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Abstract: In the context of growing the adoption of advanced sensors and systems for active vehicle
safety and driver assistance, an increasingly important issue is the security of the information
exchanged between the different sub-systems of the vehicle. Random number generation is crucial
in modern encryption and security applications as it is a critical task from the point of view of
the robustness of the security chain. Random numbers are in fact used to generate the encryption keys
to be used for ciphers. Consequently, any weakness in the key generation process can potentially leak
information that can be used to breach even the strongest cipher. This paper presents the architecture
of a high performance Random Number Generator (RNG) IP-core, in particular a Cryptographically
Secure Pseudo-Random Number Generator (CSPRNG) IP-core, a digital hardware accelerator for
random numbers generation which can be employed for cryptographically secure applications.
The specifications used to develop the proposed project were derived from dedicated literature
and standards. Subsequently, specific architecture optimizations were studied to achieve better timing
performance and very high throughput values. The IP-core has been validated thanks to the official
NIST Statistical Test Suite, in order to evaluate the degree of randomness of the numbers generated
in output. Finally the CSPRNG IP-core has been characterized on relevant Field Programmable Gate
Array (FPGA) and ASIC standard-cell technologies.

Keywords: intelligent sensors; autonomous driving; cyber security; HW accelerator; on-chip random
number generator (RNG); SHA2; FPGA; ASIC standard-cell

1. Introduction

The rapid technology development of intelligent sensors in the automotive field in recent years,
driven by institutions and supported by manufacturers to integrate advanced systems for active safety
and hazard prevention, has generated additional collateral technological needs. All the equipment
distributed on board the vehicle are, in fact, interconnected with real communication networks
and exchange critical data and sensitive information that must be protected from potential attacks
and violations. Cybersecurity thus becomes a central issue and all mechanisms ensuring authentication,
confidentiality and integrity of messages become an enabling technology for the further development
of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (AD).
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In particular, projects like the one carried on in the framework of the European Processor Initiative
(EPI) programme [1] anticipate requirements from future scenarios, with very high throughput
hardware accelerators for cybersecurity applications. Highly automated vehicles will be equipped
with advanced sensors (e.g., camera arrays, radar, lidar), capable of generating significant data
flows. Moreover, over-the-air update (OTA) of the software of control units will be implemented,
for which it will be very important to keep the update time as short as possible. In this context, it is
essential to increase information security, and it is therefore necessary to implement encrypted data
transfers (i.e., encryption and decryption) and verified content (i.e., digital signature) with throughput
compatible with the use of buses such as automotive ethernet (i.e., 1–10 Gbps). For this reason,
hardware accelerators with throughput requirements of the order of tens Gbps are necessary, also to
take into considerations the expected lifespan of vehicles.

Random numbers are widely used in encryption and security applications, usually to generate
encryption keys or secret data to be shared between communication entities. Therefore a Random
Number Generator (RNG) is a very important primitive for cryptographically secure applications [2].
In particular, it is used as a fundamental part for the development of several globally distributed
applications related to the field of cyber security such as digital payments, online authentication
and instant messaging [3]. Cryptographic keys are based on random numbers and must be
characterized by a high degree of unpredictability to be considered secure: this is necessary to prevent
an attacker from violating the security chain based on this cryptographic key. Random numbers are
also the starting point for generating nonces within authentication protocols as a countermeasure
against replay attacks, so the higher the degree of randomness, the more robust the countermeasure
will be. Moreover, strong random number generation helps digital signature procedures to prevent
private keys to be disclosed, thus violating the signature itself [4]. Several development techniques for
RNG engines are reported in literature, and many of them exploit physical sources (e.g., analog noise)
as random processes to obtain the randomness characteristic of the generated bit sequences [3–9].

These circuits are identified as True Random Number Generators (TRNG) and their output
sequences are considered high quality random numbers. However, TRNGs have non-negligible
disadvantages that must be considered: the use of physical sources leads to high energy consumption
and insufficient throughput for fast and advanced integrated systems. TRNGs are also sensitive to
changing operating conditions, which means that post-processing must be implemented to ensure
reliable random output data, further reducing the throughput under non-ideal condition.

