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Optimal interplanetary trajectories for Sun-facing ideal diffractive sails
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ABSTRACT

A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive

metamaterial film with engineered optical properties. This study examines the optimal

performance of a diffractive solar sail with a Sun-facing attitude in a typical orbit-to-orbit

heliocentric transfer. A Sun-facing attitude, which can be passively maintained through the

suitable design of the sail shape, is obtained when the sail nominal plane is perpendicular

to the Sun–spacecraft line. Unlike an ideal reflective sail, a Sun-facing diffractive sail

generates a large transverse thrust component that can be effectively exploited to change

the orbital angular momentum. Using a recent thrust model, this study determines the

optimal control law of a Sun-facing ideal diffractive sail and simulates the minimum transfer

times for a set of interplanetary mission scenarios. It also quantifies the performance

difference between Sun-facing diffractive sail and reflective sail. A case study presents the

results of a potential mission to the asteroid 16 Psyche.
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1 Introduction

The interaction between electromagnetic waves and

matter is the working principle of photonic propulsion,

a propellant-less technology that extracts momentum

from solar radiation to generate thrust and navigate

the solar system. An example of its effectiveness is

provided by conventional solar sails [1, 2], which use a

thin membrane to reflect the impinging photons coming

from the Sun. The mechanism of photon reflection is

exploited by other solar sail-based configurations such

as heliogyros [3]. Following the success of the IKAROS

demonstration mission [4–6], the reflective solar sail

concept has become the focus of active research, as

confirmed by the number of planned missions that will

utilize this propulsion technology, including NASA’s

Near-Earth Asteroid Scout [7] and Solar Cruiser [8].

One of the main disadvantages of reflective solar

sails is their limited capability to generate a transverse

thrust component, in which the transverse means are

perpendicular to the Sun–spacecraft line [9–11]. In

particular, a Sun-facing reflective solar sail, characterized

by a nominal plane normal to the Sun–spacecraft line,

generates a purely radial propulsive acceleration; hence,

it cannot modify the angular momentum of the osculating

orbit. Other optical phenomena affecting the momentum

transfer between incoming photons and the spacecraft

have been investigated to deal with this problem.

For example, refraction or diffraction effects may be

used to extract momentum from the solar radiation

pressure and generate a suitable propulsive thrust [12].

In particular, a refractive sail can deflect incoming

photons by refracting sunlight across a thin transparent

membrane made of polymeric microprisms [13, 14],

thereby producing a propulsive acceleration. Unlike a

reflective solar sail, when microprisms are appropriately

designed, a refractive sail can generate a large transverse

thrust component even in a nearly Sun-facing orientation.

This characteristic makes it easier to modify the specific

angular momentum of the osculating orbit with a simple

attitude control law. The unique capabilities of the

refractive sail have attracted the interest of researchers.

Firuzi and Gong [13] first addressed the problem of

evaluating the radiation pressure applied to a refractive

sail by a ray-tracing method [15] under the assumption

that the refractive sail has no wrinkles or billowing effects

and is perfectly transmissive. A recent study by Bassetto
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Nomenclature

A state matrix with generic entry Aij ; see
Eq. (9)

a semi-major axis (au)
ac characteristic acceleration (m/s2)
ap propulsive acceleration vector (mm/s2)
{apR , apT , apN } components of ap in TRTN

C spacecraft center-of-mass
c speed of light in vacuum (km/s)
D dimensionless performance parameter;

see Eq. (41)
d vector; see Eq. (9)
e eccentricity
H Hamiltonian function
I⊕ solar irradiance at 1 au (W/m2)
i orbital inclination (deg)

{îx, îy, îz} unit vectors of T
{îR, îT , îN} unit vectors of TRTN

J performance index (day)

K̂ grating momentum unit vector
m spacecraft total mass (kg)
{p, f, g, h, k, L} modified equinoctial orbital elements
T (C;x, y, z) body reference frame

TRTN(C;R, T,N) radial–tangential–normal reference frame
r Sun–spacecraft distance (au)
r⊕ reference distance (1 au)
t time (day)
x spacecraft state vector
δ clock angle (deg)
λ costate vector
ν spacecraft true anomaly (deg)
Ω right ascension of the ascending node (deg)
ω argument of perihelion (deg)

Subscripts
0 initial value
i parking orbit
f final value, target orbit
IRS related to IRS
SFIDS related to SFIDS

Superscripts
· time derivative
⋆ optimal value
′ depending on the control δ

et al. [16] proposed a semi-analytical thrust vector model

to analyze a set of minimum-time circle-to-circle orbit

transfers of a refractive sail-based spacecraft.

