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Abstract: Assessing mobility in daily life can provide significant insights into several clinical condi-
tions, such as Chronic Obstructive Pulmonary Disease (COPD). In this paper, we present a compre-
hensive analysis of wearable devices’ performance in gait speed estimation and explore optimal 
device combinations for everyday use. Using data collected from smartphones, smartwatches, and 
smart shoes, we evaluated the individual capabilities of each device and explored their synergistic 
effects when combined, thereby accommodating the preferences and possibilities of individuals for 
wearing different types of devices. Our study involved 20 healthy subjects performing a modified 
Six-Minute Walking Test (6MWT) under various conditions. The results revealed only little perfor-
mance differences among devices, with the combination of smartwatches and smart shoes exhibit-
ing superior estimation accuracy. Particularly, smartwatches captured additional health-related in-
formation and demonstrated enhanced accuracy when paired with other devices. Surprisingly, 
wearing all devices concurrently did not yield optimal results, suggesting a potential redundancy 
in feature extraction. Feature importance analysis highlighted key variables contributing to gait 
speed estimation, providing valuable insights for model refinement. 
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1. Introduction 
The assessment of mobility loss in real-world settings and in the long term could 

have a profound effect on medical practice, much like how cardiac Holter monitoring rev-
olutionized the evaluation of cardiac pathologies in the past. Indeed, the decline in mo-
bility is a morbidity factor in various pathophysiological conditions, including heart fail-
ure, Chronic Obstructive Pulmonary Disease (COPD), and neurodegenerative diseases. 
In the medical field, mobility analysis holds significance for various purposes. For exam-
ple, in patients with Parkinson’s disease, both to clarify gait abnormalities [1] and to in-
vestigate the effects of different therapies [2,3], in mental disorders, where mobility alter-
ations are a sign of disease (depression, schizophrenia, anxiety disorders, etc.) to predict 
relapses or exacerbations [4], and in various chronic lung conditions to assess disease se-
verity [5,6]. In particular, walking speed is a valid, reliable, and sensitive measure for as-
sessing health in a wide range of populations [7]. The gait speed (GS) has been identified 
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as the “sixth vital sign” [8]; it is a simple measure for predicting health status with very 
important clinical applications for a wide range of pathological conditions [9]. 

Over past years, the estimation of gait speed has been conducted through several 
validation studies using various tools (e.g., wrist sensors [10], lower-back-worn inertial 
sensors [11], smartphone sensors [12], smartwatch sensors [13], or a combination of three 
accelerometers, on the thigh, on the sacrum, and on the shanks [14]). Despite the signifi-
cance of previous research, real-world mobility assessment has not yet been integrated 
into current clinical practices. 

The aim of this work is to propose a new method for estimating gait speed (GS) from 
a heterogeneous set of wearable devices, which can be employed one by one, collectively, 
or in any combination. For each combination of wearable devices, we assessed the estima-
tion accuracy and explained the features that contribute most significantly to the estima-
tion. To increase the generalization of our approach, we combined two common commer-
cial wearable devices (a smartphone and a smartwatch) with a gait-analysis-dedicated 
wearable system (a smart shoe integrating inertial and pressure sensors). These devices 
can capture gait dynamic information through different modalities. Our focus is on de-
scribing the device’s performance and identifying optimal combinations that individuals 
may utilize in their daily lives. 

This work is part of the European Union-funded TOLIFE project [15], in which the 
focus is on COPD. The goal is to collect data from the daily lives of COPD patients using 
non-invasive smart sensors to be used for the development and clinical validation of an 
artificial intelligence (AI) solution to optimize and personalize treatment and improve the 
quality of life of COPD patients [16]. Indeed, a recent systematic review and meta-analyses 
[17] have shown several associations between mobility parameters detected by non-inva-
sive sensor devices and COPD outcomes, such that a loss of mobility is associated with an 
increased mortality risk. Moreover, slow GS is associated with increased healthcare utili-
zation. Since these results demonstrate that a loss of mobility is one of the most important 
prognostic factors for COPD outcomes, studying the mobility of COPD patients is pivotal 
to the process of acquiring daily life parameters to be used for the creation of predictive 
algorithms underlying AI. 

To estimate gait speed, we built a multiple linear regression model for each of the 
seven possible combinations of devices (i.e., phone, watch, shoes, “phone + watch”, 
“phone + shoes”, “watch + shoes”, and “all devices”). To train and assess our model, we 
used data collected in a protocol in which sensor data from the three wearable devices 
were associated with data collected by a reference system during controlled walking tasks. 
For the experimental phase, we enrolled 20 healthy subjects, each wearing a set of weara-
ble devices (smartphone, smartwatch, and smart shoes) and the reference system used to 
obtain the gait speed. The reference system was the Awinda inertial motion tracker cou-
pled with the MVN Analyse software (version 2023.0), both supplied by Xsens [18] (En-
schede, Netherlands). We asked each subject to perform a modified version of the Six-
Minute Walking Test (6MWT) [19] three times at three different paces, medium, slow, and 
fast, in order to cover a wider range of speeds. 

