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We outline a general strategy developed for the analysis of critical models, which we apply to obtain a
heuristic classification of all universality classes with up to three field-theoretical scalar order parameters in
d ¼ 6 − ϵ dimensions. As expected by the paradigm of universality, each class is uniquely characterized by
its symmetry group and by a set of its scaling properties, neither of which are built-in by the formalism but
instead emerge nontrivially as outputs of our computations. For three fields, we find several solutions
mostly with discrete symmetries. These are nontrivial conformal field theory candidates in less than six
dimensions, one of which is a new perturbatively unitary critical model.
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I. INTRODUCTION

Quantum and statistical field theories are the most
powerful theoretical tools to investigate the physics of
critical and almost-critical systems. The predictive power of
field theory is astonishing because it works equally well in
diametrically opposed domains of physics: high energy
physics of particles with fundamental interactions and low
energy physics of systems subject to statistical fluctuations.
An explanation for such broad applicability range can be
argued on the basis of three powerful pillars of modern
physics: scaling, universality, and symmetry. However, it
remains fundamentally mysterious how nature’s degrees of
freedom (fields) arrange themselves into interactions. One
can expect that critical and almost critical theories are
allowed to exhibit only specific symmetries in their field
dynamics. A fitting analogy would be to see the uncon-
strained space of all possible theories as a tumultuous sea
which we know very little of, but in which the critical
points act as lighthouses helping us in the process of
charting. Needless to say, a chart of all possible field
theories would be extremely desirable and have strong
physical implications as it could guide experimental and
numerical investigations of critical systems to find physical

realizations of all the possible critical points. On the basis
of traditional arguments of scaling and universality, we
expect that any found critical theory could be realized in
nature, either as some infrared effective models at large
distances, but even as fundamental models, i.e., ultraviolet
complete field theories.
This paper discusses a powerful and completely general

method to unveil this pattern. To illustrate the method, we
give as first application the heuristic classification of all
possible critical theories with cubic interactions and up to
three order parameters in d ¼ 6 − ϵ dimensions. We have
chosen to embark on this example because it reveals some
unexpected and previously unknown critical theories.

II. PRELIMINARIES

We stress that the most ambitious part of this approach is
that we want to let symmetry emerge from the condition of
criticality, rather than input a certain symmetry content
a priori. Given a specific field content, it is rather
straightforward to write down all possible interactions,
but in the absence of a constraint dictated by symmetry, the
number of possible interactions grows fast with the number
of field theoretical degrees of freedom. This problem can be
studied in a fully consistent way using renormalization
group (RG) methods [1,2] and the ϵ expansion [3] as main
paradigms to carry on our investigations. A critical theory is
seen as a scale invariant fixed point of the RG flow, and
critical parameters can be determined order-by-order in ϵ.
Scale invariance is often lifted to conformal symmetry;
therefore, we must make sure that our tools integrate well
with conformal field theory (CFT) methods [4–10]. In this
work, we adopt functional perturbative RG methods [11–
13] because they suit well the analysis of multiscalar
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quantum field theories (QFTs) with no symmetry imposed
a priori. The complexity of the unconstrained algebraic
problem (because of the absence of symmetries) is reduced
taking advantage of elementary group theory considerations.
In past RG investigations of theories with quartic

interactions in d ¼ 4 − ϵ, the trace condition [3,14] for
critical potentials was assumed. This leads to complete
degeneracy of the field anomalous dimensions and con-
strains to one the number of control parameters, therefore
reducing the possible number of critical theories [3,15–19].
A systematic search for all possible theories with N ¼ 2
fields has been done in [20], but a general study with N ≥ 2
has yet to come. In the following, we concentrate on
systems with cubic interactions and upper critical dimen-
sion dc ¼ 6, which could be seen as generalizations of the
Lee-Yang model [21]. Multifield theories of this type,
exhibiting a singlet and a vector under OðNÞ symmetry,
have already been studied in [22] showing that perturba-
tively unitary models might emerge above four dimensions
(a theory is perturbatively unitary if all operator scaling
dimensions are within the unitarity bound [22]). We
undertake the next step and perform a complete perturba-
tive analysis of cubic theories with up to N ¼ 3 real scalar
fields. The results reveal a large unexplored theory space
which includes some critical theories that can correspond to
new universality classes in lower dimensions, including
d ¼ 2, 3, and 4.