A typical refractive sail is designed to minimize the light

diffraction through the microprism film. This requires the

shortest side of the microprisms to be at least ten times

greater than the longest wavelength [17]. The diffraction

of sunlight can also be exploited to generate thrust.

More precisely, the working principle of a diffractive

sail involves the use of a metamaterial film to diffract

incoming photons, which are deflected from their original

path to generate a net propulsive acceleration. In a

typical configuration, the diffractive film consists of a

polarization grating with a period comparable to the

wavelength of the incoming electromagnetic radiation.

In principle, many other complex metamaterials may be

used with potential advantages in sail performance and

thrust-vectoring capability [18].

Recent studies have demonstrated the interest of

the scientific community in this innovative propulsive

concept. The study by Swartzlander [18] compared

the performance of Sun-facing diffractive sails, Littrow

diffraction configurations, and conventional reflective sails

in the context of Earth–Mars transfers without using an

optimal approach. In particular, under the assumption

of a constant sail attitude with respect to the Sun–

spacecraft line, a transparent diffractive sail was found to

be superior to a reflective sail because the latter requires

more time to reach the target orbit [18]. Another study

by Swartzlander [19] showed that a diffraction film with a

grating period of 1 µm can convert 83% of the solar black-

body spectrum into spacecraft momentum. Moreover,

the non-optimized orbit-raising trajectories of diffractive

and reflective sails were compared, and the potential

advantages of the former were described. Srivastava and

Swartzlander [20] described the optomechanics of a rigid

nonspinning light sail that mitigated a catastrophic sail

walk-off and tumbling using a flat axicon diffraction

grating. Other recent studies by Serak et al. [21],

Srivastava et al. [22], Chu et al. [23], and Chu et al. [24]

confirmed the potential of this technology in the field of

solar sail research.

An interesting feature of the diffractive sail is its

ability to provide a large transverse component of thrust,

even when its nominal plane is orthogonal to the Sun–

spacecraft line. This intrinsic characteristic was described

in detail by Dubill and Swartzlander [25], which is

taken as the starting point of this paper. In particular,

Dubill and Swartzlander [25] attempted to maneuver an

interplanetary diffractive sail-based light spacecraft to
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increase the orbital inclination while reducing its distance

from the Sun from 1 to 0.32 au with a flight time of

approximately 6 years. Such a mission scenario could

allow a constellation of diffractive solar sails (or smart

dust [26–28]) to be placed around the Sun to collect

images and other data for space weather monitoring

and heliophysics science. The interest in such missions

has been confirmed by the research program on solar

photonic propulsion recently promoted by the Italian

Space Agency [29, 30].

Based on the results of Ref. [25], the aim of this study

is to develop an analytical expression of the time-optimal

steering law [31, 32] for a Sun-facing ideal diffractive sail

(SFIDS). The thrust control variable was represented by

the clock angle, which provides the angular position of the

sail body-fixed reference frame with respect to the radial

direction. An in-orbit variation of the clock angle may be

obtained using a reaction wheel [25] capable of generating

a torque along the spacecraft body axis aligned with the

Sun–spacecraft line. The optimal steering law was then

used to analyze typical heliocentric transfer trajectories in

the preliminary mission design phase, including a transfer

toward an asteroid [33–35].

The remainder of this paper is organized as follows.

Section 2 describes the diffractive sail propulsive

acceleration model, starting from the literature. Section

3 analyzes the optimal steering law, which is specialized

in Section 4 for a set of minimum-time interplanetary

transfers. Section 5 deals with the optimal transfers

toward the asteroid 16 Psyche, while Section 6 presents

some concluding remarks.

