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Abstract
We analyze axioms and postulates as speech acts. After a brief historical appraisal 
of the concept of axiom in Euclid, Frege, and Hilbert, we evaluate contemporary 
axiomatics from a linguistic perspective. Our reading is inspired by Hilbert and is 
meant to account for the assertive, directive, and declarative components of modern 
axiomatics. We will do this by describing the constitutive and regulative roles that 
axioms possess with respect to the linguistic practice of mathematics.

1 Introduction

Mathematics strives for clarity. Its rigor consists in making explicit each single step 
of an argument. In doing so mathematics is therefore rigidly structured in premises 
and conclusions, hypotheses and theses. But to avoid infinite regress a mathematical 
argument needs a starting point, able to offer the ultimate bedrock of its rigor. This 
is normally presented in the form of an axiom or a postulate.

At the center stage of mathematical practice, the premise-argument structure pre-
sented in mathematical texts plays an important justificatory role, as mathematicians 
are often required to provide reasons for their claims. From this perspective, axioms 
and postulates play an important role since they provide a starting point for a math-
ematical argument. Like the incipit of any discourse, they can set the stage for the 
rest of the discussion, serving the argumentative goals of the speaker.
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There is much more to the mathematical practice than the argumentation pro-
vided by mathematical texts and much more to the premise-conclusion structure 
than the axiomatic method.1 Nonetheless, the use of axioms and postulates features 
a key aspect of mathematical practice since antiquity and is still representative of 
how mathematical texts are structured today. Therefore, our goal is to analyze their 
peculiar function from a linguistic perspective. Building on the preliminary work 
of Ruffino (2021), our starting point considers mathematical arguments as a com-
plex and well-structured set of speech acts in which axioms and postulates are key 
elements.

The traditional understanding of axioms as self-evident propositions and of pos-
tulates as auxiliary hypotheses has received severe criticisms in a recent debate 
in the philosophy of mathematics.2 Moreover, a careful historical analysis of the 
notion of axiom shows a plethora of different uses.3 But then, how can we attempt 
to describe such a peculiar and multifaceted character of axioms and postulates, by 
analyzing their linguistic roles?

Luckily we do not have to start from scratch, since the philosophy of language 
has already developed sharp tools for such analysis. We can indeed apply Speech 
Act Theory to the study of axioms and postulates in order to understand what we do 
with words when we axiomatize and postulate.

Speech Act Theory is roughly the study of the illocutionary acts and the illocu-
tionary forces they express. The main goal of Speech Act Theory is to unveil such 
a variety of linguistic acts and to describe the structure underlying each speech act. 
Here, we follow Searle’s analysis as exposed in Searle (1969, 1979), and (jointly 
with Vanderveken) in Searle and Vanderveken (1985). From these classical texts, 
we will extract a taxonomy of five different speech act classes: assertives, directives, 
declaratives, commissives and expressives. As we shall see, for the analysis of axi-
oms and postulates the first three classes suffice.

The paper is structured as follows. We start in Sect. 1 considering the notion of 
axiom in Euclid, Frege, and Hilbert. We show that one can find substantial differ-
ences between these authors simply by considering the different illocutionary forces 
in play. Moreover, we will argue that this analysis suggests not only a shift from a 
more procedural to a more ontological conception of mathematics, but also a pro-
gressive identification of three different notions: postulates, axioms, and definitions. 
Then, in sect.2 we propose our own reading of contemporary axiomatics. We argue 
that in laying down axioms and postulates it is possible to find both assertive and 
declarative illocutionary forces (together with some directive elements). This will 
not only show a hybrid type of speech act, but will also explain the current linguistic 
use in accordance with a Hilbertian picture of the axiomatic method.

1 See Lakatos, (1976) for a famous attack on the formalist and deductivist argumentation method. For a 
more recent survey on the informal logic behind the dialectics of mathematical proofs, and the different 
dialogue roles it may take, see Aberdein, (2006).
2 See, for example, Maddy (1988, p. 481).
3 A summary of the different roles played by axioms in history can be found in Schlimm (2013).
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2  Axioms and Postulates in Euclid, Frege, and Hilbert

The historical examples discussed in this section are not meant to provide a thor-
ough and complete story of the use of these notions; they only serve as paradigmatic 
examples of three different conceptions linked to three different linguistic practices.

2.1  Euclid

The birth of the axiomatic method goes back to ancient Greece and to Euclid’s 
Elements.4 The basic principles that Euclid laid down at the foundations of geom-
etry were divided into three groups called, respectively, Definitions, Postulates, and 
Common Notions.