III. BETA FUNCTIONS

We work with a functional perturbative formalism
[11,12,20,23], which more conveniently encodes at once
information about the critical theory and its deformations
induced by relevant operators. At one-loop level (see
Appendix A for the next to leading order), the functional
beta for the dimensionless potential vðϕÞ in d ¼ 6 − ϵ is

βv ¼ −dvþ d − 2

2
ϕivi þ ϕiγijvj −

2

3
vijvjkvki; ð1Þ

in which Latin indices such as i on v run over the number of
flavors (i ¼ 1;…; N) and denote derivatives w.r.t. the
corresponding field component ϕi. In our conventions,
we have also rescaled the potential as v → 2ð4πÞ3=2v. We
will restrict ourselves here to scalar theories with at most
three flavors (N ¼ 3). No symmetry is imposed on the
model, and we therefore consider the most general para-
metrization of the cubic interactions given in terms of the
dimensionless potential

vðϕÞ ¼ 1

3!
λijkϕiϕiϕk: ð2Þ

In terms of the classically marginal couplings λijk, the
leading order (LO) one-loop anomalous dimension matrix
is given by

γij ¼
1

3
λiabλjab: ð3Þ

Its eigenvalues evaluated at the fixed point are denoted by
γi. Taking into account the contribution from the anoma-
lous dimensions, the couplings λijk flow according to the
following beta functions:

βijk ¼ −
1

2
ϵλijk þ λabcλabðiλjkÞc − 4λiabλjbcλkca; ð4Þ

where the round parentheses denote a symmetrization of
the enclosed indices. This is a gradient flow in the sense
that βijkδλijk ¼ δA where the function A is given by

A ¼ −ϵλijkλijk þ
1

4
λbmnλimnλbjkλijk − λabiλbcjλcakλijk ð5Þ

and at the fixed point has the value

A�¼LO −
ϵ

8
λ�ijkλ�ijk¼LO −

3

8
ϵ
X
i

γi: ð6Þ

Another quantity of interest is the coefficient of the energy-
momentum tensor two point function CT , which can be
related to A at two loops for any fixed point,

CT

CT;scalar
¼ 3 −

7

18
λ�ijkλ�ijk¼LO3þ

28

9ϵ
A�; ð7Þ

where CT;scalar refers to the single free scalar theory’s
coefficient. These functions may be calculated perturba-
tively at higher orders as well [20,24,25], and every
statement made here can be generalized beyond LO to
the three-loop level. Our goal is to find all the zeroes of the
above set of beta functions. This task is significantly
facilitated by choosing a more convenient basis of
couplings.

IV. CHOICE OF COUPLINGS

For general number of fields, a full understanding of the
theory space and fixed points is a highly nontrivial task.
Since a complete analysis of the single and double field
models already exists, we concentrate here on three-flavor
model, that is, the lowest number of flavorswhich has not yet
been fully explored. The kinetic term in this case is invariant
under general three-dimensional rotations U ∈ Oð3Þ;
UTU ¼ 1, which are the maximal symmetry that the system
can possess [20]. The group induces a transformation on the
potential vðϕÞ → v0ðϕÞ ¼ vðU · ϕÞ and hence on the cou-
plings themselves λijk → UiaUjbUkcλabc. Notice that Oð3Þ
is not necessarily a symmetry of any fixed points and
therefore v ≠ v0 in general.
For three flavors, there are ten independent couplings in

terms of which the potential (2) may be expressed more
explicitly as
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v ¼ 1

6
ðλ1ϕ3

1 þ 3λ2ϕ
2
1ϕ2 þ 3λ3ϕ

2
1ϕ3 þ 3λ4ϕ1ϕ

2
2 þ 3λ7ϕ1ϕ

2
3

þ 6λ5ϕ1ϕ2ϕ3 þ λ6ϕ
3
2 þ λ10ϕ

3
3 þ 3λ9ϕ2ϕ

2
3 þ 3λ8ϕ

2
2ϕ3Þ:

Rather than analyzing the zeroes of the betas of λI; I ¼ 1;
2…10, we find it more convenient to move to a basis where
this ten-dimensional representation is manifestly split into its
irreducible components 10 ¼ 7 ⊕ 3. The resulting cou-
plings, denoted by gI; I ¼ 1; 2…10, are related to the original
λI couplings through the following linear combinations:

r7 ¼

0
BBBBBBBBBBBB@

5ðλ10 − 3λ8Þ
5ð3λ9 − λ6Þ

−20λ5
10ðλ7 − λ4Þ

4λ3 − λ8 − λ10

4λ2 − λ6 − λ9

2
ffiffiffi
2

p ð2λ1 − 3ðλ4 þ λ7ÞÞ

1
CCCCCCCCCCCCA

≡

0
BBBBBBBBBBBB@

g1
g2
g3
g4
g5
g6
g7

1
CCCCCCCCCCCCA

; ð8Þ

r3 ¼

0
B@

λ3 þ λ8 þ λ10

λ2 þ λ6 þ λ9ffiffiffi
2

p ðλ1 þ λ4 þ λ7Þ

1
CA≡

0
B@

g8
g9
g10

1
CA; ð9Þ

where r7 and r3 carry, respectively, the seven-dimensional
and the three-dimensional irreducible representations. This
can also be seen through the alternative decompositionwhere
the tensor λijk is to split into a vector κi and a symmetric
traceless tensor σijk as follows:

λijk ¼ κðiδjkÞ þ σijk; σill ¼ 0; ð10Þ
where the irreps are expressed in terms of λijk as