To overcome these limitations, a powerful Deterministic Random Bit Generator (DRBG) circuit
can be used in addition to a very low-area, low-power and low-throughput TRNG implementation.
This means that the RNG engine would be mainly based on a deterministic algorithm that generates
pseudo-random output sequences. In this case, the required degree of randomness is obtained through
additional mechanisms to increase the level of entropy of the generated sequences, which would
otherwise be deterministic. This operation is called reseed and it consists in providing a trigger to
restart the circuit of the deterministic algorithm from a new high entropy starting point (i.e., the new
seed). DRBG-based solutions use periodic reseed to allow the RNG to generate pseudo-random binary
output sequences that are equivalent and indistinguishable from true random ones. The limitations of
TRNGs for high-speed devices are thus overcome by restricting its use to the periodic seed generation
operation only, which has the characteristic of being a very light task. For this reason the new seed is
usually provided by a very low complexity and target specific TRNG module [10], which also may be
powered down when not necessary.

For the proposed architecture, the DRBG mechanism was chosen from those approved by
National Institute of Standards and Technology (NIST) [6]. The standard provides general information
for PRNGs based on cryptographic primitives, some of which are incontrovertible and proven
(e.g., Hash DRBG and HMAC DRBG). For the proposed Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG) IP-core the algorithm selection was made based on a compromise
between performance, area and security strength. The Hash DRBG with SHA-256 as cryptographic core
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(i.e., based on the SHA2 algorithm) proved to be the most efficient solution between logical complexity
and expected throughput during random bit generation, offering 256 bits of security strength.

The reminder of this paper is organized as it follows: Section 2 presents the trade-off analysis
among the different suitable DRBG algorithms, Section 3 details the implementation of the SHA2
algorithm being chosen to develop the DRBG core, Section 4 describes the Hash DRBG design
architecture as CSPRNG IP-core, Section 5 collects the characterization results. Finally, conclusions are
discussed in Section 6.

2. DRBG Algorithms Trade-Off Analysis

As mentioned in Section 1, the different deterministic algorithms suitable for implementing DRBG
circuits have been evaluated by the NIST and those approved-recommended are collected in the NIST
SP 800-90A Rev.1 pubblication [6]. Such mechanisms present common features and functionalities:

• they rely on a one-way cryptographic function, thus providing backtracking resistance;
• the internal status memories are secret and inaccessible to the user;
• the following essential operations are allowed:

– instance, to acquire a random seed (i.e., concatenation of input entropy content, possibly
input or internal random nonce, and personalization string) and to initialize the internal
state to a random value derived from the seed;

– reseed, to acquire a random seed (i.e., concatenation of internal state, input entropy content,
and personalization string) and update the internal state to a random value derived from
the seed;

– generate, to generate an output bits sequence based on current state and then to update
the state to a random value derived from previous state;

– uninstantiate, to delete the internal state;

• they support a maximum security strength (112, 128, 192 or 256) and all of the lower ones;
• a reseed counter counter, and the corresponding threshold called seed lifetime, is present to signal

the user that the mechanism needs a new seed;
• user is always able to run a command with an associated personalization string, which needs not

to be secret but it contributes to the internal state randomization.

Most of the DRBG engines implementations rely on hash functions and counter mode (CTR)
of symmetric-key encryption processes. Hash functions family includes SHA1 and SHA2 algorithms,
but the former is going to be deprecated because of its low security strength and high vulnerability [11],
therefore only SHA2 cryptographic primitives are taken into exam for Hash DRBG mechanisms.
The main parameters related to DRBG cores based on SHA2 primitive are reported in Table 1.

Table 1. Hash DRBG mechanisms parameters (SHA2 only).