The results obtained showed a reasonably accurate performance in estimating walk-
ing speed with root mean square errors consistent with the relevant literature studies [10–
12,14], which, however, focused on methods applied to single device combinations. To the 
best of our knowledge, this is the first time that the impact of using any combination of 
three wearable devices to assess walking speed has been quantified, aiming to provide 
more ecological real-world monitoring of health conditions. Indeed, our method automat-
ically selects the best feature sets given the combination of devices, and it is always able 
to provide the best estimation. By applying this approach to the daily life condition of 
COPD patients, the use of multiple data sources allows us to obtain data throughout the 
day without interruption, as these can be used simultaneously (a robust measurement to 
obtain better performance from the estimation algorithms) or separately (when, for exam-
ple, one device runs out of power or stops working). Furthermore, they allow the patient 
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to have greater compliance since having a set of three different devices enables them to 
choose the most suitable device for the daily activity he/she wishes to carry out. 

The organization of this paper is as follows. In Section II, we introduce the experi-
mental acquisition protocol and the devices under investigation. We also illustrate how 
the data were processed and the approach adopted for the implementation and validation 
of the machine learning models. In Section III, we display the results obtained by reporting 
the performance of the algorithms under different conditions. Finally, in Section IV, we 
discuss the results to conclude in Section V. 

2. Materials and Methods 
2.1. Instrumentation 
2.1.1. Wearable Devices 

In this study, we used the wearable device set of the TOLIFE sensor platform, specif-
ically developed for the home monitoring of COPD patients [15,20]. The device set was 
selected to fulfill the needs established by the EU-funded TOLIFE project, which requires 
the collection of raw data related to modulating factors, performance, and symptoms of 
patients with Chronic Obstructive Pulmonary Disease (COPD). These data are necessary 
to construct algorithms based on artificial intelligence for (1) the early detection of COPD 
exacerbations and (2) the estimation of the evolution of health-related quality of life, func-
tional exercise capacity, and dyspnea in COPD patients. The TOLIFE sensor set employs 
non-invasive wearable and non-wearable sensors, consisting of the following sub-devices: 
(1) a smart mattress cover and bedroom box case, (2) smart shoes, (3) a smartphone, (4) a 
smartwatch, and (5) a spirometer. The devices used in this study comprise the wearable 
set of TOLIFE devices and will be specifically employed to extract the mobility parameters 
of COPD patients. The set comprises a smartphone (the Samsung Galaxy A14, Figure 1 
left), a smartwatch (the Samsung Galaxy Watch 5, Figure 1 center), and a pair of smart 
shoes (Figure 1 right). From both the smartphone and smartwatch, we collected inertial 
sensor data (accelerometer and gyroscopes for the smartwatch; accelerometers and orien-
tation for the smartphone). Smart shoes are a research prototype developed as an inte-
grated solution to record and transmit gait analysis information to mobile phones. They 
are adapted from the prototypes described in our previous research [21,22] and are spe-
cifically tailored to the TOLIFE project [15]. The smart shoes are battery-powered and have 
an electronic unit integrated into the heel region of the insole. The electronic unit includes 
a digital inertial measurement unit (3-axis accelerometer and gyroscope, LSM6DSL by 
STMicroelectronics) and a Bluetooth low-energy connection. In addition, the smart shoes 
have three pressure sensors integrated under the insole (two in the forefoot and one in the 
heel region) to monitor the mechanical interaction of the foot with the ground (FSR 402 
by Interlink). We developed two custom Android applications to collect data from the 
smartphone and smartwatch sensors. The smartphone application was also used to collect 
data from the smart shoes. Table 1 reports the acquired signals for these devices and their 
respective sampling frequencies. Figure 2 shows the reference system and wearable de-
vices on a subject. The reference system includes the inertial units of the AWINDA motion 
tracker (orange units), the smart shoes, the smartwatch on the wrist, and the smartphone 
in the front pocket. 
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Figure 1. Smartphone (left), smartwatch (center), and smart shoe (right). Local reference frames 
associated with the inertial sensors are reported. 

 
Figure 2. Subject wearing the reference system and the wearable devices. 

Table 1. Signals acquired per device. 

Sensor Units 
Sampling Fre-
quency (Hz) 

Phone Watch Shoes 

Accelerometer m/s2 50 X, Y, Z X, Y, Z X, Y, Z 
Gyroscope rad/s 50 - X, Y, Z X, Y, Z 

Orientation deg 50 
Azimuth-
Pitch-Roll 

- - 

Pressure mV 50 - - X, Y, Z 

2.1.2. Reference System 
To obtain a reference measurement for the GS, we employed the AWINDA inertial 

motion tracker coupled with the MVN Analyze software, both provided by Xsens [23]. 
The Xsens Awinda system is composed of 17 wireless inertial measurement units. The 
MVN Analyze software provides tools for visualizing and interpreting movement data 
captured by Xsens sensors, including the Center of Mass (CoM) velocity. We used the 
horizontal component of the CoM velocity extracted by MVN Analyze as a reference for 
gait speed. 
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2.2. Experimental Protocol 
This study was composed of twenty healthy subjects, 11 females and 9 males, aged 

27.6 ± 1.6 years. Each subject wore the reference system and the wearable devices, with 
the smartwatch on the left arm and the smartphone placed in the trouser’s front pocket. 
Each participant was asked to perform a modified version of the Six-Minute-Walking-Test 
(6MWT), a widely recognized and standardized assessment tool to assess functional au-
tonomy, especially in subjects with compromised lung function [19]. The original clinical 
version of the test consists of measuring the distance walked by a person in six minutes 
along a 30 m flat path, walking as fast as possible [24]. Our modified version took place 
along a 10 m flat path, with a turning radius of about 50 cm available to make directional 
changes. Each participant was asked to perform the test three times at three different 
paces, medium, slow, and fast, to cover a wider range of speeds. They were encouraged 
to self-select the pace during each trial. While performing the test, the devices were always 
worn in the same position. In particular, the watch was placed on the left wrist, and the 
phone was in the left pocket, with the screen facing the thigh and the Y-axis facing up-
ward. 

