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Abstract: Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3
poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other
marine organisms. EPA and DHA are commercially available as dietary supplements and are
considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs
have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as
β-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context,
we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding
pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and
DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.
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1. Introduction

Omega-3 poly-unsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA;
20:5) and docosahexaenoic acid (DHA; 22:6) (Figure 1A), which are the main components
in oil derived from fish and other marine organisms, when used as a dietary supplement,
have several benefits for human health. Although the omega-3 PUFAs real role in major
cardiovascular risks is currently controversial, they may help to reduce the development
of coronary heart diseases by decreasing hypertriglyceridemia [1], blood pressure [2],
and the chronic immune-inflammatory response that underlies atherosclerosis [3]. Other
interesting effects of EPA and DHA may derive from their antioxidant activities [4,5].
Moreover, they have healthy effects on brain functions. Indeed, they showed to improve
cognitive performances in terms of increasing learning, memory, and blood flow in the
brain [6], and to ameliorate conditions for subjects with neurodegenerative disorders, such
as Alzheimer’s and Parkinson’s diseases, (AD and PD, respectively) [7–9]. Some interesting
evidence has also suggested a possible direct interaction between omega-3 fatty acids and
proteins that are involved in neurodegenerative processes, i.e., β-amyloid for AD [10],
α-synuclein in PD [11], and transthyretin (TTR) in TTR amyloidosis (ATTR) [12].
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Figure 1. (A) Chemical structures of EPA and DHA (B) Tetrameric structure of TTR (pdb structure 
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using our scripts [13–15]. 

TTR, also known as human prealbumin, is a β-sheets-rich homotetrameric protein 

that is characterized by four equal monomers that are arranged together around a two-

fold axis [16]. Each TTR monomer is characterized by two four-stranded antiparallel β-

sheets and a short α-helix (Figure 1B). The two monomers assembled together form a 

dimer and the two dimers give life to the TTR tetramer. The tetramer is crossed by a 

channel that is divided into two different cavities, named thyroxine-binding sites (T4BP). 

The circulating TTR is secreted by the liver, while the TTR in the cerebrospinal fluid 

is produced by the choroid plexus [17]. The acronym TTR holds the main protein’s 

physiological functions, namely transporter for thyroxine (T4) and retinol, the latter 

through binding with the retinol-binding protein (RBP) [18]. TTR is the second carrier of 

T4 in plasma and the first in cerebrospinal fluid (CSF) [19,20], Figure 2. Recently, TTR has 

been largely studied for its neuroprotective role in the central nervous system (CNS), 

where it has been demonstrated that TTR is able to bind Aβ favoring its scavenger from 

the brain to the liver [21–25]. Studies reported that TTR binds soluble Aβ peptides but also 

oligomers and fibrils contrasting the Aβ toxicity, decreasing the amyloid aggregates 

formation and preventing the fibril growth [26,27], Figure 2. Despite the several studies 

conducted, the precise binding mechanism of the interaction between TTR and Aβ is still 

unknown. However, experimental evidence supports the hypothesis that the tetrameric 

form of TTR is essential for binding with Aβ [26,28–30]. 

Figure 1. (A) Chemical structures of EPA and DHA (B) Tetrameric structure of TTR (pdb structure
1sn0), two thyroxine molecules bind the TTR-binding sites. Structural figures were made by PyMOL
using our scripts [13–15].

TTR, also known as human prealbumin, is a β-sheets-rich homotetrameric protein
that is characterized by four equal monomers that are arranged together around a two-fold
axis [16]. Each TTR monomer is characterized by two four-stranded antiparallel β-sheets
and a short α-helix (Figure 1B). The two monomers assembled together form a dimer and
the two dimers give life to the TTR tetramer. The tetramer is crossed by a channel that is
divided into two different cavities, named thyroxine-binding sites (T4BP).

The circulating TTR is secreted by the liver, while the TTR in the cerebrospinal fluid
is produced by the choroid plexus [17]. The acronym TTR holds the main protein’s phys-
iological functions, namely transporter for thyroxine (T4) and retinol, the latter through
binding with the retinol-binding protein (RBP) [18]. TTR is the second carrier of T4 in
plasma and the first in cerebrospinal fluid (CSF) [19,20], Figure 2. Recently, TTR has been
largely studied for its neuroprotective role in the central nervous system (CNS), where it
has been demonstrated that TTR is able to bind Aβ favoring its scavenger from the brain to
the liver [21–25]. Studies reported that TTR binds soluble Aβ peptides but also oligomers
and fibrils contrasting the Aβ toxicity, decreasing the amyloid aggregates formation and
preventing the fibril growth [26,27], Figure 2. Despite the several studies conducted, the
precise binding mechanism of the interaction between TTR and Aβ is still unknown. How-
ever, experimental evidence supports the hypothesis that the tetrameric form of TTR is
essential for binding with Aβ [26,28–30].
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Figure 2. Graphic representation of the TTRs physiological and pathological roles in the body and in
the CNS.

