patterns arise when a

contact cue stimulates different fingers, with each finger

experiencing a force of 2N at its respective fingertip (please

refer to Fig.2). These accelerations reach the other side of

the prosthetic socket and may constitute a crucial component

of prosthetic user baseline perception. These findings have

paved the way for subsequent experiments, motivating our

study and prompting further investigation.

IV. TACTILE FEEDBACK PERCEPTION EXPERIMENT

We investigate the tactile feedback perception of a pros-

thetic user. The ability to discriminate prosthetic fingers dur-

ing impacts on each fingertip is assessed. First, a preliminary

experiment is conducted with the participant’s own cosmetic

prosthesis and integrated socket. Then, four experiments

are performed with the four specimen hands mounted on

a reference socket.

A. Participant

One prosthetic user takes part in the experiments and

gives their written, informed consent to participate. The

Fig. 3: Tactile Feedback Perception Experiment setup: the prosthetic
limb (here with VP hand) is kept in place by a supporting structure
made of beams and two cables with Velcro.

participant (43 years old, female) is affected by limb age-

nesis and is used to wearing a cosmetic prosthesis even if

having experience with myoelectric hands (a SoftHand Pro

and a MyoHand VariPlus Speed device). The participant’s

limited experience with the latter devices suggests minimal

potential impact on the results. The subject has no cognitive

impairment that could affect the ability to follow the instruc-

tions of the study. Approval of all ethical and experimental

procedures and protocols was granted by the Local Ethics

Committee of Area Vasta Nord-Ovest (CEAVNO), Tuscany,

Italy, under Protocol No. 7803.

B. Experimental Setup

The subject is comfortably seated on a chair in a quiet

room. When the experiment starts, white acoustic noise

is provided via headphones to mask any sound from the

contacts. The participant is also blindfolded using a pair

of goggles with obscured lenses. Different positions and

supports are tested to select the most comfortable position

for the participant and avoid contact transmission being

affected by the supporting structure. When the arm is freely

suspended, the participant experiences discomfort and is

unable to maintain a stable arm position throughout the

experiments. Using a supporting structure for the residual

limb prior to the prosthesis device results in compression

of the residual limb, which may cause discomfort or pain.

Furthermore, completely supporting the prosthetic arm, such

as laying it on a table, compromises impact transmission.

Thus, the final design adopts a supporting structure of loose

Velcro loops on which the prosthetic arm is positioned (see

Fig. 3). By placing the support on the prosthesis instead

of a user’s skin, the arm position can be kept for all the

experiments, and impact absorption is reduced due to the

presence of only two Velcro loops.

The same reference socket is employed for all four se-

lected prosthetic hands to ensure that differences arise solely

from the variations in hands used. This Ottobock4 socket,

crafted from carbon prepreg for the outer component and

silicone for the inner component, was specifically customized

4Ottobock, [Online], Available: https://www.ottobock.com/

en-us/home
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for the participant’s use. This choice was made to facilitate

seamless compatibility with all four prosthetic hands utilized

in the study and to replicate the standard socket configuration

typically associated with myoelectric prostheses. The partic-

ipant’s personal prosthesis consists of a cosmetic hand iden-

tical to the Ottobock1 CH hand used in this study, without

a quick disconnect wrist, and integrated with a plastic and

silicone cosmetic socket to create a unified structure. This

personal prosthesis does not include any EMG sensors. In

the preliminary experiment, the subject’s personal cosmetic

prosthesis is tested. Tactile cues are delivered with a small

hammer (∼ 130g) on the prosthesis fingertips, perpendicular

to the coronal hand plane (see Fig.1). The experimenter

underwent training to ensure consistent contacts delivery.

The training involved repeated practice sessions to ensure

consistent impact delivery to each finger in terms of intensity

and direction. Despite diligent efforts, variations in execution

were recognized during experimental sessions.

C. Experimental Methods

A preliminary experiment with the participant’s cosmetic

prosthesis is carried out to determine the optimal number of

impacts for assessing the subject’s recognition performance

while also ensuring they did not experience undue fatigue or

a loss of motivation or concentration. In order to optimize

the subject’s comfort, we examined different approaches for

delivering impacts, including positioning the subject with

their arm suspended or the end of their arm resting on

the edge of a table. Ultimately, we select the most suitable

position for the user, as depicted in Fig. 3, with the prosthesis

hanging from a supporting structure. We then gradually

increase the number of impacts per finger, starting with a

threshold of 5 impacts. The subject tolerated up to 20 impacts

per finger without experiencing discomfort or fatigue. Based

on these findings, we established that delivering 20 impacts

to each finger would be appropriate for our experimental

purposes.