Common notions correspond to axioms in the Aristotelian sense. As a matter 
of fact, Aristotle not only represents the cultural background that shaped the Ele-
ments, but also his use of the terms ‘axiom’ and ‘postulate’ seems to be derived 
from the mathematical use.5 Common notions and postulates seem to differ not only 
with respect to their scope of application - while common notions were the most 
basic premises for any form of argument, the postulates were specific to a domain 
of knowledge6 - but also with respect to the way these notions were applied. Indeed, 
postulates had a constructive component that common notions lacked.

The latter difference clearly bears on the centrality that constructions have in the 
geometry of Euclid’s Elements. Indeed, Euclid’s postulates are usually interpreted as 
instructions to be followed for the performance of a geometrical construction, which 
in turn grounds the truth of a geometric proposition. This reading is supported by 
the linguistic form of postulates, which are written in the infinitive form.7

Let it have been postulated to draw a straight-line from any point to any point.

On the other hand, common notions are written in the general neutral.

Things equal to the same thing are also equal to one another.

Euclid’s understanding of these two notions would dominate geometrical practice 
until the XIX century, when a new conception of axioms will take over, determin-
ing a more abstract (and realist) conception of mathematics. For that reason, we will 
take a huge step forward to late XIX century Germany and consider two events of 
fundamental importance for the history of axiomatics.

4 We will refer to Euclids’s Elements as translated by Richard Fitzpatrick in Fitzpatrick (2008).
5 For a detailed discussion on this point see (Einarson, 1936).
6 This explains why Euclid’s common notions can also be applied to geometry, while any talk about 
points, lines, or planes, which is the content of the postulates, can only be applied to geometry.
7 The last two postulates are not, which suggests a later addition, as argued in Einarson (1936).
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2.2  Gottlob Frege

The year 1879 is commonly set as a turning point in the history of logic. It is in this 
year that Frege published the first edition of the Begriffsschrift (Frege, 1967). Even 
by today’s standards, Frege’s conceptual-notation is considered sui generis. But for 
what concerns us here, Frege was the first to offer an explicit linguistic analysis of 
axioms. His axioms, which he called judgements of pure thought, and later basic 
laws, are not mere sentences but assertions.

In Begriffsschrift’s notation, axioms are prefixed with the special sign  in 
which the vertical line on the left was called the ‘judgement-stroke’. While in mod-
ern notation, an axiom is considered a complex propositional sentence – a syntactic 
entity – instead, for Frege, it is an example of an utterance: an assertion of some 
self-evident content.8 Thus,  is, in all respects and with a modern terminology, 
an illocutionary force indicating device for an assertive speech act.

Although Tarski’s semantical conception of truth is now standard, back in the 
pre-formal days of logic, the concept of truth was treated indirectly through judge-
ments. As Frege realized, a sentence needs to be conceptually separated from its 
truth. Thus, Frege proposed to separate the assertion from the assertible content. 
This means, in modern terminology, to separate the illocutionary force of an asser-
tion from the asserted propositional content. To formally indicate the assertoric 
force, Frege used the judgement-stroke.

Frege’s axioms can be compared to Euclid’s common notions. They are both 
written in the present tense (as Frege’s assertions read that way) and both have 
general content. Naturally, Frege’s universal conception of logic pushed him to 
read even Euclid’s postulates as assertions9; contrary to their directive form. 
Take, for example, Euclid’s first postulate. Surely, a straight-line can be drawn 
from two given points, but this is not a question of our ability in geometrical 
constructions. Indeed, in Frege’s eyes, between two given points there exists a 
line.10

Frege’s point can be seen as a prime example of the objectification of mathe-
matics undergone in the XIX century, as postulates were naturally translated into 
existential statements about geometrical objects. Postulates serve only auxiliary 
purposes, as they “[...] merely bring to attention, apprehend, what is already there. 
What is essential to a proof is only that there be such a thing.” Frege (2013, I, §66 ). 
So, under Frege’s reading, postulates are expressed in the infinitive form only for 
matters of heuristics. But, of course, logic deals with justification and not heuristics. 