2 Orbital dynamics and sail thrust model
description

Consider a spacecraft equipped with a diffractive solar sail

as its primary propulsion system. The spacecraft initially

covers a heliocentric parking orbit (subscript i) defined

by a given set of modified equinoctial orbital elements

(MEOEs) {pi, fi, gi, hi, ki} [36, 37]. Recall that the

classical orbital elements {a, e, i,Ω, ω} can be calculated

from the five MEOEs {p, f, g, h, k} using Eqs. (1)–(5):

a =
p

1− f2 − g2
(1)

e =
√
f2 + g2 (2)

i = 2arctan
√

h2 + k2 (3)

sinω = gh− fk, cosω = fh+ gk (4)

sinΩ = k, cosΩ = h (5)

where a is the semi-major axis, e is the eccentricity, i

is the orbital inclination with respect to the ecliptic at

epoch J2000.0, Ω is the longitude of the ascending node,

and ω is the argument of perihelion. According to Eqs. (1)

and (2), the MEOE p coincides with the semilatus rectum

of the spacecraft’s osculating orbit. The spacecraft true

anomaly ν can be expressed as a function of the true

longitude L (the last of the six MEOEs [36, 37]) by

ν = L− Ω− ω (6)

Following Betts [38], spacecraft heliocentric dynamics

can be described by introducing the state vector x ∈ R6×1

defined as

x ≜ [p, f, g, h, k, L]
T

(7)

whose time derivative is expressed as a function of the

spacecraft propulsive acceleration vector ap ∈ R3×1 as

ẋ = Aap + d (8)

where A ∈ R6×3 and d ∈ R6×1 are given by

A ≜


0 A12 0

A21 A22 A23

A31 A32 A33

0 0 A43

0 0 A53

0 0 A63

 , d ≜


0
0
0
0
0
d6

 (9)

with

A12 =
2p

1 + f cosL+ g sinL

√
p

µ⊙
(10)

A21 = sinL

√
p

µ⊙
(11)

A22 =
(2 + f cosL+ g sinL) cosL+ f

1 + f cosL+ g sinL

√
p

µ⊙
(12)

A23 = − g (h sinL− k cosL)

1 + f cosL+ g sinL

√
p

µ⊙
(13)

A31 = − cosL

√
p

µ⊙
(14)

A32 =
(2 + f cosL+ g sinL) sinL+ g

1 + f cosL+ g sinL

√
p

µ⊙
(15)

A33 =
f (h sinL− k cosL)

1 + f cosL+ g sinL

√
p

µ⊙
(16)

A43 =

(
1 + h2 + k2

)
cosL

2 (1 + f cosL+ g sinL)

√
p

µ⊙
(17)

A53 =

(
1 + h2 + k2

)
sinL

2 (1 + f cosL+ g sinL)

√
p

µ⊙
(18)

A63 =
h sinL− k cosL

1 + f cosL+ g sinL

√
p

µ⊙
(19)
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d6 =
√
µ⊙p

(
1 + f cosL+ g sinL

p

)2

(20)

where µ⊙ is the Sun’s gravitational parameter. The

vectorial differential equation (8) is completed using the

initial conditions in Eq. (21) defined at the initial time

t = t0. ≜ 0:

x(t0) = x0 ≜ [pi, fi, gi, hi, ki, L0]
T

(21)

where L0 ≜ L(t0) is the true longitude at time t0, which

can be calculated by Eq. (6) as a function of the initial

spacecraft true anomaly ν0 ≜ ν(t0) on the heliocentric

parking orbit.

In Eq. (8), the three components {apR
, apT

, apN
} of

the spacecraft propulsive acceleration vector ap are

expressed in a radial–tangential–normal reference frame

TRTN(C;R, T,N) of the unit vectors {îR, îT , îN}. The
origin of TRTN coincides with the spacecraft center-of-

mass C. The R-axis lies along the Sun–spacecraft line

(i.e., along the direction of the unit vector îR). The T -axis

belongs to the osculating orbit plane and points toward

the direction of the spacecraft (inertial) velocity vector.

The N -axis coincides with the direction of the spacecraft

angular momentum vector, as shown in Fig. 1.

Sun

Osculating orbit

Diffractive sail

to Sun

R

N
T

i
T

ˆ

i
N

ˆ

i
R

ˆ

C

Osculating orbit
plane

Fig. 1 Orbital reference frame TRTN.

The propulsive acceleration vector (and its

components) can be described as a function of the

spacecraft attitude using a suitable diffractive sail thrust

model. A mathematical model was first proposed by

Swartzlander [18]. This propulsion system representation,

which can be considered as the counterpart of the

well-known ideal reflective sail (IRS) force model [9, 39]

for a diffractive sail, was recently adapted by Dubill and

Swartzlander [25] to the special case of a Sun-facing

sail [40, 41]. Note that this particular attitude can

be passively maintained by choosing a suitable sail

shape [42], that is, by designing a slightly conical surface

with the apex directed toward the Sun [43].