Each experiment (preliminary experiment included) con-

sists of a familiarization phase, a test phase, and rest phase.

In the familiarization phase, the subject experiences five

contacts on each finger without sound and visual insulation.

During the test phase, the subject is isolated. Twenty contacts

for each finger are performed with the small hammer. The

order of the finger to be contacted is randomized to prevent

the subject from guessing the next one. After each impact,

the participant is asked to answer the question: “Which

finger was contacted?”. The actual finger contacted and the

corresponding answer from a user are saved for analysis.

A rest phase of about fifteen minutes is done between

one experiment and the other. The experiment is repeated

four times, one for each of the prosthetic hands. The order

of the specimens is randomized (IL, VP, CH, SH). The

participant is informed that the experiment can be interrupted

at any time. At the end of the experiment, the participant

undergoes a subjective evaluation procedure based on a

brief questionnaire about prosthetic finger contact perception

depending on the prosthetic hand used (Table I).

TABLE I: Questionnaire.

Questions

Q1
Please briefly describe what you feel when each of
the four prosthetic hands contacts a rigid surface.

Q2
When the prosthetic hands are contacted, how
aware are you of which part of the hands, such
as a finger, has been contacted? Please comment.

D. Data Analysis

Participant’s prediction performance for each hand deter-

mines the four scores: T P (True Positive counts), T N (True

Negative counts), FP (False Positive counts) and FN (False

Negative counts). Those scores are further analyzed using a

confusion matrix, and the three metrics accuracy, recall, and

precision [18]. Accuracy, defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

provides an estimation of the correct predictions. Recall,

defined as:

Recall =
T P

T P+FN
(2)

tells how frequently the subject can detect a specific cate-

gory. Precision measures what percentage of all the positive

predictions is truly positive, and it is defined as:

Precision =
T P

T P+FP
(3)

All the metrics are compared to the chance level

CL =
100%

K
=

100%

5
= 20, (4)

where K is the number of classes (thumb, index, middle,

little, and ring). The accuracy [18] considering only the

ability to discriminate the thumb finger with respect to the

others and the index finger compared to the other fingers are

also computed. This assessment holds significance due to the

pivotal roles of these fingers in tasks requiring precise grasp-

ing motions. It underscores the necessity of evaluating their

discriminative ability, as it directly impacts the efficiency and

precision of prosthetic users in performing daily activities.

V. TACTILE FEEDBACK TRANSMISSION EXPERIMENT

The four hands are investigated to characterize and quan-

tify how the transmission of high-frequency stimuli is af-

fected by the type of prosthesis used. Each hand’s impact

responses to quantified contacts are assessed. During im-

pacts, the accelerations inside the socket and impact forces of

each fingertip are recorded with Inertial Measurement Units

(IMUs) and a sensorized pendulum, respectively (see Fig.4,

5).

A. Experimental Setup

The four hands are mounted on the reference socket. The

same supporting structure as in Section IV is used. We

attach five IMUs (MPU-9250) to the inner surface of the

socket in a radial distribution to measure the differences

in vibration patterns after each contact (Fig. 4, 5). This

choice is grounded upon the outcomes of the impact analysis
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Fig. 4: Tactile Feedback Transmission Experiment setup: the pen-
dulum comprises a load cell on the lower extremity, an encoder
on the upper extremity, and a custom 3D-printed end-stop to select
angles. The Bionic hands (here, the SoftHand Pro) are set with the
supporting structure.

Fig. 5: The reference socket is assembled with the I-Limb hand
with the IMUs attached inside in radial distribution. A detailed
view shows the inner part of the socket and the number of each
IMU.

performed on a generic prosthetic-shaped system modelled as

a continuous body (as shown in Fig. 2). Although the analysis

simplifies the system compared to a real prosthetic system, it

demonstrates that the same contact on each finger generates

distinct acceleration patterns that reach the other side of the

prosthesis. Furthermore, IMUs’ position and distribution are

also justified by the physical constraints of the residual limb

of the participant and its interfacing with the socket.

A sensorized pendulum (see Fig. 4) is used by the exper-

imenter to contact the prosthesis fingertips with repeatable

impacts. As in the first experiment, each contact is perpendic-

ular to the coronal hand plane (Fig. 1). The pendulum can be

moved and adjusted to contact a particular finger in a given

position. Before each impact, the pendulum arm is aligned to

an adjustable end-stop to hold it at a desired angle. Then, the

pendulum is released to impact the prosthesis. During each

impact, a load cell (ATI Nano17 Transducer) at the lower

extremity of the pendulum measures the impact forces while

an encoder (AS5045) at the upper extremity the angles.