8 Frege’s view on axioms can be found in Frege and Posthumou (1979, p.205).
9 On Frege’s universal conception of logic, see Van Heijenoort, (1967) and Goldfarb, (2010).
10 See Frege and Posthumou(1979, p.207).
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A proof can rely on the construction of some auxiliary line, or point, or number, 
but its truth ultimately relies on the existence of such a line, point, or number. To 
construct is just a way of grasping their existence. Ultimately, postulates are, still, 
assertions in disguise: “In proofs, Euclid’s postulates thus have the force of axioms 
that assert11 that there are certain lines, certain points.” Frege (2013, I,§66 ). This 
existential shift explains why, and around when, our current practice starts treating 
axioms and postulates as synonymous, and this change is easily grasped as a shift in 
the illocutionary point.

To sum up, two things should be highlighted about Frege’s analysis. The first one 
is linguistic, as axioms are seen intrinsically as assertive utterances, making Frege 
the first to realize the importance of the illocutionary force of axioms and postu-
lates.12 The second one is logical, and it justifies why Frege saw axioms in this way: 
his universal conception of logic. But only twenty years later, this conception will 
clash with the most important revolution in the axiomatic conception since Euclid: 
the birth of the modern axiomatic method.

2.3  David Hilbert

The year 1899 marks an important dividing line in the history of mathematics. Many 
ideas that were roaming Europe in the second half of the XIX century found a clear 
and powerful expression in the innovative presentation of geometry that Hilbert 
gave in the Grundlagen der Geometrie. And from the perspective of how axiomatics 
developed since then, Hilbert’s influence far surpasses Frege’s.

For what concerns axioms, if Frege made a first step in identifying axioms and 
postulates, in Hilbert’s Grundlagen, the three basic notions that we find in Euclid 
(i.e., definitions, postulates, and common notions) are further unified into one: axi-
oms. Hilbert’s axioms for Geometry are divided into five groups: connection, order, 
parallels, congruence, and continuity. These axioms do not represent self-evident 
truths, but “Each of these groups expresses certain related facts basic to our intui-
tion.” Hilbert (1971, p. 3) For example, the first axiom of the first group reads as 
follows.

I, 1 For every two points A, B there exists a line a that contains each of the 
points A, B.

Although Hilbert is often considered the champion of formalism, there is, at least 
in the explanation of the origin of the axioms of geometry, a reference to our geo-
metric intuition. However, the origin is not to be confused with the justification. 
Hilbert’s axioms are not self-evident facts of our geometric intuition, but only for-
mal principles that express fundamental facts of our intuition. In this sense, axioms 

11 The emphasis is ours.
12 Although his analysis also produced a reduction of postulates to axioms.
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only represent, without necessarily being identified with, facts of geometrical intui-
tion. This separation between formal representation and concrete subject matter is, 
for Hilbert, the force and the innovative character of his axiomatic method. Formal 
principles do not come with an intended interpretation, even if they might originate 
from it.

The indicative tense of Hilbert’s axioms assimilates them to Euclid’s common 
notions. However, as is the case with Frege and contrary to Euclid’s usage, the verb 
“to be” is charged with existential meanings and often used in expressions like 
“there exists” or “there is”.13 Therefore the question of existence of mathematical 
objects becomes essential to understand Hilbert’s axiomatics. Indeed, Hilbert’s work 
is clearly immersed in a set-theoretic context with a clear realist flavour.14

But despite this realist flavour, Hilbert’s axioms are not simply assertions but 
also definitions. In correspondence with Frege, he maintains that the axioms of 
the Grundlagen der Geometrie define the objects of geometry. However, as Frege 
rightly points out in his response, Hilbert’s axioms determine the properties of geo-
metrical objects and not the geometrical objects themselves.15 Following Frege’s 
correct assessment, the axioms of the Grundlagen specify the conditions for a group 
of objects to be geometrical. In other words, they define what it means to be an 
object of geometry,16. But still, Hilbert’s idea that consistency implies existence 
reinforced the existential character of the axioms.

In effect, axioms are not only meant to describe an independent reality, but they 
play an active role in the construction of a new theory for geometry. Indeed, either 
axioms impose a logical structure on a subjacent independent reality, or they bring 
about the very reality they are meant to capture, thanks to a consistency proof. 
Therefore for Hilbert, axioms are not simply assertions whose truth can be assessed 
by a comparison with some pre-existent reality, neither are they directions for the 
construction of mathematical objects, but, similarly to definitions, they play an 
active role in structuring our image of mathematics.17