κi ¼
3

N þ 2
λill; σijk ¼ λijk −

3

N þ 2
λllðiδjkÞ; ð11Þ

given here for general number of flavors N. For the three-
flavor case, one can make the identifications κi ↔ r3
and σijk ↔ r7.
The gI couplings in (8) and (9) could be further chosen

such that the components of the irreps have definite values
amongm ¼ 0;�1;�2;�3 under J3, the third component of
angular momentum which leaves ϕ3 untouched. However,
we have foundmore convenient to choose a slightly different
basis where couplings with the same jmj ≠ 0 value are
linearly combined, in such a way that the resulting pair of
couplings transform with RðjmjθÞ under a rotation with
angle θ around the third axis, where RðθÞ is a simple 2 × 2
matrix that rotates a vector clockwise by an angle θ. More
explicitly, under expð−iθJ3Þ, the couplings g1 and g8 which
have m ¼ 0 remain unaltered, while the pairs ðg2; g3Þ and
ðg9; g10Þ transform with RðθÞ, and the pairs ðg4; g5Þ and
ðg6; g7Þ transform, respectively, with Rð2θÞ and Rð3θÞ.

The next observation that proves useful in our analysis is
that there is a redundancy in the space of fixed points, that is,
any rotation of a fixed point is itself a fixed point. This is
because the betas of the rotated couplings are the rotated
betas of the original couplings, i.e., βðUgÞ ¼ UβðgÞ, where
U is implicitly assumed to be in the appropriate representa-
tion. This further shows that Oð3Þ related fixed points are
physically equivalent. This equivalence of fixed points
under rotation gives us a freedom to constrain the space
withinwhichwe are seeking for fixed points by setting some
of the couplings to zero. Consider, for instance, r3 which
carries the fundamental representation ofOð3Þ. By a suitable
rotation, one can always align the vector along, say, the eight
direction, that is, to set g9 ¼ g10 ¼ 0. This breaks the Oð3Þ
freedom to theOð2Þ subgroup generated by J3.Wemay then
use this remaining freedom to set further constraints on the
set of couplings included in r7. For instance, we may set
g2 ¼ 0 by a rotation around theϕ3 axis. Thiswill completely
fix the redundancy and simplify the beta functions.
In order to look for fixed points, we completely remove the

redundancy first, that is, we set g2 ¼ g9 ¼ g10 ¼ 0. This will
prevent finding multiple zeros of the beta functions that are
equivalent. However, there will still be ten coupled betas that
are functions of seven couplings and therefore difficult to
solve. We have observed that omitting the three betas β2, β9,
andβ10 of the redundant couplings, the zeroesof the remaining
betas can always be found numerically and sometimes even
analytically. Of course, these roots are only admissible if they
make the three betas β2, β9, and β10 vanish aswell, but this is a
straightforward test that discards all the inconsistent roots and
returns only the admissible ones. In this way, we have been
able to find all the N ¼ 3 fixed points of the d ¼ 6 − ϵ scalar
model, without imposing any extra constraint.

V. RESULTS

The results of this analysis are collected in Table I which
includes the symmetries of the fixed points, the field
anomalous dimensions, and the values of A� at LO, rescaled
by ϵ and ϵ2, respectively. For completeness, we have

TABLE I. Fixed points with N ¼ 1, 2, 3 with their symmetries,
anomalous dimensions, and the values of A at LO.

N Anomalous dimensions=ϵ Symmetry A�=ϵ2

1 − 1
18

ZPT
2

0.02083

2 ð1
6
; 1
6
Þ S3 −0.125

ð− 61
998

;− 25
499

Þ Z2 × ZPT
2

0.04171

3 ð− 1
6
;− 1

6
;− 1

6
Þ S4 × ZPT

2
0.1875

(0.093267, 0.093267, 0.167418) Oð2Þ −0.1327
ð− 401

7994
;− 401

7994
;− 533

7994
Þ S3 × ZPT

2
0.06263

ð157þ3
ffiffiffiffiffiffi
561

p
1698

; 157−3
ffiffiffiffiffiffi
561

p
1698

; 289
1698

Þ K4 −0.1332
ð0.168983; 0.1653200;−0.059256Þ Z2 × ZPT

2
−0.1031

ð−0.063434;−0.055612;−0.047844Þ Z2 × ZPT
2

0.06258
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included the information about the single and two-flavor
models as well (we recover the N ¼ 2 classification
reported in [20]). Clearly, by putting fixed points together,
one can construct fixed points with higher number of
flavors. To avoid such trivial cases, here we have restricted
ourselves only to fully interacting (irreducible) fixed points,
for which there is no basis where there are two decoupled
sectors. For three scalars, there are six fully interacting
fixed points with real anomalous dimensions altogether.
The fixed point with Oð2Þ symmetry belongs to a known
family pointed out in [22]. Two fixed points have permu-
tation and Parity-Time (PT) symmetry: S4 × ZPT

2 and S3 ×
ZPT

2 (we refer to Appendix B for more information on PT

symmetry.)
The last three fixed points are such that the three ano-
malous dimensions are all different. One has the sym-
metry of the Klein four-group K4 ¼ Z2 × Z2. This is
particularly interesting because the field anomalous dimen-
sions are also all positive, which suggests that the theory is
perturbatively unitary, such as the Oð2Þ symmetric
fixed point.
For three fields, the fully interacting fixed point poten-

tials (rescaled by
ffiffiffi
ϵ

p
) at LO in the particular basis described

in the previous section are the following (in the same order
as in Table I from top to bottom):