2.3. Algorithm for Gait Speed Estimation 
As previously introduced, we aimed to build and assess a gait speed estimation al-

gorithm capable of providing the best estimation for each possible wearable device com-
bination. Therefore, we trained seven machine learning models on the following combi-
nations of wearable devices: (i) phone, (ii) watch, (iii) shoes, (iv) phone + watch, (v) phone 
+ shoes, (vi) watch + shoes, or (vii) all the devices. 

The model chosen for each combination-specific GS estimation algorithm was a mul-
tiple linear regression with 11 terms (intercept and 10 regressors) as follows: 

𝑦𝑦� =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑓𝑓1+. . . +𝛽𝛽10 ∗ 𝑓𝑓10 (1) 

where 𝑦𝑦� is the estimated GS, 𝛽𝛽𝑗𝑗 are the regression coefficients, and 𝑓𝑓𝑗𝑗  are the features. 
Note that the features (𝑓𝑓𝑗𝑗) vary across the different models according to the feature selec-
tion stage described later in this section. 

The workflow reported in Figure 3 describes the steps needed to train the machine 
learning-based models capable of estimating walking speed from the data collected by 
different combinations of wearable devices. After pre-processing the raw signals of the 
wearable devices, a set of features was extracted and selected. These features were used 
to train a linear regressor for each of the seven possible combinations of wearable devices. 
The operations described in Figure 3 (i.e., feature selection, z-normalization, and GS esti-
mation model training and validating) were carried out, validating one subject at a time, 
thus performing a leave-one-subject-out cross-validation to separately evaluate the per-
formance of the models. 
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Figure 3. Workflow for gait speed estimation. The blocks within the blue box are repeated for every 
combination of devices. Meanwhile, the blocks inside the red box, which encompassed the blue box 
as well, are carried out for each subject in the cross-validation process. 

In the first stage of the proposed workflow, we preprocessed the raw sensor data to 
derive two datasets. To preserve information about gravity direction from the accelerom-
eter signals, the first dataset included low-frequency components, which were obtained 
by filtering the signals with a low-pass filter (ft = 10 Hz). The second dataset excluded low-
frequency components and was obtained by using a band-pass filter (ft1 = 0.1 Hz, ft2 = 10 
Hz). Afterward, we extracted features from this dataset to train the models. 

To extract the features, all signals were first segmented, adopting 5 s sliding windows 
with 80% overlap. For every derived time window, the following features were extracted 
for each of the components of the acquired signals and their modulus: (i) Mean, (ii) STD 
(Standard Deviation), (iii) CV (Coefficient of Variation), (iv) RMS (Root Mean Square), (v) 
Range, (vi) Max value, (vii) MCR (Mean Crossing Rate), (viii) PF (Peak Frequency), (ix) 
SMA (Signal Magnitude Area, computed once per sensor), and (x) Shannon Entropy. 
Therefore, for every sensor, we obtained 4 values for each of the features, except for the 
SMA, from which we obtained only 1. Combining the two datasets, we obtained 74 fea-
tures for each sensor. The phone and watch, which acquire signals from accelerometers 
and gyroscopes, have 148 features, while shoes, which also acquire data from pressure 
sensors, have 222 features. Furthermore, the obtained features were z-normalized to pre-
vent the estimation from being biased by different scales and to obtain comparable coeffi-
cients, which will improve the explainability of the model. 

The features used to train the model were selected independently for every device. 
The adopted criterion to add terms was the Bayesian information criterion (BIC). The scor-
ing was based on the likelihood function but also considered the complexity of the model, 
introducing a penalty for the number of parameters of the model. The model admitted 
only an intercept term and linear terms for each predictor, improving the explainability 
of the model. Every model was built starting with the intercept, and the stepwise was free 
to add terms based on the BIC criterion. For each model, we set a maximum of 10 terms; 
stepwise, we never stopped at a lower number of features, obtaining Equation (1). We also 
investigated the performances by varying the size of the time windows. Windows of 2.5, 
5, 10, and 20 s were tested. We chose the overlapping between the windows to always 
ensure 1 sample per second. 
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2.4. Algorithm Evaluation 
2.4.1. Error Metrics 

To evaluate the agreement between the GS measured by the reference system and the 
estimated one, we utilized the Bland–Altman and correlation plots, reporting the limits of 
agreement, the bias, and the coefficient of determination (R2). We performed the Bland–
Altman and correlation plots also for the six-minute walking distance (6MWD), obtained 
by GS estimation by using the following formula: 

6MWD�  = �
1
𝑛𝑛
�𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� ∗ 360𝑠𝑠 (2) 

where 𝑦𝑦�𝑖𝑖 is the estimated GS for every time window and n is the number of the time 
windows extracted from the 6MWT under consideration. 

We calculated the root mean square error (RMSE) of the GS estimation as follows: 

RMSE =  �
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (3) 

where 𝑦𝑦𝑖𝑖  is the speed provided by the Xsens and 𝑦𝑦�𝑖𝑖 is the speed estimated by the regres-
sion algorithm. 