13 The most notable exception is the axiom of completeness, which is of a meta-theoretical character and 
which does not appear in the first edition of the Grundlagen der Geometrie.
14 For example, in Hilbert (1971, p. 3), Hilbert invites the reader to consider a class of objects that the 
axioms of the Grundlagen der Geometrie will structure into the objects of a geometrical theory, suggest-
ing that the objects of geometry come before the characteristic marks given by the axioms.
15 See letter from Frege to Hilbert, dated January 6th, 1900, in Frege (1980, p. 39).
16 Hilbert’s axioms can, in fact, be considered implicit definitions of the primitive terms of the theory 
being axiomatized. But, following (Giovannini & Schiemer, 2019) it is more precise to label them as 
structural definitions since there is no uniqueness condition on the interpretation of the terms. Although 
the axioms are holistically specifying a class of models for the given theory, no particular model is fixed, 
and thus, the meanings are left undetermined. This condition is crucial in analyzing the linguistic role 
that axioms play in Hilbert’s and contemporary axiomatics, as will be shown later.
17 The creative part of Hilbert’s axiomatics very much resembles Dedekind’s definitions, in Dedekind 
(2008). Dedekind’s view on axioms is much closer to Frege’s than it is to Hilbert’s, which explains why 
he opted for an axiomless presentation in the Was sind und was sollen die Zahlen? as he saw numbers as 
“free creations” of the human mind. This reliance on the creative powers of definitions has its roots both 
in Christian Wolff’s deductive methodology and Kant’s principle of the spontaneity of the understanding, 
as argued in Ferreirós and Lassalle-Casanave (2022). Moreover, we can apply this heritage to Hilbert, 
given the influence of Dedekind on his work.
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2.4  The Frege‑Hilbert Controversy

Hilbert’s axiomatic innovation was very successful, although it faced the fierce 
opposition from Frege. For what concerns us here, the dispute is interesting in one 
important respect: the controversy can be viewed as a clash of two opposite views 
on the illocutionary nature of axioms.

As we saw, Hilbert’s axioms did not come with a unique interpretation, although 
their arrangement in five groups served the purpose of representing our geometric 
intuitions; and Hilbert’s (relative) consistency and independence proofs showed how 
useful this perspective is, in practice. But the strategy of proving the consistency of 
the axioms, by interpreting geometry in the real field, or the construction of mod-
els for different ad hoc geometries, could not be reconciled with a perspective like 
Frege’s, according to which “Axioms do not contradict one another, since they are 
true; this does not stand in need of proof” Frege (1984,  p.275). Hilbert famously 
responded that he believed in the exact opposite: “if the arbitrarily given axioms do 
not contradict one another with all their consequences, then they are true and the 
things defined by the axioms exist.”18

Hilbert’s model-theoretic thinking is utterly alien to Frege’s universal conception 
of logic. And it makes perfect sense for Hilbert to say that a set of axioms define 
a geometry. As a matter of fact, definitions are not considered anymore to capture 
some essential aspects of a given field of knowledge, as Frege thought they should. 
On the contrary, for Hilbert, definitions are blueprints that are used to determine 
concepts, whose content may vary according to the field of application of the defini-
tions. The definition of a ‘point’ in Hilbert’s Grundlagen is general and ambiguous 
enough to allow different references within different geometries. What Frege saw as 
a limit, Hilbert saw as a fruitful possibility.

This sets the background for Frege’s criticism that interests us here: Hilbert’s axi-
oms have mixed (confused, for Frege) illocutionary points. Frege’s view on defini-
tions roughly takes them as mere stipulations, like when a word, or a sign, receives 
a meaning by an act of baptism.19 From the perspective of speech act theory, defini-
tions are declarative speech acts, written using the declarative mood. Since asser-
tives and declaratives are different types of illocutionary acts, and since axioms 
are inherently assertives, axioms and definitions are, for Frege, distinguished on 
the ground of their illocutionary force. As he claimed, “To definitions that stipu-
late something, I opposed principles and theorems that assert20 something” Frege 
(1984, p.294). Whereas for Frege they are not supposed to stipulate anything, this is 
exactly what Hilbert’s axioms do. In Frege’s perspective, Hilbert’s axioms are: “[...] 
saddled with something that is the function of definitions.” Frege (1984, p.275).

The differences between Frege and Hilbert therefore can be precisely cast in 
terms of their different views on the function of language in axiomatic theories. A 
definition, in Frege’s mind, is just a linguistic convention that only serves the goal 

18 Letter from Hilbert to Frege, dated December 29th, 1899; in Frege (1980), p.39.
19 See Frege (1967, p.26) and Frege (2013, p.27).
20 The emphasis is ours.
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of naming a concept. One can only find out the success of one’s system of axioms 
and definitions in proving theorems. But the background for the theory is given: 
the unique realm of geometry, which is the only place to evaluate the success of 
the choice of an axiomatic system.21 In Frege’s mind, axioms and definitions serve 
entirely different purposes within this unique realm.