B. Experimental Method

In preliminary tests, the pendulum angle that can create an

impact without reaching IMUs full scale is determined and

kept for all experiments (3◦). During impacts, acceleration

Fig. 6: Socket acceleration signal of IMU0 corresponding to a
contact on the thumb finger of VP. The three components ax,ay,az

are shown in blue, red, and yellow, respectively and the one-
dimensional signal A in purple.

signals inside the socket and impact forces at each fingertip

are recorded through electronic boards [19]. A custom C++

software is developed to synchronize, start, and stop the

recordings. The experiment starts when the pendulum is

set at the predetermined angle through the encoder and

the end-stop. The pendulum is left free to swing, and the

load cell surface contacts the artificial fingertip. After each

contact, the prosthetic limb oscillates. From the load cell,

it is possible to record the three components of the impact

force F =(Fx,Fy,Fz), while from each IMU inside the socket,

the three components of the acceleration a = (ax,ay,az). The

recording session is done at ∼ 1kHz to ensure that each

impact is properly captured and within the limits of the

hardware used to register. The experiment ends when the

pendulum is manually stopped after adequately completing

the impact. Since the recorded signals have proven to be

repeatable, three strikes per finger are performed, and one is

saved for analysis. This avoids averaging, ensures realistic

signals, leverages repeatability, and prioritizes signals with-

out data loss; if no loss occurs, one is chosen randomly. The

experiment is repeated for each robotic hand.

C. Data Analysis

After the experimental session, all signals are analyzed

and processed. The impact force component Fz is selected as

the main contribution of the contacts because the pendulum

swings in the same direction. In regards to the acceleration

signals, various processes are carried out to analyze high-

frequency signals only. Communication errors between the

electronic boards and the IMUs are removed from the three

components ax,ay,az. Then, a high-pass filter is used to

remove the low-frequency oscillation of the prosthesis caused

by the contacts. Forces and high-frequency accelerations

are cut to isolate the contact. Each acceleration signal is

cut with respect to the impact force peak. The contact is

accurately represented by three hundred samples (∼ 0.28s).

The next step is assigning an energy value to each signal

to compare each bionic hand’s results quantitatively. With

the algorithm DFT321 [20], the three components ax,ay,az

are then reduced into a one-dimensional signal A with the

same energy as their sum (Fig. 6). The DTF321 algorithm,

which aims to identify spectral differences, was utilized

in our previous works [15], [21]. Finally, the acceleration

signal energy of each finger is computed for each IMU
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to compare the results of the prosthetic hands. The overall

mean of each IMU energy signal and fingers is computed

for each hand. Thus, a mean energy value is obtained for

the four prosthetic hands. To compare results, Spearman

rank correlation analysis is computed between the energy

mean of each hand and the accuracy of the Tactile Feedback

Perception Experiment. The impact force responses of the

four hands are also compared.

VI. TACTILE FEEDBACK RECOGNITION EXPERIMENT

To investigate whether acceleration data contain sufficient

information to identify which finger is contacted, Artificial

Neural Networks (ANNs) are trained. Due to their capability

of handling time series data, Long-Short-Term Memory

(LSTM) [22] models are used for finger detection and trained

for each bionic hand. New acceleration signals inside the

socket are recorded upon impacts on each fingertip to create

large and balanced datasets.

A. Datasets

New experiments are carried out to obtain four datasets,

one for each robotic hand. The prosthetic hands with the

reference socket are set by the same supporting structure

in Section IV and V. The five IMUs are kept on the inner

surface of the socket to measure the vibration pattern after

each contact. The small hammer is used to contact each

fingertip perpendicular to the coronal hand plane (Fig.1). In

preliminary experiments, hammer impacts are tested to deter-

mine if the IMUs’ full scale is reached. Then, approximately

the same impacts are manually delivered in all experiments.

The experiments consist of one hundred impacts on each

fingertip. The three acceleration components a = (ax,ay,az)
are recorded from the five IMUs inside the socket during

each impact. Then, the same data processing in Section V-C

is carried out to obtain the one-dimensional signal A. Thus,

four datasets are obtained with five hundred samples each,

one hundred for each fingertip. Each sample comprises five

one-dimensional signals A from the five IMUs.