V1 ¼
i
2
ϕ1ϕ2ϕ3 V2 ¼ aϕ3

3 þ bϕ3ðϕ2
1 þ ϕ2

2Þ

V3 ¼ i
ð13 ffiffiffiffiffi

26
p

ϕ3
3 þ 30

ffiffiffiffiffi
26

p ðϕ2
1 þ ϕ2

2Þϕ3 −
ffiffiffiffiffiffiffiffiffiffi
1009

p ðϕ2
1 − 3ϕ2

2Þϕ1Þ
12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
11991

p

V4 ¼
ϕ3ð4

ffiffiffiffiffi
33

p
ϕ2
3 þ 3ð ffiffiffiffiffi

17
p

− 3
ffiffiffiffiffi
33

p Þϕ2
2 − 3ð ffiffiffiffiffi

17
p þ 3

ffiffiffiffiffi
33

p Þϕ2
1Þ

12
ffiffiffiffiffiffiffiffi
566

p

V5 ¼ ϕ2ða5ϕ2
1 þ b5ϕ2

2 þ c5ϕ2
3Þ þ iϕ3ðd5ϕ2

1 þ e5ϕ2
2 þ f5ϕ2

3Þ
V6 ¼ i½ϕ2ða6ϕ2

1 þ b6ϕ2
2 þ c6ϕ2

3Þ þ ϕ3ðd6ϕ2
1 þ e6ϕ2

2 þ f6ϕ2
3Þ�;

where the coefficients a, b which can also be calculated analytically are

a ¼ −0.0786083; b ¼ 0.187016;

while the remaining 12 coefficients which have been calculated only numerically are as follows:

a5 ¼ 0.258788 b5 ¼ −0.0909904 c5 ¼ 0.0141828 d5 ¼ −0.0705451 e5 ¼ 0.0615644

f5 ¼ −0.0694790 a6 ¼ 0.078108 b6 ¼ −0.0228088 c6 ¼ −0.0096818 d6 ¼ 0.121464

e6 ¼ 0.112409 f6 ¼ 0.046825:

From Table I, one can make the observation that (at fixed
number of flavors), among the real fixed points and,
separately, among the purely imaginary fixed points the
larger is the symmetry the bigger is the value of the A
function at the fixed point (i.e., leaving aside the truly
complex one). We note that these statements include
decomposable fixed points, i.e., those that are not fully
interacting such as three copies of the Lee-Yang model, but
excludes fixed points with Gaussian factors.
For each critical theory, we have computed with next-to-

leading order accuracy the critical exponents θ2;j of the six
relevant and θ3;k of the ten marginal couplings as the
negative of the eigenvalues of the RG stability matrix at the
fixed point. The scaling dimensions of the corresponding
operators can be obtained using the relation Δi ¼ d − θi
except for the three quadratic operators corresponding to
the equations of motionO ∝ ∂ϕi

V, because they satisfy the
scaling relations d − 2þ 2γi ¼ 2θ2;i and are descendants in

the sense of CFT [6,7,12]. Concentrating our attention on
the two real fixed points Oð2Þ and K4, we notice that for
small ϵ the first has one more relevant direction than the

TABLE II. Summary of the most important properties of the
real fixed points to NLO.

Exponent Oð2Þ K4

dimðθ3 > 0Þ 9 8

γ 0.09327ϵþ 0.17241ϵ2 0.1343ϵþ 1.4033ϵ2

0.16742ϵþ 0.30275ϵ2 0.0506ϵ − 1.0727ϵ2

0.1702ϵþ 0.5280ϵ2

θ2 ¼ ν−1 2þ 1.2606ϵ − 0.0833ϵ2 2þ 1.4115ϵ − 0.0419ϵ2

θ2 break 2þ 0.3731ϵþ 0.2268ϵ2 2þ 0.3098ϵþ 0.1738ϵ2

(Charge operator) (K4 → Z2)
2þ 0.2504ϵþ 0.1764ϵ2

(m2
1=m

2
2 < 0Þ
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second in the cubic sector, making K4 more infrared stable.
Neglecting the equations of motion, in the quadratic sector
both points have a singlet operator which is traditionally
associated with the scaling of the correlation length and
hence the exponent ν. The Oð2Þ point has also two
operators which raise/lower the Uð1Þ ≃Oð2Þ charge, while
the K4 point has an operator which respects the symmetry
but gives contributions with different signs to either mass of
two components, and another (∝ ϕ1ϕ2 at LO) which is
responsible for the breaking pattern K4 → Z2. We sum-
marize all information in Tables II–IV.
Moreover, it may be useful to report some structure

constants for these critical models, considered as CFTs, as
well. They can be calculated at LO in several ways. Here,
we follow [7] and give as an example two structure
constants for the fixed point K4,

Cϕ3ϕ3S3
¼ 289

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
56883

p ϵ; Cϕ3S2S2
¼ 3

ffiffiffiffiffiffiffiffi
66

283

r
ϵ; ð12Þ

where S3 is the cubic scaling operator corresponding to the
LO scaling dimension −ϵ, and S2 ¼ ϕ1ϕ2 is the quadratic
scaling operator responsible of K4 → Z2 breaking. The
same structure constants can be calculated for the Oð2Þ
fixed point which turn out to be

TABLE III. NLO results for the coupling scaling dimensions of
the two perturbatively unitary critical theories.