Based on the analytical results obtained in Refs. [18,

25], the thrust model of an SFIDS can be described by

introducing a right-handed body-fixed reference frame

T (C;x, y, z) of origin C and unit vectors {îx, îy, îz}, as
shown in Fig. 2. The (x, y) plane coincides with the

sail nominal plane, while the x-axis is in the opposite

direction of the grating momentum unit vector K̂, that

is, îx = −K̂. Recall that the grating vector of the sail

film structure is aligned with the direction of periodicity

of the grating [44].

y

î
x

î
y

x
CK̂

Fig. 2 Diffractive sail body reference frame T (C; x, y, z)
and grating momentum unit vector K̂.

According to Dubill and Swartzlander [25], when the

z-axis of the body reference frame is aligned with the

Sun–spacecraft line, that is, in a Sun-facing condition

with z ≡ R and îR ≡ îz, the propulsive acceleration

vector ap can be written as

ap =
I⊕S

mc

(r⊕
r

)2 (
îz + îx

)
(22)

where r is the Sun–spacecraft distance, S is the area of the

sail reflective surface, c is the speed of light in vacuum,

m is the total mass of the spacecraft (assumed to be

constant), and I⊕ is the solar irradiance at a distance r =

r⊕ ≜ 1 au from the Sun. According to Eq. (22), in a Sun-

facing condition, the sail propulsive acceleration vector

belongs to the plane (x, z) of the body reference frame

T , and ap forms 45 deg angle with the Sun–spacecraft
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Sun

îz

îR

îx
x

z

C

âp
45 deg

K̂

Fig. 3 SFIDS propulsive acceleration vector direction in the
body reference frame T (C;x, y, z).

line, as shown in Fig. 3, where âp ≜ ap/ ∥ap∥ is the

propulsive acceleration unit vector. Equation (22) can

be rewritten in a more compact form by introducing

the characteristic acceleration ac [9]: Analogous to the

IRS case, ac is defined as the maximum value of the

propulsive acceleration magnitude ∥ap∥ when r = r⊕.

Taking Eq. (22) into account, ac is expressed as

ac =

√
2I⊕S

mc
(23)

Such that the propulsive acceleration vector can be

rewritten as

ap =
ac√
2

(r⊕
r

)2 (
îz + îx

)
(24)

The three components {apR
, apT

, apN
} of the

propulsive acceleration required to complete the vectorial

differential equation (8) were obtained by projecting

ap onto the radial–tangential–normal reference frame

TRTN. To this end, we introduce the sail clock angle

δ ∈ [−180, 180) deg, defined as the angle, measured

counterclockwise, between the T -axis and x-axis, as

shown in Fig. 4, where n̂ is the unit vector normal to the

sail nominal plane in the direction opposite the Sun (i.e.,

the shadowed side of the sail). From Fig. 4 we obtain

îx = îT cos δ + îN sin δ (25)

and recalling that îz ≡ îR in a Sun-facing condition,

Eqs. (24) and (25) yield

ap =
ac√
2

(r⊕
r

)2 (
îR + îT cos δ + îN sin δ

)
(26)

such that the components {apR
, apT

, apN
} are reduced to

apR
=

ac√
2

(r⊕
r

)2

(27)

Sun
x

y

î
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î
y

îR

C

î
N

î
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T
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K̂

z ≡ R

îz ≡ n̂ ≡ îR

(a) Isonometric view

y

î
x

î
y

x
C

T

δ

î
T

N

î
N

K̂

(b) Front view

Fig. 4 Sail clock angle δ in a Sun-facing condition.

apT
=

ac√
2

(r⊕
r

)2

cos δ (28)

apN
=

ac√
2

(r⊕
r

)2

sin δ (29)

According to Eq. (26), for a given value of ac and

distance r from the Sun, the SFIDS thrust vector is

dependent only on the value of the clock angle δ, which

therefore represents the single control variable.

Note that an IRS (when not constrained to maintain a

Sun-facing attitude) has two control variables: the clock

and cone angle. The latter is defined as the angle between

n̂ and the Sun–spacecraft line. The form of the SFIDS

propulsive acceleration vector given by Eq. (26) is very
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different from the general expression used for an IRS

without optical degradation [45] and wrinkles [46, 47].