B. LSTM Network Architecture and Hyperparameters

As the purpose of this experiment is to determine whether

finger contact information can be extracted from acceler-

ation data, various types of classification algorithms may

be appropriate. LSTM networks are a particular type of

Recurrent Neural Network (RNN) able to process entire

data sequences and selectively remember information, widely

used to capture time correlations efficiently [22], [23]. To

avoid a separate feature extraction step, we choose LSTM

over linear support vector machines (SVMs). We train four

LSTM models to recognize the finger contacted from the

acceleration signals A of each IMU. Each dataset is randomly

split into 80% training, 10% validation and 10% testing

sets. We experimentally test different network parameters

and hidden layers to evaluate the best performance. The

four nets are composed of a first feed-forward layer with

ReLU activation function and a second normalization layer

which normalizes all five features together (the five signals

from the IMUs). Then, the third layer is an LSTM layer.

The output is fed to a dropout layer. The four layers repeat,

and, lastly, the softmax layer gives the probability of each

class (thumb, index, middle, ring, little), and the classifi-

cation layer computes the cross-entropy loss. We set the

dropout to 0.2. The hyperparameters are tuned by using the

Bayesian optimization algorithm in MATLAB (MathWorks

Inc., Natick, MA, USA), maximizing the validation accuracy

on the validation sets. The hyperparameters selected are the

initial learning rate, the number of units in a dense layer, the

number of hidden units, the number of epochs, and the batch

size.

C. Data Analysis

Test sets are used to evaluate the performance of the

four networks. Four confusion matrices with True Class and

Predicted Class are computed. The results are compared in

terms of accuracy, recall and precision metrics [18].

VII. RESULTS

A. Tactile Feedback Perception Experiment

We assessed the finger discrimination ability of the subject

wearing CH, VP, IL and SH bionic hands. The subject’s

cosmetic hand was also tested in the preliminary experiment.

With the subject’s own prosthesis, the accuracy and mean

recall reached 55% and 58%, respectively. Results of the

experiments with the four specimens are shown in Table II.

The accuracy related to the CH hand is 58% while VP and

IL accuracies are 52% and 45%, respectively. With SH, the

accuracy reaches 37%. The subject was able to discriminate

the finger contacted with an accuracy that is always above

the chance level. Mean precision and mean recall were also

computed for each hand. Since the same number of contacts

were delivered for each finger, the results are balanced, and

the test accuracy also corresponds to the mean recall [18].

All the mean precision results are higher than the mean

recall metrics.

If it’s considered only the ability to discriminate the thumb

finger with respect to the others, positive results are obtained

for the accuracy [18] of each hand: 81% for CH, 82% for VP,

and 93% and 61% for IL and SH, respectively. Regarding

index recognition accuracy compared to the other fingers, the

results are: 83% for CH, 65% for VP, 72% for IL and 55%

for SH.

In Fig. 7, confusion matrices of the four bionic hands

are shown. Each row summary and column summary dis-

plays the percentage of correctly classified and incorrectly

classified observations for each true or predicted class. In

particular, the first column summary is the recall metric of

each class, while the first row summary is the precision

metric of each class. About the VP hand, higher accuracy and

recall are highlighted for the thumb, the index and the middle

fingers, which are more rigid with respect to the other fingers.

This could be due to the presence of the three metallic fingers

under the glove. A 95% of recall and a 73% of precision for

the thumb of IL hand reflects the lower mechanical play in
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TABLE II: Subject Accuracy and Mean Precision of the Tactile Feedback Perception Experiment for Each Bionic Hand.

Bionic Hands Accuracy[%] Mean Precision[%]
Thumb Recognition

Accuracy[%]

Index Recognition

Accuracy[%]

Cosmetic 58 62 81 83
VariPlus 52 63 82 65
I-Limb 45 49 93 72
Soft-Hand 37 45 61 55

Fig. 7: Tactile Feedback Perception Experiment: Confusion Matrices of the results with CH, VP, IL, and SH bionic hands of finger
discrimination experiments. The row and column summary displays the percentage of correctly classified and incorrectly classified
observations for each true or predicted class. The first column summary is the recall metric of each class, while the first row summary is
the precision metric of each class.

TABLE III: Questionnaire Answers.

Answers

Q1

I don’t feel big differences between all rigid hands.
The huge difference is between the SH and the others.
In all rigid hands, I feel the vibration on the inner socket,
while with the SH I feel a smoothed vibration.