In contrast with this neuroprotective role, TTR possesses an intrinsic amyloidogenic
potential related to its high level of the β strand [31–33]. Under pathological conditions,
TTR undergoes a misfolding process that leads to the formation of protein aggregates
and fibrils in the tissues leading to organ damage and dysfunction, inducing amyloidosis
disease onset [34,35], Figure 2.

TTR can be responsible for several amyloidosis diseases, such as familial amyloid
polyneuropathy (FAP), familiar amyloid cardiomyopathy (FAC), central nervous system
amyloidosis (CNSA), and senile systematic amyloidosis (SSA) [36]. While SSA is related
to wild-type TTRs (wt-TTRs), the others are associated with more than a hundred TTR
point mutations [37]. One of the therapeutic approaches against TTR amyloidosis (ATTR)
progression is the use of small molecules that are able to bind the T4BP, which contributes
to the stability of the TTR tetramer [38]. Tafamidis was the first-in-class drug approved for
the treatment of TTR amyloid cardiomyopathy, and it is still the only drug used in a clinical
setting [39–42].

Several in vitro and in vivo experiments have shown that natural compounds are able
to contrast the TTR tetramer desegregation [43–46]. A diet enriched with nutraceuticals,
as supplements, is a potentially powerful tool to prevent or postpone the TTR misfolding
process and amyloidosis [47,48]. In this context, we propose a preliminary investigation of
EPA and DHA to evaluate if they can interact with the T4BP contributing to the wt-TTR
tetramer stabilization.

2. Materials and Methods
2.1. In Vitro Studies

Reagents and solvents of analytical grade were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Diflunisal, tolcapone, and the binding of ANS (8-anilino-1-naphthalenesul
fonic acid) were bought at Merck Life Science (Milano, Italy), while eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) were purchased from Vinci-Biochem (Vinci, Italy).
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2.1.1. Turbidimetric Assay

Turbidimetric assay was carried out following the protocol previously described [49],
in order to evaluate the TTR fibril formation. Lyophilized prealbumin and human plasma
(wt-TTR) were purchased from Merck Millipore (Molsheim, France). Diflunisal, tolcapone,
EPA, and DHA were dissolved in DMSO to reach a final concentration of 7.2 µM into the
well. A solution of TTR was made using 10 mM phosphate buffer pH 7.6 (100 mM KCl,
1.7 mM EDTA) and was dispensed into wells of 96-well microplates (7.2 µM). The stock
inhibitor solution or DMSO, for the negative control, was added to each well. The plate
was incubated for 30 min at room temperature. Then, the acetate buffer (200 mM acetate at
pH 4.4, 100 mM KCl, and 1.7 mM EDTA) was aliquoted in each well. The microplate was
incubated at 37 ◦C for 72 h without stirring. After that time, the plate was vortexed, and the
optical density was measured at 450 nm using a SPECTROstarNano (200–1000 nm) UV/Vis
spectrophotometer [50]. All compounds were tested in triplicates and the percentage of
fibril formation was calculated as previously described [51].

2.1.2. Thioflavin T (ThT)

wt-TTR (7.2 µM), purchased from Calbiochem (EDM Millipore, cat.529577 lot: 2896620),
was incubated overnight at 37 ◦C in 10 mM phosphate buffer (pH 7.0) in the presence of, or
in the absence of 10 µM of diflunisal (positive control), EPA, and DHA. A total of 200 mM
acetate buffer (pH 4.4) was successively added, and all the samples were incubated at 37 ◦C
for 96 h (final concentration of TTR 3.6 µM). After incubation, amyloid fibril formation
was assessed using a ThT-binding assay (10 µM ThT in 50 mM glycine buffer pH 9; TTR
concentration at 0.045 µM). Bars are representative of the 7 dilution measurements from
the same incubation vial. Values represent the mean ± the standard error (SEM). One-way
ANOVA test has been performed for each condition in comparison to TTR alone.

2.1.3. ANS Competitive Binding Assay

The competitive ANS-binding and its displacement by EPA and DHA were performed
according to the procedure previously described [52]. TTR was incubated with ANS
at room temperature for 15 min, in 96-well plates. Then, EPA and DHA at different
concentrations (60 µM to 10 µM) were added. After 10 min, the plate was stirred, and
the fluorescent emission spectra (400–540 nm) were recorded by exciting at 280 nm [44]
using Molecular Devices SpectraMax Gemini XPS plate reader. Subsequently, the IC50 was
determined, the ANS fluorescence was excited at 280 nm, and the emission was recorded
at 470 ± 20 nm [53].

2.1.4. Statistical Analysis

Data were presented as the mean ± standard error (SEM) of at least three independent
experiments. All statistical analyses were performed using the GraphPad Prism software,
version 7.0 (GraphPad Software Inc., San Diego, CA, USA). For the comparison of the ex-
perimental groups, a one-way ANOVA and a Turkey post-test were used. A p-value < 0.05
was set as statistically significant.