We then calculated the relative percentage error (εr) on the 6MWD estimation as fol-
lows: 

ε𝑟𝑟 =  �
6𝑀𝑀𝑀𝑀𝑀𝑀 − 6MWD�  

6𝑀𝑀𝑀𝑀𝑀𝑀
� ∗ 100 (4) 

2.4.2. Feature Interpretability 
We performed the analysis described in this section to identify the most important 

features of each combination of devices. Each β coefficient of the regression was linearly 
associated with one predictor. Due to the z-normalization, the coefficients will be directly 
comparable. 

To find the most important features, we investigated the training data following these 
steps: 
1. Selection of significant features: we select features found to have been chosen in at 

least one model and found to be significant (p-value < 0.001); 
2. First drop-out stage: for each combination, we drop out the features selected in less 

than half of the folds of the validation, i.e., 10 folds; 
3. Second drop-out stage: through observing that each device can appear in 4 of the 7 

combinations, we will select, for each device, those that appear in more than half of 
the possible combinations, i.e., 2 combinations. 
The dataset is available on Zenodo (https://doi.org/10.5281/zenodo.11091279, ac-

cessed on 29 April 2024). 

3. Results 
3.1. Error Metrics 

Table 2 reports the RMSE and Bland–Altman’s indices (limits of agreement, bias, and 
R2) for GS estimation obtained using features from different device combinations. The 
first column of Table 2 displays the RMSE for GS across different combinations of devices. 
The subsequent columns show the lower and the upper limits of agreement of the Bland–
Altman analysis, along with the bias. The last column reports the coefficient of determi-
nation derived from the correlation plot. 
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Table 2. RMSE and Bland–Altman indices for GS estimation across different device combinations. 

Devices Combination 
RMSE 
[m/s] 

Lower Limit of 
Agreement 
[−1.96 SD] 

Upper Limit of 
Agreement 
[+1.96 SD] 

Bias R2 

Phone 0.114 ± 0.055 −0.24 0.25 0.01 0.83 
Watch 0.135 ± 0.033 −0.27 0.27 0.00 0.79 
Shoes 0.141 ± 0.05 −0.3 0.29 −0.01 0.76 

Phone + Watch 0.113 ± 0.051 −0.25 0.24 −0.00 0.84 
Phone + Shoes 0.11 ± 0.04 −0.23 0.23 0.00 0.85 
Watch + Shoes 0.109 ± 0.029 −0.22 0.22 0.00 0.86 

All Devices 0.111 ± 0.043 −0.24 0.23 −0.00 0.85 

As shown in Table 2, the best performance in terms of RMSE is achieved for the com-
bination “Watch + Shoes”. On the other hand, the worst performance is obtained when 
the “Shoes” device is used alone. 

Figures 4 and 5 show the correlation and the Bland–Altman plots of the GS estimation 
for the configuration with the best RMSE (i.e., “Watch + Shoes”). These plots aggregate the 
estimations of all 20 subjects in the cross-validation. In Appendix A, in Figure A1–A12, we 
report the correlation and Bland–Altman plots for the combinations “Phone”, “Watch”, 
“Shoes”, “Phone + Watch”, “Phone + Shoes”, and “All Devices”. 

 
Figure 4. GS estimation using a correlation plot for the “Watch + Shoes” combination. 
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Figure 5. GS estimation using a Bland–Altman plot for the “Watch + Shoes” combination. 

The first column of Table 3 reports the εr for the 6MWD estimation. The subsequent 
columns show the lower and the upper Bland–Altman’s limits of agreement and the bias. 
The last one reports the coefficient of determination of the correlation plot. 

Table 3. εr and Bland–Altman’s indices for the 6MWD estimation for different device combina-
tions. 

Devices Combination εr 
Lower Limit of 

Agreement 
[−1.96SD] 

Upper Limit of 
Agreement 
[+1.96SD] 

Bias R2 

Phone 7.2 ± 7.1 −72 75 1.6 0.85 
Watch 8.6 ± 6.7 −75 75 0.24 0.85 
Shoes 9.3 ± 8.1 −92 86 −2.7 0.78 

Phone + Watch 7.8 ± 6.6 −73 70 −1.6 0.86 
Phone + Shoes 7.6 ± 5.5 −69 68 −0.72 0.87 
Watch + Shoes 6.6 ± 5.1 −63 59 −1.7 0.9 

All Devices 8.4 ± 6 −77 74 −1.5 0.85 

Considering the percentage error, the best performance for GS estimation was ob-
tained from the combination “Watch + Shoes”, while the worst performance was obtained 
from the “Shoes” device used alone. 

Figures 6 and 7 show the correlation and the Bland–Altman plots of the 6MWD esti-
mation for the configuration with the best percentage error (i.e., “Watch + Shoes”). These 
plots aggregate the estimations of all 20 subjects in the cross-validation. In Appendix A, 
in Figures A13–A24, we report the correlation and Bland–Altman plots for the combina-
tions, “Phone”, “Watch”, “Shoes”, “Phone + Watch”, “Phone + Shoes”, and “All Devices”. 
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Figure 6. 6MWD estimation using a correlation plot for the “Watch + Shoes” combination. 

 
Figure 7. 6MWD estimation using a Bland-Altman plot for the “Watch + Shoes” combination. 

Table 4 reports the GS and 6MWD estimation performances in terms of estimation 
errors (RMSE for GS and εr for 6MWD) for different sizes of the analysis window and for 
different device combinations. In general, the trend of GS estimation suggests an inverse 
relationship between the analysis window size and the estimation error, whereas an in-
crease in the window size corresponds to a decrease in estimation error. However, the 
trend showed one exception. For the “phone” combination, increasing the window size 
from 5 to 10 s resulted in an increase in the estimation error of the GS. Regarding the 
estimation of the 6MWD, the trend was less defined, without a clear pattern between the 
estimation error and the analysis window size. 
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Table 4. GS and 6MWD performance by varying the analysis window size and device combinations. 