Q2

The more the hand/socket are rigid, the more I can
clearly feel the zone/finger contacted. The hand that
I can feel more precisely is the CH.
With that kind of hand, I really can feel each finger.
The worst case is the SH. Its softness decreases a lot the
vibration and, as a consequence, the richness of the
sensation that arrives in the inner socket.

that direction of impact with respect to the other fingers.

With the SoftHand, the overall discrimination ability of the

subject decreased. The worst recall metric was achieved with

the little finger in all hands, while precision is quite high for

the same finger. Thus, the subject was rarely able to detect

the little finger, but most of the predictions were correct.

Based on the findings from the questionnaire (please refer

to Table III), the subject perceived vibrations within the

inner socket of the prosthesis. Notably, these vibrations

were reported to be smoother when using the SH and more

discernible when utilizing the CH. Additionally, the subject

could attribute the source of these vibrations to a specific

contact zone.

Fig. 8: Tactile Feedback Transmission Experiment: Impact forces
of the sensorized pendulum with the index finger for VP, CH, IL
and SH.

B. Tactile Feedback Transmission Experiment

We recorded the acceleration signals from IMUs glued

inside the socket and the impact forces of the pendulum,

which contacted the prosthetic fingertips. Fig. 8 shows the

different impact forces of the sensorized pendulum with the

index finger of each bionic hand. It can be noticed that the

impact forces of the index finger of less compliant hands

(as VP) are intense and shorter in time. In such a case, the

impact between the pendulum and the prosthesis is almost

instantaneous, and the energy is, thus, quickly transmitted.
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TABLE IV: Nets’ Hyperparameters Resulted from Tuning the Four
Training and Validation Sets in the Tactile Feedback Recognition
Experiment.

Hyperparameters LSTMV P LSTMCH LSTMIL LSTMSH

Initial

Learning Rate
0.0011 0.0016 0.0027 0.0033

Epochs 68 168 185 82
Units in

a Dense Layer
40 37 21 18

Hidden Units 40 40 39 39
Batch Size 64 32 64 64

TABLE V: Nets’ Validation and Test Accuracy in the Tactile
Feedback Recognition Experiment.

Net
Validation

Accuracy[%]

Test

Accuracy[%]

Test Mean

Precision[%]

LSTMCH 84 78 79
LSTMV P 96 86 86
LSTMIL 88 88 89
LSTMSH 76 78 78

With more compliant hands, the response is less intense and

slowly transmitted.

The bar charts in Fig. 9 show the computed energy of the

one-dimensional signals A for each IMU. IMUs’ numbers

refer to Fig. 5. Since the socket is always the same, trans-

mission differences depend on the type of hand used. The

energy associated with socket accelerations is higher when

the rigid VariPlus and Cosmetic hands are worn (especially

in the metallic fingers of VP) and decreases with the other

hands. Indeed, high-frequency signals are better transmitted

in more rigid designs. Since the IL thumb is stiffer in the

direction of impact, its energy results are greater than the

other fingers. For the softer and more articulated hands (SH

and IL), the energy is much lower for each IMU. In SH,

IMUs energy values are also similar between a finger and

another. Indeed, it has several dampening elements, such as

the wrist, which prevent vibration transmission through the

prosthetic device.

The behaviour of the five IMUs in response to contacts

is slightly different from each other in all fingers. This can

be noticed especially in the more rigid and less articulated

fingers. The Spearman rank coefficient between the mean

energy value of each hand and the accuracy of Tactile

Feedback Perception Experiment was 0.8. Thus, a strong

monotonic association was found.

C. Tactile Feedback Recognition Experiment

We trained four LSTM networks to recognize the fingers

contacted based on acceleration data recorded inside the

socket, one net for each bionic hand. Nets’ hyperparameters

were tuned using Bayesian optimization. Table IV shows the

hyperparameters tuning results, and Table V shows validation

and test accuracy results and mean precision metrics for the

prosthetic hand used. Since all the datasets were balanced,

the test accuracy results also correspond to the mean recall

[18]. All networks were able to detect the finger contacted

with positive results. Validation and test accuracy of the

LSTM model trained on the CH socket acceleration data

reached 84% and 78%, while on VP data reached 96% and

86%, respectively. For SH, the validation and test accuracy

are 76%, 78%, and for the IL, they both are 88%. Mean

precision and recall are also balanced. Accuracy, recall and

precision metrics are all higher than the Tactile Feedback

Perception Experiment results.