Symmetry Oð2Þ K4

γ 0.09327ϵþ 0.17241ϵ2 0.1343ϵþ 1.4033ϵ2

0.09327ϵþ 0.17241ϵ2 0.0506ϵ − 1.0727ϵ2

0.16742ϵþ 0.30275ϵ2 0.1702ϵþ 0.5280ϵ2

θ3 3.0762ϵþ 1.9630ϵ2 3.2831ϵþ 2.3102ϵ2

2.3566ϵþ 0.5370ϵ2 3.0485ϵþ 1.6481ϵ2

2.3566ϵþ 0.5370ϵ2 2.3052ϵþ 0.5648ϵ2

1.8990ϵþ 0.5943ϵ2 1.5753ϵþ 0.2835ϵ2

1.8990ϵþ 0.5943ϵ2 1.3701ϵþ 0.1004ϵ2

−ϵþ 5.9419ϵ2 −ϵþ 7.4594ϵ2

0.0405ϵþ 3.3479ϵ2 −0.0664ϵþ 2.7930ϵ2

0.0405ϵþ 3.3479ϵ2 3.3485ϵ2

1.2131ϵ2 1.6826ϵ2

0.3768ϵ2 1.1651ϵ2

θ2 2þ 1.2606ϵ − 0.0833ϵ2 2þ 1.4115ϵ − 0.0419ϵ2

2 − 0.4067ϵþ 1.0623ϵ2 2þ 0.2504ϵþ 0.1764ϵ2

2 − 0.4067ϵþ 1.0623ϵ2 2 − 0.4494ϵþ 0.6501ϵ2

2þ 0.3731ϵþ 0.2268ϵ2 2 − 0.3657ϵþ 1.6288ϵ2

2þ 0.3731ϵþ 0.2268ϵ2 2þ 0.3098ϵþ 0.1738ϵ2

2 − 0.3326ϵþ 1.1827ϵ2 2 − 0.3298ϵþ 1.4700ϵ2

TABLE IV. Anomalous dimensions γ and coupling dimensions of cubic θ3 and quadratic θ2 operators for the four fully interacting
fixed points with N ¼ 3 which are not reported in Table III.

Symmetry S4 × ZPT
2 S3 × ZPT

2 Z2 × ZPT
2 Z2 × ZPT

2

γ − ϵ
6
− 10ϵ2

27
− 401ϵ

7994
− 1511230848ϵ2

63856107973
0.1690ϵþ 0.6721ϵ2 −0.0634ϵ − 0.0386ϵ2

− ϵ
6
− 10ϵ2

27
− 401ϵ

7994
− 1511230848ϵ2

63856107973
0.1653ϵþ 0.6480ϵ2 −0.0556ϵ − 0.0297ϵ2

− ϵ
6
− 10ϵ2

27
− 533ϵ

7994
− 5387208471ϵ2

127712215946
−0.0593ϵ − 0.0536ϵ2 −0.0478ϵ − 0.0209ϵ2

θ3 − ð1þ ffiffiffiffiffiffi
265

p Þϵ
6

þ 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
−1.0045ϵþ 1.9395ϵ2 3.6395ϵþ 2.8931ϵ2 −1.0015ϵþ 1.9338ϵ2

− ð1þ ffiffiffiffiffiffi
265

p Þϵ
6

þ 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
−1.0045ϵþ 1.9395ϵ2 3.6225ϵþ 2.8686ϵ2 −1.0045ϵþ 1.9382ϵ2

− ð1þ ffiffiffiffiffiffi
265

p Þϵ
6

þ 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
0.4918ϵþ 0.0054ϵ2 2.3541ϵþ 0.3075ϵ2 −ϵþ 1.9343ϵ2

− ð1− ffiffiffiffiffiffi
265

p Þϵ
6

− 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
−0.1224ϵþ 0.5805ϵ2 −1.0244ϵþ 0.1093ϵ2 0.5473ϵ − 0.0138ϵ2

− ð1− ffiffiffiffiffiffi
265

p Þϵ
6

− 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
0.1040ϵþ 0.5463ϵ2 −ϵþ 13.2441ϵ2 −0.1108ϵþ 0.5584ϵ2