Hilbert’s view is completely different. Since a given formal theory has no unique 
interpretation, what is defined as ‘point’, ‘line’ and ‘space’ can vary according to 
the models of the theory. Therefore, one can see that, ultimately, axioms do define 
something.

We take it that Frege was correct (and to the point) in saying that Hilbert’s axi-
oms are also definitions. But this was far from being Hilbert’s Achilles’ heel. In fact, 
as is well known, a model-theoretic perspective dominated subsequent investigations 
both in mathematics and logic. If we are to assess the present-day axiomatics from 
the perspective of speech act theory, therefore, we must listen to Frege’s precise 
diagnosis and recognize the mixed role that axioms had, for Hilbert, and still have, 
for us.

3  Contemporary Axiomatics and Speech Acts

If we can learn a lesson from this very brief historical overview, it is that axioms can 
play different linguistic roles in the construction of our mathematical theories. We 
find directive speech acts as a set of instructions for the construction of mathemati-
cal entities, assertive speech acts meant to describe an independent reality, or declar-
ative ones aimed to create a new layer of mathematical reality. We believe that this 
linguistic point of view not only provides a taxonomy of the different speech acts 
we find in mathematical language, but that it also provides a vantage perspective for 
evaluating and clarifying different positions in the philosophy of mathematics. Our 
next task, then, is to put to good use this connection between linguistic and theoreti-
cal ideas and to shed new light on contemporary axiomatics.

The analysis we propose might be interpreted in two ways: as a linguistic analysis 
of mathematical practice or as a reconstruction of Hilbert’s axiomatic perspective 
in linguistic terms. Although both interpretations are, in our view, partially correct, 
neither constitutes a basic claim of our proposal. There is no doubt that Hilbert’s 
view is essential to our contemporary practice, but it is also true that the former can-
not be identified with the latter. If our proposal is considered historically inaccurate 
or divergent from practice, still, we believe it is of theoretical value as an example of 
a practice-oriented proposal inspired by a Hilbertian perspective.

In order to evaluate contemporary axiomatics there are two important aspects to 
be considered; both of which have clear and direct roots in Hilbert’s thought. First 
of all, axioms are syntactic items deprived of an intended interpretation and, sec-
ond, only within a model do axioms acquire meaning. Based on these two simple 

21 The axioms of geometry, thus, are truths from “a source which might be called spatial intuition,” 
Frege writes in a Letter to Hilbert, December 27th, 1899. Frege (1980, p.37).
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observations, we will develop a proposal that is Hilbertian in spirit and Tarskian in 
truth.

Given these premises, what can the illocutionary point of an axiom be? As our 
reading of the Frege-Hilbert controversy made clear, the crux of the dispute was 
the illocutionary role of axioms. Frege’s realist position viewed axioms as pure and 
self-evident assertions about a well determined reality, whereas Hilbert’s model-the-
oretic view saw them as definitions.22

In our proposal, we will explore the possibility that axioms have a double illo-
cutionary role: partially declarative, and partially assertive. Moreover, we will also 
find some directive components in their declarative dimension. Axioms seem to 
define the context in which they are successively interpreted as asserting features of 
that same context. But how to disentangle this double role and, thus, how to deter-
mine the illocutionary point of contemporary axioms?

Our strategy is to take modern axioms’ illocutionary point to vary with the scale 
we use to evaluate them. Individually, axioms are assertives, but jointly they are 
declaratives. In other terms, a set of axioms has as a whole a definitional role, while 
individual axioms, on the other hand, allow assertions about what has been defined 
(or its possible interpretations). Both aspects must be detailed.

3.1  Axioms’ Definability

We are now in the position of addressing the main issue connected with the def-
initional character of axioms. Do they really bring something into existence? We 
believe that the answer to this question rests on a modality of being more than on 
existence itself. Concretely, the definitional dimension of axioms amounts to a new 
way to look at mathematical reality.