Confusion matrices of the four LSTM networks evaluated

on test sets are shown in Fig. 10. From the confusion ma-

trices, it should be noted that each class was well predicted

from all LSTM models. Precision and recall metrics are also

balanced for each class. The overall performance decreased

for the SoftHand LSTM model.

VIII. DISCUSSION

A. Tactile Feedback Perception Experiment

The Tactile Feedback Perception Experiment proved that

the subject was able to perceive and recognize the contact on

all the bionic hands. The subject detected the finger contacted

with positive results. Indeed, the accuracy related to all the

bionic hands is much higher than the chance level of 20%.

The subject’s personal prosthesis used in the preliminary

experiment includes a CH hand, the same as that used in

the experiments, along with a cosmetic socket. Despite the

subject being used to their cosmetic prosthesis, which they

don regularly, better accuracy was observed with the CH

hand and the reference socket in the experiment with respect

to that measured in the preliminary one. This difference could

be due to the tighter and more rigid structure of the reference

socket used in the experiments compared to the user’s own

cosmetic socket. Thus, vibrations may be better transmitted

to the subject.

Results prove that the subject could associate the trans-

mitted vibration patterns to a finger position with better

outcomes for rigid and less articulated hands. Future studies

will investigate the potential learning curve of this skill.

Wearing the Cosmetic and the VariPlus hands, accuracy

metrics are 58% and 52% with respect to 45% and 37%

of the I-Limb and the SoftHand bionic hands. Regarding the

index finger recognition compared to the other fingers, the

subject achieved impressive results, with higher accuracy for

the CH hand (83%) than VP and IL (65% and 72% accura-

cies, respectively). With the SH, only a 55% accuracy was

achieved, slightly higher than the chance level. Considering

the discrimination ability to identify a contact on the thumb

from an impact on the other fingers, the higher recognition

accuracy for the I-Limb (93%) compared to the CH (81%)

and the VP(82%) can be explained by considering that the

I-limb thumb has a transverse mechanical play. Thus, during

the impact, set on the hand sagittal plane, the thumb is more

rigid compared to the other fingers and may make it easier

for the subject to detect high-frequency vibration associated

with that finger compared to the CH and VP. The SoftHand

decreases the performance (accuracy of 61%), but still with

a result above the chance level.

The findings from the questionnaire analysis offer valuable

insights into the tactile feedback perception within prosthetic

devices. The discernible differences in vibration perception

between SH and CH could potentially be attributed to various
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Fig. 9: Tactile Feedback Transmission Experiment: Bar charts of the computed energy of each A signal from the five IMUs inside the
socket after an impact on each fingertip. Each chart corresponds to CH, VP, IL, SH hands. IMUs’ numbers refer to Fig. 5.

Fig. 10: Tactile Feedback Recognition Experiment: Confusion matrices of the results of CH, VP, IL, and SH LSTM nets evaluated on
test sets. The row and column summaries show the percentage of correctly and incorrectly classified observations for each class. The first
column provides the recall metric for each class, while the first row provides the precision metric.

factors, including the material properties of the sockets and

the manner in which vibrations are transmitted through the

hands. The more discernible perception with CH indicates a

more efficient transmission of vibrations, which may result

in reduced sensory fatigue for the user. Moreover, the partici-

pant was able to consciously localize the source of vibrations

to specific contact zones, underscoring the importance of

taking this vibration transmission into account for sensory

feedback device design in prosthetic devices. This localiza-

tion capability may facilitate more intuitive interaction with

the prosthesis, allowing users to adapt their movements and

behaviours accordingly. Overall, these findings highlight the

intricate interplay between design factors and user perception

in shaping the efficacy and usability of prosthetic devices.

B. Tactile Feedback Transmission Experiment

In the Tactile Feedback Transmission Experiment, we have

effectively quantified impacts at the socket level and studied

the response of each hand. The results quantitatively rein-

force our intuition that advanced, softer, and more articulated
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hands dampen contacts, while rigid hands with stiff compo-

nents and fewer articulations better transmit high-frequency

vibrations. Indeed, more intense accelerations were detected

at the socket level for the more rigid hands with respect to

the advanced ones. While the observed outcome aligns with

expectations, it’s crucial to note the lack of prior empirical

evidence directly supporting this hypothesis. The findings

reflect the Tactile Feedback Perception Experiment results

despite being carried out under different setup conditions.