− ð1− ffiffiffiffiffiffi
265

p Þϵ
6

− 839ϵ2

36
ffiffiffiffiffiffi
265

p þ 107ϵ2

18
0.1040ϵþ 0.5463ϵ2 −0.5540ϵþ 0.4550ϵ2 0.1107ϵþ 0.3595ϵ2

−ϵþ 205ϵ2

36
−ϵþ 1.9369ϵ2 0.0482ϵ − 2.6085ϵ2 −0.1094ϵþ 0.5563ϵ2

41ϵ2

36
0.3815ϵ2 5.7601ϵ2 0.3805ϵ2

41ϵ2

36
0.3815ϵ2 2.4290ϵ2 0.3865ϵ2

41ϵ2

36
1.2131ϵ2 2.3103ϵ2 0.3793ϵ2

θ2 2 − 5ϵ
3
þ 49ϵ2

27
2 − 0.5667ϵþ 0.4098ϵ2 2þ 1.6474ϵþ 0.0251ϵ2 2 − 0.5634ϵþ 0.4067ϵ2

2þ 4ϵ
3
þ 71ϵ2

54
2 − 0.5502ϵþ 0.3951ϵ2 2 − 0.5593ϵþ 0.4383ϵ2 2 − 0.5556ϵþ 0.3996ϵ2

2þ 4ϵ
3
þ 71ϵ2

54
2 − 0.5502ϵþ 0.3951ϵ2 2 − 0.3511ϵþ 0.2610ϵ2 2 − 0.5478ϵþ 0.3928ϵ2

2 − 2ϵ
3
þ 31ϵ2

27
2þ 0.0518ϵ − 0.0161ϵ2 2 − 0.3347ϵþ 2.1721ϵ2 2þ 0.1117ϵ − 0.0271ϵ2

2 − 2ϵ
3
þ 31ϵ2

27
2þ 0.0518ϵ − 0.0161ϵ2 2 − 0.3310ϵþ 2.1341ϵ2 2þ 0.0506ϵ − 0.0159ϵ2

2 − 2ϵ
3
þ 31ϵ2

27
2þ 0.0488ϵ − 0.0160ϵ2 2þ 0.1006ϵþ 0.0618ϵ2 2þ 0.0497ϵ − 0.0155ϵ2
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Cϕ3ϕ3S3
¼ −0.397965ϵ; Cϕ3S2S2

¼ −1.49613ϵ: ð13Þ

The explicit form of these operators can be found in
Appendix A. Another simple example of a structure
constant is Cϕiϕjϕj

¼ −2vijk which is proportional to
ffiffiffi
ϵ

p
.

This means, for instance, that Cϕ1ϕ2ϕ3
is nonzero only for

the S4 × ZPT
2 invariant fixed point. Finally, we also give the

two-loop information for the CT of these two fixed points,

COð2Þ
T

CT;scalar
¼ 3 − 0.4128ϵ;

CK4

T

CT;scalar
¼ 3 −

469

1132
ϵ:

VI. OUTLOOK

The combination of perturbative RG and ϵ expansion is
unequivocally a fundamental tool to investigate interacting
scale invariant QFTs, which we used to discuss the general
quest of finding, without any prior assumption on sym-
metry, all possible inequivalent fixed points of the RG, here
interpreted as universality classes of critical phenomena.
We argued that, in the absence of any symmetry, the task of
finding all solutions of RG equations becomes a complicate
algebraic problem which grows very rapidly with the
number N of order parameters. Nevertheless, it is a
fundamental step to undertake if one desires to elucidate
the global structure of the theory space of N-components
fields near the critical dimension or even for arbitrary
d > 2.
It can be difficult to fully realize the central role that

symmetry has in simplifying almost all field theory’s
results, until one tries without that. By all means, even
if we partly circumvented the absence of symmetry with
clever application of the irreducible representations of a
maximal group, our computations have been rather difficult
precisely because of the lack of a symmetry structure to
begin with. The payoff is very big: we could see very
generally how symmetries emerge as a property of the
universality classes, here understood as a fixed point of the
renormalization group, rather than as ingredients.
To elucidate our point of view and the method, we have

focused on systems with three scalar order parameters in
d ¼ 6 − ϵ and adopted a convenient group theoretical basis
for the coupling’s space which allowed us, by removing the
parametrization redundancy, to deal with a tractable alge-
braic problem. The main outcome of our investigation is the
discovery of six fully interacting fixed points with real
critical exponents. With the exception of a fixed point with
Oð2Þ symmetry, which was already known in the literature,
all other five fixed points are completely new. The most

interesting fixed point has K4 ¼ Z2 × Z2 symmetry and is
perturbatively unitary as displayed by three different field’s
anomalous dimensions. All the properties of this latter fixed
point are rather unique; since it is reasonable to assume that
its existence might continue down to lower dimensions, we
hope that our findings might stimulate an independent
search using numerical conformal bootstrap.
All other new critical theories exhibit a combination of

discrete and PT symmetry. The main properties of all fixed
points (FPs) are summarized in Tables I–IV. They include
the analysis of all the quadratic and cubic scaling operators,
the latter related to the stability under the RG flow of these
fixed points.
It is worth emphasizing that these solutions are the only