SHA2 Algorithm

SHA-224 SHA-256 SHA-384 SHA-512

Highest Security Strength 192 bits 256 bits 256 bits 256 bits
Output Block Length (outlen) 224 bits 256 bits 384 bits 512 bits
Min. Entropy for instance and reseed 192 bits 256 bits 256 bits 256 bits
Seed Length (seedlen) 440 bits 440 bits 888 bits 888 bits
Max. Num. of Bit per Request 219 219 219 219

Max. Num. of Request between reseeds 248 248 248 248

CTR (CTR is abbreviation for Counter) DRBG mechanisms are based onto block cipher cores used
in counter mode. Different block cipher cores are suitable to develop a DRBG circuit and the main
parameters related to the different implementations are collected in Table 2.
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Table 2. CTR DRBG mechanisms parameters. B = (2ctrl_len − 4) blocklen.

AES Algorithm

3 Key TDEA AES-128 AES-192 AES-256

Highest Security Strength 112 bits 128 bits 192 bits 256 bits
Input/Output Block Length (blocklen) 64 bits 128 bits 128 bits 128 bits
Key Length Length (keylen) 168 bits 128 bits 192 bits 256 bits
Counter Field Length (ctr_len) 4 <ctr_len <blocklen
Min. Enctropy for instance and reseed 112 bits 128 bits 192 bits 256 bits
Seed Length (seedlen) 232 bits 256 bits 320 bits 384 bits
Max. Num. of Bit per Request min(B, 213) min(B, 219) min(B, 219) min(B, 219)
Max. Num. of Request between reseeds 248 248 248 248

Table 3 summarizes area and latency values obtained for our version of SHA2 IP-core,
where complexity values are related to the characterization on 45nm ASIC standard-cell technology.
In the perspective to implement a Hash DRBG circuit, solutions for SHA-224 and SHA-384 are
discarded in favor of SHA-256 and SHA-512 because area and latency values are the same,
but the former couple offers a shorter output block. Concerning SHA-256 and SHA-512 comparison,
the following considerations can be done in order to select the best candidate for Hash DRBG:

• SHA-256 has lower latency per block than SHA-512;
• SHA-512 offers a higher throughput with respect to SHA-256, since it provides 512 bits every

83 clock cycles instead of 256 bits every 67 clock cycles;
• SHA-256 is more compact in terms of area, which reflects also on internal state registers area

footprint. As shown in Table 1, seedlen is 440 for SHA-256 and 888 for SHA-512, meaning that
the internal state requires around 900 registers for the former and 1800 for the latter.

Table 3. SHA2 IP-core specifications.

SHA2 Algorithm Area Latency per Block Output Block Size

SHA-224 15 kGE 67 clock cycles 224 bits
SHA-256 15 kGE 67 clock cycles 256 bits
SHA-384 30 kGE 83 clock cycles 384 bits
SHA-512 30 kGE 83 clock cycles 512 bits

The throughput values of the SHA-256 core and SHA-512 core, when operating in generation
phase for a Hash DRBG implementation, can be obtained through Equations (1) and (2), respectively.

TSHA−256 = 256/67 · fclk · nparallel_core = 3.82 · fclk · nparallel_core bit/s (1)

TSHA−512 = 512/83 · fclk · nparallel_core = 6.17 · fclk · nparallel_core bit/s (2)

Concerning the CTR DRBG circuit, the AES IP-core is proved to be best in class for both area
and throughput. Table 4 collects the area and latency values for our versions of AES-128 and AES-256
IP-cores characterized on 45nm ASIC standard-cell technology.

Table 4. AES IP-core specifications.

AES Algorithm Area Latency per Block Output Block Size

AES-128 11 kGE 11 clock cycles 128 bits
AES-256 12.5 kGE 15 clock cycles 128 bits

Given that the target is to identify the most suitable core for implementation of DRBG circuit
with highest level of security strength possible, the AES-256 algorithm is the only block cipher core
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being considered for the trade-off. As shown in Table 4, its area is lower than the one for SHA-256,
while the throughput value is higher than that reported for SHA-512. In particular, the throughput of
AES-256 to be considered for a CTR DRBG implementation is calculated as below:

TAES−256 = 128/15 · fclk · nparallel_core = 8.53 · fclk · nparallel_core bit/s (3)

Figure 1 shows a comparison of DRBG mechanisms implemented as in [5] and based on Hash
algorithms (i.e., SHA-256 or SHA-512) and block ciphers (i.e., AES-256) used in CTR mode. The logic
throughput and complexity values are obtained with synthesis on 45 nm ASIC standard-cell technology.