 2.5 s 5 s 10 s 20 s 

Devices 
Combination 

GS 
(RMSE 
[m/s]) 

6MWD (εr) 
GS 

(RMSE 
[m/s]) 

6MWD (εr) 
GS 

(RMSE 
[m/s]) 

6MWD (εr) 
GS 

(RMSE 
[m/s]) 

6MWD 
(εr)  

Phone 0.145 ± 0.053 8 ± 7.6 0.114 ± 0.055 7.2 ± 7.1 0.108 ± 0.06 8.2 ± 7.1 0.101 ± 0.064 8.6 ± 6.7 
Watch 0.179 ± 0.042 9.3 ± 8.2 0.135 ± 0.033 8.6 ± 6.7 0.122 ± 0.036 9.4 ± 7.0 0.116 ± 0.036 9.1 ± 6.5 
Shoes 0.17 ± 0.038 9.6 ± 6.7 0.141 ± 0.05 9.3 ± 8.1 0.112 ± 0.047 7.5 ± 6.5 0.112 ± 0.05 8.5 ± 6.7 

Phone + Watch 0.135 ± 0.038 7.2 ± 6.1 0.113 ± 0.051 7.8 ± 6.6 0.109 ± 0.058 8.5 ± 7 0.094 ± 0.051 7.6 ± 5.9 
Phone + Shoes 0.134 ± 0.043 8.3 ± 6.5 0.11 ± 0.04 7.6 ± 5.5 0.095 ± 0.046 7.2 ± 5.1 0.1 ± 0.044 8.5 ± 6.2 
Watch + Shoes 0.152 ± 0.035 8.5 ± 6.7 0.109 ± 0.029 6.6 ± 5.1 0.093 ± 0.041 6.4 ± 5.4 0.091 ± 0.043 6.9 ± 5.8 

All Devices 0.124 ± 0.031 7.9 ± 5.4 0.111 ± 0.043 8.4 ± 6 0.098 ± 0.036 7.8 ± 4.9 0.088 ± 0.041 7.2 ± 6 

3.2. Feature Interpretability 
The selection process for the most significant features, following the steps described 

in section E of the methods, yielded the following results: 
1. Significant features: starting from 518 (148 from phones, 148 from watches, 222 from 

shoes), we obtained 123 features; 
2. First drop-out stage: from 123, we dropped to 32; 
3. Second drop-out stage: out of the thirty-two, only six were retained. 

We outlined the features that emerged for every device. The mean ± std was com-
puted considering the occurrences that successfully passed through the selection process: 

A. Smartphone: 
• The Shannon entropy of the modulus of the accelerometer when low-pass 

filtered (β = 0.0527 ± 0.0162, tStat = 45.57 ± 12.57); 
• The mean crossing rate of the modulus of the orientation sensor when low-

pass filtered (β = 0.0279 ± 0.0048, tStat = 36.70 ± 7.37); 
• The range of the y (vertical) component of the accelerometer when low-pass 

filtered (β = −0.1469 ± 0.0234, tStat = −54.20 ± 11.21); 
• The standard deviation of the y (vertical) component of the accelerometer 

when low-pass filtered (β = 0.255 ± 0.1159, tStat = 77.38 ± 40.48). 
B. Smartwatch: 

• The root mean square of the modulus of the accelerometer when low-pass 
filtered (β = −0.279 ± 0.4715, tStat = 29.19 ± 47.73). 

C. Smart shoes: 
• The mean of the z (vertical) component of the accelerometer of the left shoe 

when low-pass filtered (β = −0.0487 ± 0.0163, tStat = −39.58 ± 11.81). 
Table 5 summarizes the features selected by learning the models of all 20 subjects. 

The feature names reported in the table are constructed in this way: “STATISTIC”_”SEN-
SOR”_”FILTER MODE”_”COMPONENT”_”DEVICE”. STATISTIC: ENT->Shannon En-
tropy, RNG->Range, STD->Standard Deviation, MCR->Mean Crossing Rate, PF->Peak 
Frequency, SMA->Signal Magnitude Area, CV->Coefficient of Variation, MAX->max 
value, MEAN->mean value, RMS->Root Mean Square; SENSOR: acc->accelerometer, gyr-
>gyroscope, ori->orientation sensor, press->pressure sensor; FILTER MOD: lp->low-pass 
filtered, lp-hp->band-pass filtered; COMPONENT: x->x axis, y->y-axis, z->z-axis, mod-
>modulus; DEVICE: dev_1->phone, dev_2->watch, dev_3->left shoe, dev_4->right shoe. 
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Table 5. Estimate±SE, (all p-values < 0.001). 