Such a difference can be observed in Fig. 5, which shows

a typical sail force bubble (i.e., the locus of the propulsive

acceleration vector arrow) for an SFIDS and an IRS of

equal characteristic acceleration.

Figure 5 shows that the SFIDS thrust vector belongs

to a conical surface coaxial in the radial (i.e., Sun–

spacecraft) direction with a half angle of 45 deg, as shown

in Fig. 6. In particular, Fig. 5 highlights that an SFIDS

provides a single value for the transverse component of the

propulsive acceleration vector that is significantly greater
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Fig. 5 Force bubble for an ideal reflective sail and an ideal
Sun-facing diffractive sail.
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Fig. 6 SFIDS propulsive acceleration vector.

than the maximum transverse value achieved with an IRS

of equal characteristic acceleration. Figure 5 also shows

that in a “diffractive case”, ∥ap∥ ≠ 0, that is, a coasting

arc cannot be generated in the SFIDS trajectory design.

Coasting arcs are often required in the time-optimal

transfer trajectory of a solar sail-based spacecraft [48, 49].

This raises the question of the performance difference

between a common IRS and an SFIDS in a heliocentric

minimum-time transfer scenario, which will be discussed

in Section 4. Section 3 presents the analysis of the optimal

control law and optimal trajectory characteristics of an

SFIDS-based mission.

3 Trajectory optimization

The performance of SFIDS and IRS in a three-

dimensional heliocentric mission case is compared.

To that end, consider an optimal orbit-to-orbit

interplanetary transfer, in which the sail thrust vector is

steered in such a way to minimize the flight time required

to transfer the spacecraft from the Earth’s heliocentric

orbit to that of the target celestial body. In an orbit-to-

orbit transfer, the spacecraft angular position remains

free at both the beginning and end of the transfer phase

to obtain the minimum value of the performance index

(i.e., flight time) within the context of an ephemeris-

free mission scenario. Accordingly, the values of the

spacecraft’s true anomalies along the parking and target

heliocentric orbits are the outputs of the optimization

process. The mathematical model that provides the

optimal transfer trajectories of an IRS-based spacecraft

was discussed in Ref. [50]. The case of an SFIDS is

analyzed in this section.

The heliocentric orbit of a given celestial body is

defined by the set {p, f, g, h, k} of MEOEs. Using

the SFIDS thrust model discussed in Section 2, the

optimization problem requires the determination of the

time variation of the sail clock angle δ that maximizes

the performance index:

J ≜ −(tf − t0) ≡ −tf (30)

with boundary constraints:

p(t0) = pi, f(t0) = fi, g(t0) = gi,

h(t0) = hi, k(t0) = ki (31)

p(tf) = pf , f(tf) = ff , g(tf) = gf ,

h(tf) = hf , k(tf) = kf (32)
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where the set {pf , ff , gf , hf , kf} denotes the characteristics

of the heliocentric target orbit.

The optimization problem was solved with an indirect

approach [51, 52]. Recalling Eq. (8), the Hamiltonian

function is written as

H ≜ λ · (Aap) + λ · d (33)

where λ ∈ R6×1 is the costate vector defined as

λ ≜ [λp, λf , λg, λh, λk, λL]
T

(34)

and {λp, λf , λg, λh, λk, λL} are six costates. The time

derivatives of the costates are given by the Euler–

Lagrange equations:

λ̇ = −∂H
∂x

(35)

where x denotes the state vector defined in Eq. (7). The

Euler–Lagrange equations were derived from Eq. (35)

in analytical form using Eqs. (9)–(20). However, their

explicit expressions are omitted here for brevity.

The optimal time variation of the clock angle δ =

δ⋆(t) was obtained by applying Pontryagin’s maximum

principle, that is, by maximizing at any time instant

the portion H′ of the Hamiltonian function H that is

explicitly dependent on the control angle δ, or

H′ ≜ λ · (Aap) (36)

Using Eqs. (9)–(19) and (27)–(29), the necessary

condition ∂H′/∂δ = 0 provides the expression of the

optimal clock angle as a function of the spacecraft states

and costates.

sin δ⋆ =

− A63λL +A23λf +A33λg +A43λh +A53λk√
(A63λL +A23λf +A33λg +A43λh +A53λk)

2

+(A22λf +A32λg +A12λp)
2

(37)

cos δ⋆ =

− A22λf +A32λg +A12λp√
(A63λL +A23λf +A33λg +A43λh +A53λk)

2

+(A22λf +A32λg +A12λp)
2

(38)

The solution of the optimization problem requires the

numerical integration of a set of 12 nonlinear scalar

differential equations provided by Eqs. (8) and (35). Ten

of the twelve necessary boundary conditions are given by

Eqs. (31) and (32). The last two boundary conditions were

obtained by enforcing the transversality condition [53].