ones we could find, using a combination of analytical and
numerical methods, that solve the fixed point equations. We
are rather confident that no further solution will ever
emerge; therefore, our work has heuristically completed
the classification of N ¼ 3 critical field theories in
d ¼ 6 − ϵ. We could expect them to be the only ones that
could survive the continuation to finite values of ϵ and thus
exist in dimension five, four, or three (if higher derivative
interactions are excluded [26]), but the statement might
change because of nonperturbative effects. The knowledge
of the fixed points in the ϵ expansion and their symmetries
provides a starting point for further theoretical investiga-
tions in lower dimensions with alternative approaches such
as conformal bootstrap [4], nonperturbative RG [27–29], or
lattice Monte Carlo methods [14], but also provides
suggestions for possible experimental realizations. Not
all critical theories present at small ϵ necessarily extend
to integer dimensions less than the critical one, but if some
exist they will maintain the symmetries found by our
general analysis. Furthermore, a future complete nonper-
turbative analysis is necessary to determine how the found
fixed points are connected by RG flow trajectories and
therefore understand which ones are ultraviolet or infrared
with respect to each other. Finally, we have found several
perturbatively nonunitary critical theories with complex
scaling dimensions (which we do not report) that can in
principle constitute realizations of complex CFTs [30].

APPENDIX A: BETA FUNCTIONS AND
ADDITIONAL RESULTS

The explicit form of the beta functions of the couplings
in the irreducible basis which we introduced in the main
text is at the leading one-loop order, after imposing
g2 ¼ g9 ¼ g10 ¼ 0, as described in the main text,
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β1 ¼ −
ϵ

2
g1 þ

1

400
ðg31 þ 2g1ð6g23 þ 3g24 þ 3g25 − 2g26 − 2g27Þ þ 12

ffiffiffi
2

p
g3ðg4g7 − g5g6 − g3g4ÞÞ

þ 1

25
ð3g21 þ 17g23 − 2g24 − 2g25 − g26 − g27Þg8 −

43

50
g1g28 þ

4

5
g38

β2 ¼ −
1

400
ðð12g23 þ g24 − g25Þg6 þ 2g4g5g7 −

ffiffiffi
2

p
g1ðg4g6 þ g5ð2g3 þ g7ÞÞÞ þ

1

75
ffiffiffi
2

p g8ðg4g6 þ g5ðg7 − 18g3ÞÞ

β3 ¼ −
ϵ

2
g3 þ

1

400
ð22g33 − 12g7g23 þ g21g3 þ ðg24 þ g25 − 2ðg26 þ g27ÞÞg3 − 2g4g5g6 þ ðg24 − g25Þg7

þ
ffiffiffi
2

p
g1ðg4ðg7 − 2g3Þ − g5g6ÞÞ þ

1

150
g8ð17g1g3 þ

ffiffiffi
2

p
ð18g4g3 þ g4g7 − g5g6ÞÞ −

59

75
g3g28

β4 ¼ −
ϵ

2
g4 þ

1

400
ð−2g34 þ ð5g21 þ 2ð5g23 þ 10g7g3 − g25 þ g26 þ g27ÞÞg4 − 10g3ð2g5g6 þ

ffiffiffi
2

p
g1ðg3 − g7ÞÞÞ

þ 1

15
g8ð

ffiffiffi
2

p
g3ð9g3 þ g7Þ − 2g1g4Þ −

17

30
g4g28

β5 ¼ −
ϵ

2
g5 þ

1

400
ð−2g35 þ g5ð5g21 þ 2ð5g23 − 10g7g3 − g24 þ g26 þ g27ÞÞ − 10g3ð

ffiffiffi
2

p
g1 þ 2g4Þg6Þ

−
1

15
ð2g1g5 þ

ffiffiffi
2

p
g3g6Þg8 −

17

30
g5g28

β6 ¼ −
ϵ

2
g6 þ

1

400
ð2g36 þ ð−5g21 − 30g23 þ 2g27 þ 3ðg24 þ g25ÞÞg6 − 15g3ð

ffiffiffi
2

p
g1 þ 2g4Þg5Þ

−
1

10
ð

ffiffiffi
2

p
g3g5 þ g1g6Þg8 −

1

5
g6g28

β7 ¼ −
ϵ

2
g7 þ

1

400
ð2g37 þ ð−5g21 − 30g23 þ 2g26 þ 3ðg24 þ g25ÞÞg7 − 15g3ð4g23 þ g25 − g4ð

ffiffiffi
2

p
g1 þ g4ÞÞÞ

þ 1

10
ð

ffiffiffi
2

p
g3g4 − g1g7Þg8 −

1

5
g7g28

β8 ¼ −
ϵ

2
g8 þ

1

600
ðg31 þ ð17g23 − 2g24 − 2g25 − g26 − g27Þg1 þ 2

ffiffiffi
2

p
g3ðg4ð9g3 þ g7Þ − g5g6ÞÞ

−
1

1200
g8ð43g21 þ 472g23 þ 34g24 þ 34g25 þ 8ðg26 þ g27ÞÞ þ

1

10
g1g28 −

21g38
50

β9 ¼
1

1200
ð2ð8g23 − g24 þ g25Þg6 − 4g4g5g7 −

ffiffiffi
2

p
g1ð3g4g6 þ g5ðg3 þ 3g7ÞÞÞ −

11

600
ffiffiffi
2

p g8ðg4g6 þ g5ðg7 − 3g3ÞÞ

β10 ¼
1

1200
ð24g33 þ 16g7g23 þ 2g21g3 þ ð6g24 þ 6g25 − 8ðg26 þ g27ÞÞg3 − 4g4g5g6 þ

ffiffiffi
2

p
g1ð3g5g6 þ g4ðg3 − 3g7ÞÞ

þ2ðg24 − g25Þg7Þ −
11

1200
g8ð2g1g3 þ

ffiffiffi
2

p
ðg4ð3g3 þ g7Þ − g5g6ÞÞ þ

1

5
g3g28:

The above beta functions can be derived combining the beta functional of the potential and the anomalous dimension
matrix. For the derivation of the results on the various critical exponents reported in Tables III and IV, we have actually used
the NLO expansion to investigate possible degeneracies of fixed points. The NLO beta functional, anomalous dimension
matrix, and flow of the general λijk couplings are

βv ¼ −dvþ d − 2

2
ϕivi þ ϕiγijvj −

2

3
vijvjkvki − 2vimvmjvklviknvjln þ

7

9
vijvjkvklvabivabl −

4

3
vilvjmvknvijkvlmn

γij ¼
1

3
λiabλjab þ

8

9
λiklλjpqλkpmλlqm −

11

27
λimkλjmlλpqkλpql

βijk ¼ −
1

2
ϵλijk þ λabcλabðiλjkÞc − 4λiabλjbcλkca þ

8

3
λrpmλsqmλrsaλpqðiλjkÞa −

11

9
λpqrλpqsλmraλmsðiλjkÞa

− 12λmaðiλjjanjλkÞpqλmplλnql þ
14

3
λmpðiλjpqjjλkÞqnλabmλabn − 8λialλjbmλkcnλabcλlmn:
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Finally, the explicit form of the two scaling operators S3 and S2 used in the structure constants (operator product
expansion coefficients) (12) for the K4 fixed point and (13) for the Oð2Þ fixed point is given, respectively, by

K4∶ S3 ¼
ϕ3

6
ffiffiffiffiffiffiffiffiffiffi
1474

p ð−ð
ffiffiffiffiffiffiffiffi
561

p
þ 99Þϕ2

1 þ ð
ffiffiffiffiffiffiffiffi
561

p
− 99Þϕ2

2 þ 44ϕ2
3Þ; S2 ¼ ϕ1ϕ2

Oð2Þ∶ S3 ¼ 0.186858ϕ3ðϕ2
3 − 0.444552ðϕ2

1 þ ϕ2
2ÞÞ; S2 ¼ ϕ1ϕ2:

APPENDIX B: OðNÞ TRANSFORMATIONS, FIXED
POINT MODULI, AND PT SYMMETRY

Let us generalize this discussion to the case of arbitrary
number of scalar flavors N and temporarily neglect PT
transformations. Given a fixed point solution vðϕÞ of
βv ¼ 0, its symmetry content is defined as the subgroup
G of OðNÞ which leaves it invariant. In other words, for
U ∈ G, the action

U∶ vðϕÞ → v0ðϕÞ ¼ vðU · ϕÞ

is such that vðϕÞ ¼ v0ðϕÞ. The symmetry group G is a
subgroup ofOðNÞ becauseOðNÞ is the maximal symmetry
that the model can have. Using G we can evince the
structure of the manifold of equivalent fixed points for each
symmetry content: if vðϕÞ is a solution, then also a rotation
of vðϕÞ is, but the two are physically distinct only if we are
acting with a rotation which is not already in the symmetry
subgroup G. It is easy to see that the moduli of equivalent
fixed points for each universality class is isomorphic to

FPmoduli ≃OðNÞ=G:

For example, in the case N ¼ 1, we have only one solution
(the Lee-Yang model) which is left invariant only by the

identity; therefore, its moduli of fixed points is Oð1Þ=f1g≃
Z2, implying that there are always two distinct, but
physically equivalent, solutions igϕ3 and −igϕ3.
Notice that complex solutions are still protected by

symmetry: in the above example of the Lee-Yang model,
we could move from one solution to the other by either
parity or complex conjugation so the two combined leave
the solution invariant. For this reason, we define the PT
transformation which goes beyond OðNÞ by acting

PT∶ vðϕÞ → v�ðP · ϕÞ;

in which v� is the complex conjugate of v and P ∈ OðNÞ
acts on ϕi by flipping the sign of one specific field
component. This new symmetry protects potentials with
complex factors and ensures that their spectra are bounded
from below inasmuch those of the purely real models. We
indicated the presence of PT symmetry in the solutions by
including ZPT

2 in their symmetry factors; however, it is
important to drop these factors when applying the above
coset formula for the moduli. Going back once more to the
N ¼ 1 example of the Lee-Yang model, it is trivial to see
that there can be only one parity and PT maps vðϕÞ →
v�ð−ϕÞ ¼ vðϕÞ and therefore is an extension of the original
symmetry.
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