In the presence of IMUs, the subject could not wear the

prosthesis, and the vibration transmission behaviour is dif-

ferent with respect to when the arm is present. Nevertheless,

hanging the prosthesis enabled us to characterize each robotic

hand and understand how vibration is transmitted regardless

of the person wearing the prosthesis. The Spearman rank

coefficient of 0.8 demonstrates that user perception and

measured accelerations inside the socket are monotonically

correlated. The hands with lower energy socket vibrations

are those with lower accuracy results and vice versa.

C. Tactile Feedback Recognition Experiment

In the Tactile Feedback Recognition Experiment, we

proved that LSTM models are able to detect the finger

contacted from the high-frequency socket acceleration sig-

nals with quite a high accuracy for all hands. Thus, the

recorded vibratory patterns contain the information necessary

to discriminate the impacted finger, even if registered on

the inner surface of the socket. The discrimination ability

of ANNs is substantially better than the subject’s one in all

prosthetic hands. The distinct data collection methods in this

experiment compared to the Tactile Feedback Transmission

Experiment are driven by their divergent objectives. In the

Tactile Feedback Transmission Experiment, the use of the

sensorized pendulum facilitated consistent quantification of

each impact, allowing for analysis and comparison across

different hands. Conversely, in the Tactile Feedback Recog-

nition Experiment, we aimed to replicate the conditions of the

Tactile Feedback Perception Experiment, necessitating the

introduction of differences between impacts using a small

hammer rather than producing identical impacts.

For acceleration dimensional reduction, we used the

DTF321 algorithm in both Tactile Feedback Recognition

Experiment and Tactile Feedback Transmission Experiment.

As mentioned, the DTF321 algorithm is considered one

of the best 321 approaches for offline processing when

perceptual similarity is prioritized [24]. Still, DTF321 is not

rotation invariant, and a different orientation of the IMU

yields different DFT321 values even if the signals captured

by the IMU are identical in the new orientation of the

sensor [20], [24]. Thus, future online implementation will

consider the Principal Component Analysis (PCA) algorithm

to avoid orientation dependencies [24], [25]. Nevertheless, as

a result of our findings, the recorded acceleration signals and

ANNs have the potential to compensate for the loss of tactile

perception given by the advanced hands.

D. Limitations

About the Tactile Feedback Perception Experiment, we

acknowledge the limitation arising from the inclusion of only

one prosthetic user in the experiment. Obviously, the findings

are subjective, emphasizing the necessity for future studies to

validate them with an increased and heterogeneous group of

participants, encompassing individuals with varying nature,

levels, location of amputations and state of the nerves in

the residual limb, which can affect the user’s perception.

Moreover, it is important to consider that the participant’s

perception may be influenced by external variables, such

as their state of mind, discomfort, or boredom, alongside

factors related to skin condition, thus adding complexity to

the interpretation of the results. Furthermore, it is essential

to acknowledge that our assessment of prosthetic user per-

formance was conducted under controlled conditions, specifi-

cally in a quiet room, where the participant was fully engaged

in the designated task. This deliberate choice was made to

minimize extraneous factors that could potentially detract

from the accuracy of our findings, although at the expense

of mirroring real-world situations. Our future research will

encompass experiments conducted in environments that more

accurately replicate real-life scenarios.

Deliberately choosing a small hammer over the sensorized

pendulum used in the Tactile Feedback Transmission Ex-

periment aimed to avoid significant delays in setup and

repositioning for each contact. This decision was made to

maintain the subject concentration and minimize fatigue

during the experimental session. Additionally, it allowed for

replicating realistic impact scenarios like those encountered

in everyday environments and suggested that the ANNs

are also able to discriminate among different levels of

impact. However, experimenter errors may have prevented

consistent impact levels and directions for each finger and

repetition. Future research will explore alternative methods

to deliver contact in a more quantified manner while still

prioritizing the avoidance of fatigue or discomfort for the

subject. Furthermore, our research will explore various types

of prosthetic impacts and directions. Exploring changes in

impact location, orientation, amplitude, and contact size on

the prosthetic hand could yield valuable insights in future

studies. We also aim to examine how simultaneous impacts

interact to produce sustained and continuously modulated

cues and whether similar identifiable propagation patterns

emerge during shear loading.

The choice of experimental materials, notably the type

and material of the socket, influenced our findings. It is

reasonable to posit that variations in these factors may

have significantly impacted the transmission of vibrations

through the socket, thereby shaping the perceptual responses

of the subjects involved in our experiments. This assertion is

substantiated by our study, which demonstrated the influence

of different prosthetic hands on perception. Future work

will be focused on conducting additional tests aimed at

systematically investigating the effects of diverse socket

types on both vibration transmission and subject perception.