Figure 1. Comparison between NIST approved DRBG mechanisms based on logic complexity
in kGE and throughput.

The algorithm chosen for the development of the DRBG circuit inside the CSPRNG IP-core was
SHA-256 (i.e., the primitive SHA2), therefore we decided to use an Hash DRBG despite the better area
and latency values collected for AES cores (i.e., for CTR DRBG circuit). This is because M.Schmid [12]
explained how block cipher-based DRBGs should not be used as they are indeed not able to reach
maximum security strength. The author declares that the pseudo-random permutation inside each
AES round, coupled with counter mode of operation, generates a binary sequence which results to
be distinguishable with respect to what a random source could give, thus being unable to satisfy
the security requirements. This is not the case with Hash-based DBRGs, so the use of SHA-256 cores
offers better robustness to the entire security chain where the CSPRNG is based on this algorithm.
The SHA-256 core ensures a compact implementation for the mechanism and the possibility to extend
the design for supporting multiple cores to increase the throughput. In a context with multiple
cryptographic cores, 2 SHA-256 perform better than a single SHA-512, having a higher throughput
and requiring lower internal state.

3. SHA-256 Core Implementation

As explained in Section 2, the fundamental element of the proposed Hash DRBG circuit is
the SHA-256 core, based on SHA2 cryptographic primitive. In order to achieve high throughput for
the whole CSPRNG IP-core, it is then essential to optimize the SHA-256 implementation performances
to the maximum. To do so, the canonical logic implementation derived from the standard [13]
has been improved through the use of Carry-Save Adder (CSA) units for consecutive additions and by
application of retiming-pipelining to perform delay balancing. To better understand the implemented
optimizations, a brief description of the standard is given.
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The SHA-256 standard may be defined by two separate, ideally consecutive, procedures:

1. the message schedule;
2. the compression function.

The message schedule is in charge of creating a key schedule starting from the 512-bits input
message to be then provided to the compression function. The operation is performed through the σ0, σ1

and modulo 232 adder operations defined in Equations (4)–(6) respectively.

σ0(x) = RotateRight7(x)⊕ RotateRight18(x)⊕ Shi f tRight3(x) (4)

σ1(x) = RotateRight17(x)⊕ RotateRight19(x)⊕ Shi f tRight10(x) (5)

x � y = x + y (mod 232) (6)

Usually the message schedule operation is also called expansion due to the fact that the 512-bits
input message is expanded to 32 · 64 = 2048bits. The canonical serial architecture of the message
schedule block, derived from Equation (7), is depicted in Figure 2.

Wt =

{
Mt 0 < t < 15

σ1(Wt−2)�Wt−7 � σ0(Wt−15)�Wt−16 16 < t < 63
(7)

Figure 2. SHA2 standard message schedule architecture.

The optimization for the message schedule is performed on the adder chain through the use of
CSA, which are essentially Full-Adder Arrays (FAA), producing partial sums (ps) and shift-carries (sc).

psi = ai ⊕ bi ⊕ bi

sci = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)
(8)

CSAs have advantages on both area and critical path. Implementation on 45nm and 7nm ASIC
standard-cell technologies demonstrated that, when compared to Carry-Lookahead Adder (CLA) units,
the delay relationship is TCLA−32 = 1.78 · TCSA−32 and TCLA−32 = 1.87 · TCSA−32 respectively for
the two technologies. The optimized serial implementation is shown in Figure 3, where the high-level
timing block analysis shows that the critical path is reduced from Tσ0 + 3 · T� to Tσ0 + 2 · TCSA + T�.
Further optimizations are possible through the use of retiming, but they are not considered due to
the critical path being mainly located in the compression function architecture.