λL(t0) = 0, λL(tf) = 0 (39)

Bearing in mind Eq. (30), the transversality

condition [53] also applies an additional constraint on the

final value of the Hamiltonian function, which is useful

for calculating the unknown flight time tf .

H(tf) = 1 (40)

The associated two-point boundary value problem

(TPBVP) was solved with an absolute error of less than

10−8 through a hybrid numerical technique that uses

gradient-based methods to obtain the optimal flight time

and unknown initial value of the costates {λp, λf , λg,

λh, λk}. It should be noted that the initial value of λL

was obtained from Eq. (40). During the solution of the

associated TPBVP, the spacecraft equations of motion

and the Euler–Lagrange equations were numerically

integrated using a variable order Adams–Bashforth–

Moulton solver scheme [54] with absolute and relative

errors of 10−10.

For a given value of the sail performance parameter

ac and a given target celestial body, the previously

described optimization problem was solved to obtain

the minimum flight time tf . Therefore, it is possible to

graphically determine the function tf = tf(ac) by simply

repeating the same procedure for different values of ac.

This aspect will be analyzed in Section 4 for a set of

potential interplanetary mission scenarios, along with a

numerical performance comparison with an IRS-based

spacecraft.

4 Numerical results and SFIDS–IRS
comparison

The procedure described in Section 3 was used to evaluate

the optimal transfer performance of an SFIDS-based

spacecraft in an interplanetary mission to Mercury, Venus,

and Mars. The orbital elements of the celestial bodies

involved in the numerical simulations were obtained

through the JPL Horizons online ephemeris system

(all the data were from July 1, 2022). The orbital

characteristics, in terms of classical orbital elements

and MEOEs, are summarized in Table 1. The table also

includes the data of the asteroid 16 Psyche, which will

be considered as a case study in Section 5.

In each three-dimensional mission case (Earth–

Mercury, Earth–Venus, and Earth–Mars), parametric

analysis was performed to evaluate the sensitivity of the

minimum flight time tf to the value of the characteristic

acceleration, which was assumed to vary within the range
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Table 1 Classical orbital elements and MEOEs used in the numerical simulations. Data refer to the actual planetary
ephemeris on July 1, 2022, according to the JPL Horizons system

Earth Mercury Venus Mars 16 Psyche

a (au) 1.0008 3.8710× 10−1 7.2333× 10−1 1.5238 2.9244
e 1.5940× 10−2 2.0563× 10−1 6.7483× 10−3 9.3502× 10−2 1.3402× 10−1

i (deg) 3.0226× 10−3 7.0036 3.3944 1.8479 3.0969
Ω (deg) 1.5986× 102 4.8302× 101 7.6617× 101 4.9490× 101 1.5003× 102

ω (deg) 3.0298× 102 2.9188× 101 5.4719× 101 2.8672× 102 2.2925× 102

p (au) 1.0005 3.7073× 10−1 7.2330× 10−1 1.5105 2.8719
f −3.5430× 10−3 4.4540× 10−2 −4.4571× 10−3 8.5555× 10−2 1.2650× 10−1

g 1.5542× 10−2 2.0074× 10−1 5.0669× 10−3 −3.7722× 10−2 4.4256× 10−2

h −2.4765× 10−5 4.0707× 10−2 6.8580× 10−3 1.0476× 10−2 −2.3419× 10−2

k 9.0802× 10−6 4.5692× 10−2 2.8826× 10−2 1.2262× 10−2 1.3503× 10−2

ac ∈ [0.1, 1] mm/s2. For reflective solar sails, ac values of

approximately 0.1 mm/s2 indicate a low-performance sail.

A propulsion system with a characteristic acceleration of

approximately 1 mm/s2 can be considered as a medium-

high performance sail. In particular, a value of ac ≈ 0.1

mm/s2 represents the state-of-the-art of the (reflective)

sail technology. For example, the design value of the

characteristic acceleration of the upcoming NASA mission

Solar Cruiser [8] is approximately 0.12 mm/s2, while the

recently proposed mission concept of Helianthus [30, 55]

has a design value of approximately 0.6 mm/s2.