 Phone Watch Shoes 
Phone + 
Watch 

Phone + 
Shoes 

Watch + Shoes All Devices 

Intercept 0.951 +/− 0.001 0.945 +/− 0.001 0.971 +/− 0.001 0.954 +/− 0.001 1.375 +/− 0.011 0.963 +/− 0.001 0.955 +/− 0.001 

Feat. 1 
ENT_acc_lp_
mod_dev_1: 

0.062 +/− 0.001 

RNG_acc_lp_
mod_dev_2: 

−0.114 +/− 
0.004 

MEAN_acc_lp
_mod_dev_3: 
0.14 +/− 0.002 

STD_acc_lp_
mod_dev_1: 

0.373 +/− 0.006 

ENT_acc_lp_
mod_dev_1: 

0.032 +/− 0.001 

RMS_acc_lp_
mod_dev_2: 

0.079 +/− 0.001 

MCR_acc_lp_
mod_dev_1: 

−0.03 +/− 0.001 

Feat. 2 

RNG_acc_lp_
y_dev_1: 
−0.143 +/− 

0.003 

RMS_acc_lp_
mod_dev_2: 
−0.9 +/− 0.028 

MEAN_acc_lp
_z_dev_3: 

−0.02 +/− 0.002 

MCR_acc_lp_
mod_dev_1: 

−0.035 +/− 
0.001 

RNG_acc_lp_
y_dev_1: 
−0.122 +/− 

0.003 

STD_acc_lp_
mod_dev_2: 

0.086 +/− 0.001 

ENT_acc_lp_
mod_dev_1: 
0.03 +/− 0.001 

Feat. 3 

MEAN_acc_lp
_y_dev_1: 
−0.021 +/− 

0.001 

MEAN_acc_lp
_mod_dev_2: 
0.908 +/− 0.025 

ENT_acc_lp-
hp_y_dev_3: 

0.048 +/− 0.001 

ENT_acc_lp_
mod_dev_1: 

0.065 +/− 0.001 

STD_acc_lp_y
_dev_1: 0.291 

+/− 0.003 

ENT_acc_lp_
mod_dev_2: 

0.037 +/− 0.001 

RNG_acc_lp_
y_dev_1: 
−0.128 +/− 

0.003 

Feat. 4 
STD_acc_lp_y
_dev_1: 0.374 

+/− 0.004 

STD_acc_lp_
mod_dev_2: 

0.437 +/− 0.008 

MCR_pre_lp_
mod_dev_3: 

0.043 +/− 0.001 

MAX_acc_lp_
y_dev_1: −0.09 

+/− 0.002 

MCR_gyr_lp_
x_dev_1: 0.031 

+/− 0.001 

CV_gyr_lp-
hp_mod_dev_

2: 0.025 +/− 
0.001 

STD_acc_lp_y
_dev_1: 0.292 

+/− 0.003 

Feat. 5 

MCR_acc_lp_
y_dev_1: 
−0.035 +/− 

0.001 

ENT_acc_lp_
mod_dev_2: 

0.028 +/− 0.002 

PF_pre_lp_z_
dev_3: 0.053 

+/− 0.001 

STD_acc_lp_y
_dev_1: 0.019 

+/− 0.006 

PF_gyr_lp_y_
dev_1: 0.022 

+/− 0.001 

MEAN_acc_lp
_z_dev_3: 
−0.063 +/− 

0.001 

MCR_gyr_lp_
mod_dev_1: 
0.03 +/− 0.001 

Feat. 6 

MCR_acc_lp-
hp_mod_dev_

1: 0.039 +/− 
0.001 

MEAN_acc_lp
_y_dev_2: 

0.028 +/− 0.001 

MAX_pre_lp-
hp_x_dev_3: 

0.032 +/− 0.001 

PF_acc_lp_z_
dev_1: 0.028 

+/− 0.001 

PF_gyr_lp-
hp_z_dev_1: 

0.019 +/− 0.001 

ENT_gyr_lp_z
_dev_3: 0.044 

+/− 0.001 

SMA_gyr_lp-
hp_dev_2: 

0.058 +/− 0.001 

Feat. 7 

PF_acc_lp-
hp_mod_dev_

1: 0.02 +/− 
0.001 

SMA_acc_lp-
hp_dev_2: 

0.054 +/− 0.003 

ENT_acc_lp_x
_dev_4: 0.025 

+/− 0.001 

SMA_acc_lp-
hp_dev_1: 

0.068 +/− 0.003 

MEAN_acc_lp
_z_dev_3: 
−0.047 +/− 

0.001 

RMS_acc_lp_z
_dev_4: 0.071 

+/− 0.00 

MEAN_acc_lp
_z_dev_3: 
−0.045 +/− 

0.001 

Feat. 8 
PF_acc_lp-

hp_z_dev_1: 
0.028 +/− 0.001 

MCR_acc_lp-
hp_mod_dev_

2: 0.051 +/− 
0.002 

RMS_acc_lp_z
_dev_4: 0.117 

+/− 0.002 

STD_acc_lp-
hp_mod_dev_

1: −0.165 +/− 
0.004 

CV_gyr_lp_m
od_dev_3: 

1.922 +/− 0.051 

RMS_gyr_lp_z
_dev_4: −0.047 

+/− 0.001 

MEAN_acc_lp
_z_dev_4: 
−0.045 +/− 

0.001 

Feat. 9 
MCR_gyr_lp_
mod_dev_1: 

0.025 +/− 0.001 

CV_gyr_lp_m
od_dev_2: 

0.039 +/− 0.001 

MCR_gyr_lp-
hp_z_dev_4: 

0.041 +/− 0.001 

MCR_gyr_lp_
mod_dev_1: 

0.032 +/− 0.001 

MAX_pre_lp_
z_dev_3: 0.023 

+/− 0.001 

MEAN_gyr_l
p-

hp_mod_dev_
4: 0.05 +/− 

0.002 

RMS_gyr_lp_
x_dev_4: 0.032 

+/− 0.001 

Feat. 10 
PF_gyr_lp-

hp_z_dev_1: 
0.024 +/− 0.001 

RNG_gyr_lp_
y_dev_2: 
−0.046 +/− 

0.002 

ENT_pre_lp-
hp_y_dev_4: 