The SHA-256 compression function is composed of three consecutive steps: initialization, one-way
compression and termination. In the first step, the variables A-H are initialized with the intermediate
Hash value H(t−1) (the first 512-bits message block at t=1 uses a constant H(0) provided by
the standard). The one-way compression then performs 64 loops according to:
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T1 ← H � Σ1(E)� Ch(E, F, G)� Kj �Wj
T2 ← Σ0(A)� Maj(A, B, C)
H ← G
F ← E
E ← D � T1
D ← C
C ← B
B ← A
A ← T1 � T2

Figure 3. SHA2 optimized message schedule architecture.

Finally the intermediate Hash value at time t is calculated by a 232 modulo addition between
the variables A-H at initialization time and the variables A-H after the one way compression.
The functions Maj, Ch, Σ0 and Σ1 are defined as:

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Σ0(x) = RotateRight2(x)⊕ RotateRight13(x)⊕ RotateRight22(x)

Σ1(x) = RotateRight6(x)⊕ RotateRight11(x)⊕ RotateRight25(x)

(9)

The canonical scheme corresponding to the described procedure is represented in Figure 4,
where the output stage performing the termination phase is not represented.

Figure 4. SHA2 standard compression function architecture

The high-level block timing analysis showed that the critical path on the non-optimized
architecture is located between register H and register E, involving 5 � operations. Optimization
of the compression function was achieved through the use of CSA, retiming and delay balancing.
In particular, all the adder chains were converted to CSA with the exception of register B and E inputs.
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Moreover, the path going from Kt-Wt was duplicated to allow the value of register D to be added
immediately to H + Kt + Wt. Finally a pipeline stage L1, L2 was added (with the associated C-D
multiplexer to ensure the functionality) and the a register was split to move the CLA position.

Finally, both SHA-2 implementations have been synthesized on 45 nm and 7 nm ASIC
technologies, whose results are represented on Table 5 for canonical and optimized architectures.

Table 5. Canonical and Optimized SHA-256 implementation results.

Canonical Area Max. Frequency Optimized Area Max. Frequency

45 nm ASIC 16.85 kGE 640 MHz 45 nm ASIC 15.38 kGE 1.00 GHz
7 nm ASIC 17.18 kGE 3.15 GHz 7 nm ASIC 15.45 kGE 5.15 GHz

A detail analysis of the critical path on the implemented design shows that the real critical path
on 45 nm ASIC technology is located between register L1 and register E (Figure 5), while for the 7 nm
ASIC technology it is located in the message schedule between the second right register and the left one
(Figure 3). This behavior can easily be attributed to the synthesizer, which is able to use complex ASIC
cells and better merge the 4·CSAs than the 2·SCA+1·CLA. a separate synthesis, to emulate the main
paths of the canonical and optimized architectures on the 45 nm technology, shows the critical path of
these extracted sub-elements. As visible from Table 6 the 2·SCA+1·CLA sub-clock is the slowest path
w.r.t. The optimized implementation, with an equivalent frequency f2·CSA+1·CLA = 1200 MHz.

Figure 5. SHA2 optimized compression function architecture.

Table 6. SHA-256 sub-block implementation results.

Sub-Block T4·CSA T2·CSA+1·CLA T2·CLA T5·CLA

Max. Latency 606.06 ps 833.33 ps 714.29 ps 1111.11 ps

Looking for a comparison between the canonical ASIC implementation and the ASIC
optimized one, the latter results to be about 9% smaller, while providing about a 56% maximum
frequency increase.
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4. CSPRNG Design Architecture

The architecture of the proposed CSPRNG IP-core, meaning of the Hash DRBG with optimized
SHA-256 core, is shown in Figure 6. The proposed design is based on the following building blocks:

• state registers for 440-bits V, 440-bits C and 20-bits reseed counter; in addition to them, a 128-bits
register is available to store optional personalization string (i.e., to randomize the internal state),
while a 512-bits entropy register is used to store the input entropy content for a size larger than
necessary: to ensure the minimum number of entropy bits per bit string, instance requires 394 bits,
while reseed requires 256 bits;

• a SHA-256 core, with 512-bits input and 256-bits output; the core is designed to execute operations
on a 512-bits block of a message in 67 clock cycles; if the message is composed by a single block
(length ≤ 443 bits), the complete Hash is performed in 67 clock cycles, while if the message is
longer, it must be divided in blocks to be processed sequentially;

• a serial adder with 440-bits inputs and modulo 440-bits output; since the adder always runs
in parallel with the SHA-256 core, which at least requires 67 cycles to output data, there were
no need to implement a low latency adder; intermediate results are stored to one of the input
registers to minimize the area occupation;

• multiplexer network to address all data in internal state and from the previous operation to
the inputs of the SHA-256 core and adder; as an example, consider the following configuration,
where the adder calculates at every Hash cycle the incremented value of V and provides this data
to the input of the SHA-256 for it to be hashed:

sha_256_in = adder_out || 1’d1 || 7’d0 || 64’d440
adder_x = adder_out
adder_y = 440’d1

• a Finite State Machine (FSM), which controls the flow of operations: it is articulated in three main
branches (i.e., instance, reseed and generate), and after the completion of a command, it remains
stable in idle mode until another command is issued;

• a DRBG self test module (i.e., not shown in Figure 6), which provides built-in self-test
functionalities to diagnose possible failures; multiplexers are used to feed the procedures with
known values, and compare logic check if outputs match with the expected values.

Figure 6. CSPRNG (Hash DRBG) design architecture developed.

The instance procedure acquires 512 entropy bit from the entropy content input and then hashes
eight blocks to create the internal state. With τ equal to the number of clock cycles necessary to acquire
8 bitt from the entropy content input, total execution time is approximately:

tinstance = (64 · τ + 8 · 67) · Tclk = (64 · τ + 536) · Tclk (10)
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The reseed procedure acquires 384 entropy bit from the entropy content input and then hashes 8
blocks to update the internal state. Execution time is approximately:

treseed = (48 · τ + 8 · 67) · Tclk = (48 · τ + 536) · Tclk (11)

In the generation phase, if a personalization string is inserted by the user, a new value of V is
immediately calculated before generating output bits. This operations requires a sum and two hash
cycles. Since the serial adder latency is 14 clock cycles:

tgen_pers_string = (14 + 2 · 67) · Tclk (12)

After generation a new state is derived within the same time:

tgen_new_state = tgen_pers_string = (14 + 2 · 67) · Tclk (13)

For a clock frequency of 100 MHz and τ = 1, these values result to be:

tinstance = 6.000 µs

treseed = 5.840 µs

tgen_pers_string = 1.480 µs

tgen_new_state = 1.480 µs

For the same clock frequency and τ = 8:

tinstance = 10.480 µs

treseed = 9.200 µs

tgen_pers_string = 1.480 µs

tgen_new_state = 1.480 µs

5. Results

In order to validate the CSPRNG IP-core, evaluation of the randmoness degree of the sequences
generated was obtained by using the NIST Statistical Test Suite [14]. The test suite ran on a sequence
of 128 MB acquired from the CSPRNG with the following strategy:

• every generation command requests four blocks, i.e., 1024 bits;
• during a seed lifetime, 1000 generation commands are issued;
• the reseed operation is commanded 1000 times to reseed the generator.

In this way the total number of acquired bits is nbit = 1024 · 1000 · 1000 = 1,024,000,000.
This sequence has been then converted to a binary file, which is subsequently given as input to
the test suite. The NIST Statistical Test Suite parameters and the corresponding results (using α = 0.01)
on the 128 MB data block are collected on Table 7.