The numerical results in terms of the minimum flight

time tf as a function of ac for an SFIDS-based spacecraft

are summarized in Fig. 7 for the three interplanetary

mission cases. The difference in flight times between

SFIDS- and IRS-based spacecraft was quantified with

the dimensionless parameter:

D ≜
tf |IRS − tf |SFIDS

tf |SFIDS

(41)

where tf |SFIDS (or tf |IRS) is the minimum flight time

obtained by solving an optimal control problem for an

SFIDS-based (or IRS-based) spacecraft. For a given ac,

a positive value of D indicates that the performance of

the SFIDS is superior to that of the IRS, that is, the

SFIDS enables the spacecraft to reach the target planet

in a shorter flight time compared with the IRS case. The

function D = D(ac), obtained numerically, is plotted

in Fig. 8. Note that this comparison assumes that the

SFIDS and IRS have the same characteristic acceleration

ac; however, in principle, the SFIDS should have a smaller

area-to-mass ratio than the IRS. A more detailed estimate

of the achievable level of performance with an SFIDS is

beyond the scope of this study.

Figure 8 shows that in each mission scenario, the SFIDS

performance is superior to that of the IRS for the entire

range of characteristic accelerations considered in the

numerical simulations. The percentage difference in flight

times was more pronounced when smaller values of the

characteristic acceleration were considered. For example,

in a three-dimensional Earth–Mars orbit-to-orbit transfer

with a medium-high performance sail, the flight time

in the IRS-based case was approximately 15%–20%

greater than that required by the SFIDS. The percentage

difference increased to approximately 70%–90% for a low-

performance sail. The ripples in Fig. 8 were attributed to

the slight variations in the flight time when the spacecraft

swept angle is an integer multiple of 2π, as discussed in

Refs. [3, 56] with a simplified (two-dimensional) mission

scenario involving a reflective sail.

The curves in Figs. 7 and 8 show that the difference in

the transverse component of the propulsive acceleration

vector between the SFIDS and IRS (highlighted in Fig. 5)

has a major effect on the transfer performance, despite

the higher maneuverability characteristics of the IRS.

Recall that the IRS has two control variables (i.e., two

control angles), while the thrust vector of the SFIDS is

dependent only on the clock angle. The characteristics

of the optimal transfer trajectory of the SFIDS-based

spacecraft are analyzed in Section 5 in a more challenging

orbit-to-orbit mission scenario.

5 Case study

In this section, we consider a mission to the asteroid

16 Psyche, a small body located in the belt between

Mars and Jupiter. The asteroid is a potential target

of exploration in the near future [57] because of its

particular metal-rich composition [58–60]. In fact NASA

and the Jet Propulsion Laboratory planned a robotic
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Fig. 7 Optimal three-dimensional orbit-to-orbit flight time
tf as a function of the characteristic acceleration ac for an
SFIDS-based spacecraft.

exploration mission to the asteroid using a solar electric-

powered spacecraft with the expected launch date

in late September 2022. NASA’s reference study on

the Psyche mission included a solar electric cruise of

approximately 3.5 years (with an estimated arrival

in 2026), an intermediate Mars gravity assist, and a

scientific observation period of 21 months around the
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Fig. 8 Function D = D(ac) for the three mission cases; see
Eq. (41).

target asteroid. Unfortunately, the launch was indefinitely

postponed in June 2022.

The characteristics of the heliocentric orbit of the

asteroid are listed in Table 1. These indicate that reaching

this small body will be a challenge for a solar sail-based

spacecraft because of the distance of the asteroid from

the Sun. Indeed, the fact that the solar radiation pressure

has an inverse-square variation with the solar distance
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imposes severe constraints on solar sail-based transfers

when the mean radius of the target orbit is larger than

the mean Sun–Mars distance. Assuming a characteristic

acceleration in the usual range ac ∈ [0.1, 1] mm/s2, the

minimum orbit-to-orbit flight time of the SFIDS-based

spacecraft is shown in Fig. 9. The black circles refer to

the cases listed in Table 2. The table also lists the optimal

angular positions of the spacecraft (both at the beginning

and end of the transfer) in terms of the true anomalies
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1000
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7000
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Fig. 9 Optimal flight time in a mission toward the asteroid
16 Psyche. Black circles refer to the scenarios detailed in
Table 2.