0.036 +/− 0.001 

RMS_acc_lp_
mod_dev_2: 

0.074 +/− 0.001 

MEAN_acc_lp
_z_dev_4: 
−0.069 +/− 

0.001 

ENT_pre_lp_z
_dev_4: 0.031 

+/− 0.001 

ENT_gyr_lp-
hp_x_dev_4: 

0.032 +/− 0.001 

4. Discussion 
The results indicated that the models had reasonably accurate performance in esti-

mating walking speed (mean RMSE: 0.119 ± 0.0132 m/s; minimum RMSE of 0.109 ± 0.029 
m/s in the “watch + shoes” combination; maximum RMSE of 0.141 ± 0.05 m/s for the 
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“watch”). We also used the extracted gait speed to estimate the 6MWD, i.e., the distance 
traveled in each six-minute walking trial. For the estimation of the 6MWD, we obtained a 
mean percentage error of 7.9 ± 0.9. We obtained the minimum percentage error of 6.6 ± 5.1 
in the “watch + shoes” combination and the maximum percentage error of 9.3 ± 7.5 in the 
“shoes” combination. 

Our results on GS estimation appear to be aligned with the previous literature, which, 
however, focused on methods applied to single device combinations. Soltani and Aminian 
[11], using a single inertial sensor worn on the lower back, obtained the best RMSE of 0.1 
m/s across different contexts. Shresta and Won [12] used a smartphone placed in the trou-
ser pocket and achieved an RMSE of 0.16 m/s, while McGinnis and colleagues [14] used 
three identical accelerometers placed on the sacrum, thigh, and shank, reaching a mean 
RMSE of 0.136 m/s. Interestingly, Soltani and colleagues [10], using only a wrist sensor, 
obtained an RMSE of 0.1 m/s, which improved up to 0.05 m/s when employing a person-
alized approach that took into account subject-specific gait characteristics obtained 
through a calibration phase utilizing the global navigation satellite system. 

We observed that each single wearable device exhibited good performance in pre-
dicting gait speed, with small differences among them. Notably, the standalone 
smartphone outperformed other devices in GS prediction. However, the smartphone was 
consistently and artificially positioned in a controlled manner on the body. This represents 
a limitation, as this scenario is not always replicable in real life. Moreover, the controlled 
placement may influence the smartphone’s superior performance and raise questions 
about the generalizability of these findings to real living conditions, where device place-
ment may vary. 

The smartwatch showed a worse ability to predict GS compared to the smartphone, 
even if it presented a good accuracy of distance estimation with a very low bias. However, 
the smartwatch came with important advantages. Indeed, it has less intrinsic variability 
in wear placement across individuals, suggesting a better generalizability of the results. 
Moreover, when the smartwatch was paired with other devices, a good improvement in 
accuracy was observed, leading to the highest mean performance among all combinations. 
This synergistic effect suggests the potential for integrating multiple wearables to enhance 
overall predictive capabilities. It was worthwhile noting that the smartwatch also captures 
additional physiological information, such as heart rate (HR), that could potentially fur-
ther enhance prediction accuracy. Indeed, as suggested by the work from Schubert et al. 
[25], HR-based features are predictors of 6MWD outcomes. 

Quite surprisingly, wearing all devices simultaneously did not yield optimal perfor-
mance. This counterintuitive result may be due to the redundancy in features extracted 
from different devices, leading to a complex and potentially conflicting input for the pre-
diction models. The intricacies of combining data from different sensors may introduce 
noise and hinder the model’s ability to discern meaningful patterns, thereby decreasing 
predictive accuracy. 

The analysis of the “best” features identified at the end of the validation (see section 
A.1 in III. Results section) highlights a noteworthy observation: the feature exerting the 
most significant influence on walking speed was the “root mean square of the modulus of 
the accelerometer when low-pass filtered”. This parameter exhibits considerable variabil-
ity among subjects, indicative of the diverse walking styles within the study cohort. No-
tably, three of the six selected features pertained to the vertical component, underscoring 
the rich information vertical movement offers regarding walking speed. Additionally, it 
was intriguing to observe that five of the six identified features derived from accelerome-
ter data, with the remaining feature sourced from the phone’s orientation sensor. This 
underscores the prominence of accelerometer-derived metrics in gauging walking speed. 

Considering all combinations of wearable devices, it was possible to estimate GS with 
performances comparable to those in the literature (on average, the RMSE = 0.119 ± 0.0132 
m/s, calculated with time windows of 5 s, considering all paces together) [10–12,14,26,27]. 
Moreover, the RMSE average seemed to improve with the size of time windows; the larger 
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the size, the lower the RMSE. In fact, the performance, considering all paces together, 
changed from an average RMSE of 0.148 ± 0.02 m/s with a 2.5 s window to an RMSE of 0.1 
± 0.01 m/s with a 20 s window. Taking into account all the paces together, the best-per-
forming device considered individually, as we expected, was the smartphone (RMSE = 
0.114 ± 0.055), since it was placed in the trouser pocket and was the closest to the center of 
mass, whose speed was used as the reference system. If the devices were used in combi-
nation, the performance improved compared to the three individual devices, except for 
the combination “Phone + Watch”. It is interesting to note that “Watch” and “Shoes” taken 
singularly performed much worse than their combination, “Watch + Shoes”, which 
emerged as the overall best among all seven available (RMSE = 0.109 ± 0.029). 