This will necessitate a comprehensive exploration of various

socket designs and materials to gain deeper insights into
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their influence on the overall performance of prosthetic

devices. Nevertheless, by consistently employing the same

reference socket throughout our experiments, we were able to

effectively discern differences among the various prosthetic

hands used.

The presence of inertial measurement units (IMUs) pre-

vented the subject from wearing the prosthesis, potentially

leading to improved classification accuracies in the Tactile

Feedback Recognition Experiment. However, this setup sim-

plified post-impact oscillation filtering by using a high-pass

filter to remove low-frequency socket oscillations. Indeed,

the oscillations from the suspended socket differ greatly in

frequency from the high-frequency oscillations associated

with the vibration modes of the prosthesis. Any link to a rigid

support, like the human arm, would accelerate the damping

of the high-frequency oscillations via contact transmission,

complicating measurement. However, it’s crucial to note

that these transmitted vibrations are precisely what elicit

human perception, aligning with our measurement objective.

Addressing the potential alteration of prosthesis dynamics

in the absence of a human arm, future research will ex-

plore methods for measuring impulse propagation while a

prosthetic user wears the socket, ensuring comfort is not

compromised.

E. Study Significance and Future Directions

Our results indicate that part of the tactile information

in exploring the external world is transmitted through the

prosthesis and is not lost, with differences based on the

type of hand. In rigid prosthetic designs, the transmitted

information has allowed the subject to associate vibration

transmission with specific tactile cues. Consequently, this

may diminish the necessity of haptic feedback devices

(e.g. vibrotactile actuators for transmitting initial contact

or texture cues). However, in the case of softer and more

articulated prosthetic designs, this correlation is not consis-

tently observed. Although prosthetic hands with soft and

compliant components are adaptable, intuitive to use and

more natural in the execution of activities of daily living

with respect to rigid hands [26], [27], they do reduce

vibration transmission, demoting perception. Therefore, for

users utilizing advanced prosthetic designs or those who

still desire tactile feedback, it’s crucial to recognize that

feedback device designs should consider the natural vibration

transmission through the prosthesis. Although less intense

than in rigid designs, this transmission remains persistent and

offers potential for enhancement, enriching user experience

without adding artificial signals unrelated to natural vibration

transmission. One potential approach may involve enhancing

natural vibration transmission by integrating vibrotactile ac-

tuators within the socket controlled by accelerometer data

and adjustable gain settings. Furthermore, we speculate that

training a neural network to identify impacts based on socket

accelerations from various prosthetic hands could lead to the

development of a device that is independent of the specific

type of prosthesis used, offering a more adaptable and re-

silient solution. Nevertheless, we acknowledge the difficulty

of deciding which hand propagation pattern to prioritize.

Overall, these potential solutions serve the same purpose

of utilizing existing vibrations and potentially decreasing

users’ cognitive load required to interpret artificial tactile

information transmitted by tactile feedback devices. Further

research is necessary to fully comprehend the phenomenon

and effectively utilize the results obtained, and we intend

to address these challenges in future investigations. Addi-

tionally, results show that detecting and recognizing tactile

cues from the accelerometers at the bottom of the socket is

feasible. This indicates that valuable data can be extracted

from a region between the prosthetic hand and the end of

the socket. Considering that haptic devices for prosthetics

currently on the market have sensors placed on the prosthetic

hand fingers, we believe that placing them on the socket

could enhance the robustness of the prosthesis, reducing the

risk of breakage or malfunctions, and increase the wearability

and integration of this type of devices.

IX. CONCLUSIONS

This work successfully tested tactile perception and trans-

mission in four prosthetic hands with different characteris-

tics. The results proved that a prosthetic user perceived tactile

stimuli with the four bionic hands without a haptic system.

Interestingly, finger discrimination performances were all

higher than the chance level, with decreased performances

for the advanced hands. The four bionic hands were char-

acterized by impact forces and high-frequency stimuli trans-

mission through the socket upon impacts with each finger.

It has been quantitatively shown that rigid hands promote

tactile transmission while more advanced hands absorb im-

pacts. We have shown that ANNs trained on signals from

vibration sensors on the socket can recover maximum finger

discrimination ability even with softer articulated hands. This

indicates that rigid prosthetic designs favour natural vibration

transmission, potentially reducing the need for extra tactile

feedback devices, while advanced designs may lack this

phenomenon, presenting an opportunity to enhance weaker

tactile transmission and create intuitive haptic devices that

minimize adaptation to artificial signals.
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