Three technologies were identified as potential targets for characterization of the CSPRNG
hardware accelerator IP-core, one FPGA and two ASIC standard-cell: Intel Stratix IV FPGA,
45 nm Silvaco [15], and 7 nm Artisan TSMC [16]. In all of these cases different implementation effort
corners were tested, in order to evaluate the trade-off between throughput and area. The synthesis
performed on Intel Stratix IV (EP4SGX230KF40C2) FPGA technology with high performance
constraints, configuring a single instance of the SHA-256 core, provides a maximum operating
frequency of 180 MHz; a throughput of 690 Mbps; and an overall resource utilization of 4713 ALMs.
The 45 nm Silvaco ASIC standard-cell implementation increases its throughput to 3.82 Gbps,
since the maximum frequency is 1 GHz (being the critical path in the SHA-2 sub-block), with a logical
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complexity of 49.19 kGE. Finally, the proposed design, with a single SHA-256 core, brought on
the 7 nm Artisan ASIC standard-cell reaches a throughput value of 19.67 Gbps, given a maximum
clock frequency of 5.15 GHz, requiring an overall complexity of 46.56 kGE.

Table 7. NIST Statistical Test Suite parameters and results.

Test Block/Template Length Pass Rate

Frequency (Monobit) - 0.9924
Frequency Within a Block 256 0.9876
Runs - 0.9901
Longest-Run-of-Ones in a Block - 0.9878
Binary Matrix Rank - 0.9901
Discrete Fourier Transform (Spectral) - 0.9874
Non-overlapping Template Matching 10 [0.9801–0.9974]
Overlapping Template Matching 10 0.9848
Maurer’s Universal Statistical - 0.9901
Linear Complexity 1024 0.9900
Serial 16 0.9825, 0.9876
Approximate Entropy 10 0.9901
Cumulative Sums (Cusums) - 0.9901
Random Excursions - [0.9826–0.9947]
Random Excursions Variant - [0.9875–0.9975]

The diagrams in Figures 7 and 8 show the occupation percentage for the different parts of
the architecture proposed respectively for 45nm and 7nm ASIC target technologies.

Figure 7. CSPRNG (Hash DRBG) IP-core occupation diagram on 45 nm ASIC technology (kGE based).
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Figure 8. CSPRNG (Hash DRBG) IP-core occupation diagram on 7 nm ASIC technology (kGE based).

6. Conclusions

This paper presented the architecture and implementation of a high performance digital
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). Specifically, a Hash-based
Deterministic Random Bit Generator (DRBG) circuit was presented, following recommendation
given by NIST in [6], using SHA256 cryptographic primitive. CSPRNG is a key component to
implement efficient cybersecurity applications for authentication, confidentiality and message integrity.
In addition, the security of critical information exchanged between the different subsystems in modern
vehicles is proving to be a key issue in the automotive sector: more advanced and complex devices
and sensors provide the platform for active assistance and security on which passengers rely, so it
is crucial to ensure that these systems are adequately protected from cyber attacks. Hash algorithm
selection was done according to a trade-off analysis on throughput, area and security strength:
among the solutions able to satisfy the security requirements, the SHA-256 core was proved to
be the most efficient solution in terms of throughput-complexity ratio. The detailed description of
the optimized SHA-256 core architecture being developed for DRBG circuit implementation is also
given. The proposed CSPRNG IP-core was tested by means of NIST Statistical Test Suite, thus stating
that the sequences of bits generated cannot be distinguished from a true random sequence of numbers,
and therefore validating its use for cryptographic applications. It has been also implemented on
FPGA and ASIC standard-cell technologies for characterization: on Intel Stratix IV FPGA it is reported
a throughput of 690 Mbps at 180 MHz with a maximum occupation of 4713 ALMs, on 45 nm ASIC
standard-cell [15] the throughput is equal to 3.82 Gbps at 1 GHz with a logic complexity of 49.19 kGE,
and finally on 7 nm ASIC standard-cell [16] the throughput reaches a value of 19.67 Gbps at 5.15 GHz
with the logic complexity of 46.56 kGE.
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