3. Results and Discussion

EPA and DHA were tested in vitro by the turbidimetric assay to evaluate their ability
to inhibit the amyloid fibril formation (FF) of TTR. The results were reported as a percentage
of the fibril formation, as shown in Figure 3. The ability of the two tested compounds to
reduce the fibril formation was compared to diflunisal and tolcapone, which were used as
a positive control [54,55]. TTR without an inhibitor was used as the negative control (100%
of FF). The concentration used in the turbidimetric assay to screen the two compounds
was 7.2 µM, which was twice the concentration of the TTR tetrameric form in plasma
(3.6 µM) [56], and the data were recorded at 72 h.
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Figure 3. In vitro acid denaturation mediated of wt-TTR. The FF in absence of any inhibitor was
assigned to be 100%. Results are shown as mean ± SEM. Statistical significance is calculated by one-
way ANOVA test and Turkey post hoc test: * indicates significant difference vs. TTR (**** p < 0.0001,
*** p < 0.001 and ** p < 0.01).

Both fatty acids displayed a significant ability to contrast the fibril formation (36% EPA
and 40% FF DHA), Figure 3.

The inhibition activity of EPA and DHA has also been assessed by the ThT fluorescence
spectroscopy, to study the ability of both fatty acids to affect the TTR fibrillization by
reducing the amyloid β-sheet content. Their activity has been compared to diflunisal as in
the turbidimetric assay. As showed in Figure 4, diflunisal has been found to significantly
(p < 0.05) reduce the β-sheet-rich fibrils, with a reduction of 54% of the ThT fluorescence
intensity compared to TTR alone. A similar reduction with a value quite near significance
(p = 0.06) has been found for DHA, which reduced the amount of β-sheet-rich structures by
42%, which is similar to the value found in the turbidimetric assay. However, no significant
difference from TTR was observed for EPA, which induced a 22% fibril decrease. This
could be explained by the fact that ThT might detect small protofibrils, which are not able
to diffract well in the turbidimetric assay.
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Figure 4. In vitro ThT fluorescence assay of wt-TTR in the absence or in the presence of diflunisal,
DHA, and EPA. Values represent the fluorescence intensity mean ± SEM. The significance compared
to TTR alone is assessed by one-way ANOVA test and Turkey post hoc test: * indicates significant
difference vs. TTR (* p < 0.05).
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Looking at the chemical structure of the studied fatty acids that are characterized by a
carboxylic group and an unsaturated aliphatic chain, we speculated that they are potentially
able to interact with the internal cavity of the TTR-binding sites. In order to verify this
hypothesis, the ANS displacement binding assay of EPA and DHA was performed on
wt-TTR. ANS is a fluorophore that is capable of simultaneously binding both TTR-binding
sites and inducing a high fluorescence signal [53]. When a studied compound binds to the
TTR-binding sites and induces the quenching of the TTR-ANS fluorescence complex, it
means that the molecule displaces ANS out of TTR cavities.

Four concentrations of EPA and DHA were tested (60 µM, 40 µM, 20 µM, and
10 µM) and the preliminary results suggested that both fatty acids were able to displace
ANS, Figure 5.
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TTR-ANS complex was titrated with different concentrations of EPA and (B) of DHA.

Starting from these data, several concentrations were investigated to calculate the IC50.
Interestingly, EPA and DHA showed promising profiles as the TTR binder, with the IC50 of
13 µM and 12.1 µM, respectively, Table 1. These IC50 values are comparable with those of
other natural compounds that are able to bind the TTR tetramer [48].

Table 1. The IC50 values were calculated using ANS displacement binding assay.

Compound IC50
a µM R2

EPA 13.0 ± 0.08 0.9726

DHA 12.1 ± 0.07 0.9791
a Mean ± SEM of three independent experiments.
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Comparing the results coming from the turbidimetric mediate test with respect to
those of the ANS displacement binding test, we can assert that EPA and DHA interact with
the T4BP and contribute to keeping TTR in its tetrameric form. These preliminary results
suggest a possible beneficial use of these fatty acids as a dietary supplement in association
with drugs for patients with TTR amyloidosis.

In AD patients, TTR levels are lower compared to healthy subjects [57,58], probably
because TTR binds Aβ and favors its scavenger from the brain to the liver [23]. An
in vivo study of old rats showed that the administration of EPA and DHA increased the
expression of TTR gene in the brain by ten times [59]. Thus, they proposed that the regular
consumption of fatty acids in the diet contributes to inducing TTR expression and that this
can contribute to the clearance of Aβ from the brain. A few years later, EPA and DHA were
used as supplements in AD patients, and also in this case, the TTR levels of expression
increased significantly [60]. Therefore, for elderly people, the daily use of EPA and DHA
can reflect an improvement in cognitive performance, as previously demonstrated [6],
and also in positive effects mediated by TTR actions, inducing the TTR production and
contributing to maintaining its tetrameric structure.

4. Conclusions

The data obtained from the present study, for the first time, show that the omega-3
PUFAs, EPA, and DHA, are able to contribute to contrasting in vitro TTR fibril formation
through interacting with T4BP. This evidence is confirmed by the ANS competitive binding
assay. Starting from these preliminary results, we suggest a possible beneficial use of
PUFAs as a dietary supplement in association with drugs in elderly patients with senile
systemic amyloidosis.
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