Table 2 Optimal transfer trajectory characteristics in an
Earth–16 Psyche orbit-to-orbit mission scenario

ac (mm/s2) tf (day) ν(t0) (deg) ν(tf) (deg)

1.0 880.1 92.2 105.5
0.9 919.8 78.9 109.8
0.8 975.9 54.6 112.1
0.7 1062.1 354.2 95.6
0.6 1188.0 280.8 64.0
0.5 1417.5 191.0 102.4
0.4 1706.5 149.2 145.1
0.3 2198.0 232.8 72.7
0.2 3245.5 207.2 109.8
0.1 6595.7 227.3 100.6

in the parking (ν(t0)) and target (ν(tf)) heliocentric

orbits. The ν(t0) and ν(tf) values are the outputs of the

optimization process. These provide the designer with

useful information about the potential launch window at

which the minimum transfer time can be achieved.

Figure 9 and Table 2 show that the SFIDS-based

transfer toward the asteroid 16 Psyche with a flight time

comparable to that of NASA’s planned mission (i.e.,

approximately 3.5 years) requires a medium-performance

sail with a characteristic acceleration in the range

0.5–0.6 mm/s2. However, the SFIDS-based scenario

considers a direct transfer, that is, it does not require an

intermediate gravity-assisted maneuver. In this case, the

diffractive solar sail option is less constrained from the

viewpoint of the existing launch windows.

When a low-performance SFIDS is considered for

mission optimization, the minimum flight time is in
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Fig. 10 Optimal Earth–16 Psyche transfer trajectory of an SFIDS-based spacecraft with ac = 0.1 mm/s2.
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Fig. 12 Time variation of the optimal clock angle during the Earth–Psyche orbit transfer.

the order of 15–18 years, and the transfer trajectory

shows multiple revolutions around the Sun. For example,

Fig. 10 shows the optimal transfer trajectory when

ac = 0.1 mm/s2, which requires approximately 18 years.

However, using a medium-high performance sail in the

mission design reduces the flight time to a few years

and the complexity of transfer trajectory. For instance,

Fig. 11 shows the optimal transfer trajectory when the

characteristic acceleration is 1 mm/s2. Figure 12 shows

the time variation of the optimal clock angle during

the transfer. It should be noted that in both low- and

high-performance cases, the modulus of the clock angle

remained below 20 deg for approximately 80% of the

flight time. In the case of a high-performance sail, the

ν(t0) and ν(tf) values listed in Table 2 indicate that the

potential optimal launch window is around April 5, 2029.

6 Conclusions

This study analyzed the performance of a diffractive

sail with a Sun-facing attitude in an optimal framework.

Starting from the recent ideal thrust model of a diffractive

sail and using an indirect approach, we derived the

sail optimal control law, that is, the explicit expression

of the clock angle (the single control variable of this
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particular configuration) as a function of the osculating

orbit-modified orbital elements and problem costates.

The proposed mathematical model was then used to

analyze the performance of an SFIDS as a function of the

characteristic acceleration in a set of typical orbit-to-orbit

interplanetary (three-dimensional) transfer scenarios.

The numerical simulations showed that for missions

involving transfers toward both inner and outer planets,

the flight times required by an SFIDS were significantly

shorter than those required by a more conventional IRS,

with the characteristic acceleration being the same. This

is an interesting and less obvious result because the IRS

has better maneuverability and may exploit the possible

presence of coasting arcs along the transfer, which could

be obtained by an edge-on flight orientation toward

the Sun. The study of an orbit-to-orbit transfer toward

the asteroid 16 Psyche also revealed that a medium-

performance Sun-facing diffractive sail may achieve a

flight time comparable to that of NASA’s planned mission

to Psyche.

The potential extensions of this study are twofold.

First, the simplified thrust model discussed here can be

used to analyze the SFIDS performance when generating

and maintaining both artificial equilibrium points and

heliocentric non-Keplerian orbits, paralleling the well-

known results obtained with reflective solar sails. Second,

the diffractive sail optimal performance can be analyzed

by relaxing the Sun-facing attitude constraint, that is,

by considering an additional control variable in the sail

thrust model. In the latter case, the description of the

sail propulsive acceleration vector becomes more complex

(compared with the Sun-facing case), and requires a new

study on the optimal control law.
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