Our findings indicate that using multiple devices together could result in the reduced 
performance of GS estimation, possibly due to redundant features and complexity of the 
model. To improve accuracy and minimize the impact of redundant data, a feasible ap-
proach could be to employ dimensionality reduction techniques. Additionally, an alterna-
tive strategy could involve implementing a weighted Model Ensemble approach, which 
combines predictions from different devices used as separate and independent data 
sources. In this scenario, weights could be assigned to predictions derived from individual 
devices based on their relevance, applicability, and robustness. 

The other parameter, the estimation of the 6MWD, which is derived from GS, was 
stable in all combinations of wearable devices in the trials at different paces with an aver-
age percentage error of 7.9 ± 0.9%. The best combination of devices considering the three 
paces together, even in this case, was the one that combined watch and shoes (εr = 6.6 ± 
5.1). It is important to note that, in all the seven combinations available, the standard de-
viations were very wide, showing considerable intra-subject variability in the 6MWD es-
timation. 

The results we obtained highlight that it is possible to estimate mobility parameters, 
such as gait speed or walking distance, with good accuracy using various combinations 
of wearable devices without any effort required from the user. The flexibility to use a 
standalone device or any combination tailored to the subject’s preferences has the poten-
tial to increase patient acceptance and enable the continuous daily life collection of mobil-
ity data. Indeed, this approach allows for greater compliance, as patients are not forced to 
use the same device all the time but can choose the one most suitable for their daily activ-
ities. This capability potentially enables day-by-day estimation of mobility parameters 
and their changes over time. For the COPD population, this implies a proactive assess-
ment of physical capacity, leading to timely indications of worsening or improving con-
ditions [28–30]. This supports the personalization of treatment plans and early interven-
tion in case of sudden worsening, with the potential to reduce acute complications and 
improve the quality of life. Similar consideration could be used for other pathological con-
ditions [31–33]. 

5. Conclusions 
In conclusion, our study highlights the robust performance of various wearable de-

vices, including smartphones, smartwatches, and smart shoes, in accurately estimating 
gait speed and distance traveled, which are crucial metrics in assessing mobility, espe-
cially in clinical contexts such as COPD. While individual devices exhibit good predictive 
capabilities, our findings highlight the potential for enhanced accuracy and generalizabil-
ity when these devices are strategically combined. Notably, the smartwatch demonstrates 
promising capabilities, particularly when paired with other devices. Our results also shed 
light on the complex interplay between data fusion and predictive performance, with sim-
ultaneous device usage demonstrating diminishing returns likely due to feature redun-
dancy and increased noise. These results suggest the importance of thoughtful integration 
strategies to maximize predictive accuracy while minimizing complexity. The implica-
tions of our findings extend beyond clinical settings to broader applications in personal-
ized healthcare and remote monitoring. Indeed, combining different devices tailored to 
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specific situations or patient preferences while maintaining good estimation performance 
enhances the potential for continuous monitoring and estimation of mobility parameters 
in daily life. This approach holds significant promise for enhancing the management and 
treatment of chronic diseases like COPD. It enables the continuous, non-invasive moni-
toring of a patient’s mobility and activity levels, considering the different needs of patients 
who may prefer one device over another based on the moment of the day and their health 
conditions. 
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Appendix A 

 
Figure A1. GS estimation using a correlation plot for “Phone” configuration. 

 
Figure A2. GS estimation using a Bland–Altman plot for “Phone” configuration. 
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https://doi.org/10.5281/zenodo.11091279


Sensors 2024, 24, 3205 16 of 22 
 

 

 
Figure A3. GS estimation using a correlation plot for “Watch” configuration. 

 
Figure A4. GS estimation using a Bland-Altman plot for “Watch” configuration. 

 
Figure A5. GS estimation using a correlation plot for “Shoes” configuration. 

 
Figure A6. GS estimation using a Bland–Altman plot for “Shoes” configuration. 
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Figure A7. GS estimation using a correlation plot for the “Phone + Watch” configuration. 

 
Figure A8. GS estimation using a Bland–Altman plot for “Phone + Watch” configuration. 

 
Figure A9. GS estimation using a correlation plot for the “Phone + Shoes” configuration. 

 
Figure A10. GS estimation using a Bland–Altman plot for “Phone + Shoes” configuration. 
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Figure A11. GS estimation using a correlation plot for “All Devices” configuration. 

 
Figure A12. GS estimation using a Bland–Altman plot for “All Devices” configuration. 

 
Figure A13. GS estimation using a correlation plot for “Phone” configuration. 

 
Figure A14. GS estimation using a Bland–Altman plot for “Phone” configuration. 
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Figure A15. GS estimation using a correlation plot for “Watch” configuration. 

 
Figure A16. GS estimation using a Bland–Altman plot for “Watch” configuration. 

 
Figure A17. GS estimation using a correlation plot for “Shoes” configuration. 

 
Figure A18. GS estimation using a Bland–Altman plot for “Shoes” configuration. 
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Figure A19. GS estimation using a correlation plot for the “Phone + Watch” configuration. 

 
Figure A20. GS estimation using a Bland–Altman plot for “Phone + Watch” configuration. 

 
Figure A21. GS estimation using a correlation plot for the “Phone + Shoes” configuration. 

 
Figure A22. GS estimation using a Bland–Altman plot for “Phone + Shoes” configuration. 
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Figure A23. GS estimation using a correlation plot for “All Devices” configuration. 

 
Figure A24. GS estimation using a Bland–Altman plot for “All Devices” configuration. 
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