A few important clarifications are needed. The first one consists in acknowledg-
ing the explicit theoretical separation between language and reality that underlies 
this proposal. This is an important aspect of speech act theory that finds here a natu-
ral exemplification. Indeed, it is only by conceptually keeping separate language and 
reality that it is possible to account for an active component of language. A second 
important aspect to be clarified is the status of the alleged reality that counterbal-
ances this separation. On this point, it is also important to be explicit that no claim 
is here advanced on the ultimate constituents of mathematical reality. The present 
account is neutral  on the ontological status of mathematical reality. Mathematics 
might be a made-up fiction or the study of an independent reality of eternal objects, 
but still there would be a creative component of language in the construction of our 
mathematical theories. To negate this would consist in misunderstanding an essen-
tial component of language. As a matter of fact, this is already the case when con-
sidering natural language and its role in shaping our (social) reality. If language is 
able to create a new layer of reality over and above the one we concretely experience 
in our everyday life, why should this not be the case when dealing with a reality 

22 There have been many views on how to differentiate both trends. See, for example, Coffa (1991, Ch. 
7), Detlefsen (2014), Shapiro (2005), Shapiro (2009) and Potter (2004).
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whose independent existence is even thinner (often even up for discussion)? If the 
thin character of mathematical reality is of any advantage with respect to the thick 
reality of physical bodies, this will surely be the case in assessing the creative com-
ponent of language.

A possible objection would consist in pointing out the obvious differences 
between natural and formal languages. This objection, however, is based on a mis-
leading idealized picture of formal language. To explain why this is the case, notice, 
first of all, that formal languages (as those defined by logicians) are not those used 
in practice in journal papers. The notion of deduction, which is normally formal-
ized as a sequence of statements that starts with axioms and advances with inference 
rules, is a highly idealized one, clearly not representing the language that is actually 
used in the everyday work of mathematicians.23 The presence of illocutionary force 
indicator devices and different kinds of linguistic acts in mathematics talks for itself. 
The recognition of a strong and deep connection between natural and formal lan-
guages represents a basic presupposition of the present approach that is motivated 
by its fruitfulness in assessing discussions like the one between Frege and Hilbert 
and in proposing a more complete picture of mathematics in continuation with any 
other human activity based on language.

It is now time to explain in which sense the definitional aspect of an axiomatic 
system provides a new way to look at mathematical reality. By this, we mean that 
axioms introduce a conceptual scaffolding that allows one to carve up mathematical 
reality according to the concepts involved. This idea is not peculiar to mathematics 
but is a fundamental aspect of a linguistic conceptualization of reality. Consider, for 
example (of Fregean inspiration), a deck of cards on a table. According to the use 
of the concept of deck or of that of card, we would be inclined to say that there are 
either one or fifty two objects on the table. And of course the same reading applies 
to the table and its atoms. The same happens when considering the relationship 
between language and mathematical reality (disregarding the ultimate nature of the 
latter). As in the case of natural language, the conceptual framework that we use to 
represent a collection of facts allows us to see reality in new ways by building into 
one’s perspective the same concepts used to express it. In the case of axioms, the 
declarative dimension of axioms allows us to impose a new conceptual apparatus on 
mathematics and, therefore, axioms provide new ways to look at a collection of (pre-
viously given) mathematical facts. For example, it took the genius of Galois to see 
the connection between finding the roots of a polynomial and the group of their per-
mutations. In this case, the study of the solutions of polynomial equations provided 
a collection of mathematical facts that were later conceptualized in terms of group 
theory. Consequently, from a purely axiomatic perspective, the axioms of group the-
ory can be seen as the definition of a group structure that is not only realized by, but 
also imposed on, the collection of permutations of the roots of a polynomial.

The idea that we would like to convey is that the process of axiomatization (at 
least in this Hilbertian spirit that we are evoking) not only consists in fixing the 

23 For a thorough analysis of the mixture of formal and informal language used in mathematical texts, 
see Ganesalingam, (2013).
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logical structure of a set of given mathematical facts, but it is also constitutive of 
a new way to look at the same facts. The new ways of looking at mathematics, pro-
vided by the definitional component of axioms, suggest an active component of the 
axiomatizer, realized by linguistic means. The suggestion that language has a consti-
tutive role in the construction of our mathematical theories is an important insight 
that is based, ultimately, on the acceptance of a methodological similarity between 
natural and formal languages. Once again, this connection suggests importing lin-
guistic tools for the clarification of the functioning of mathematical language. In 
order to provide such an analysis we can recall the distinction between constitutive 
and regulative rules.24

3.1.1  The Constitutive and the Regulative Roles of Axioms

The recognition of a creative dimension for language is a traditional philosophical 
theme that finds in Searle’s work (Searle, 1969, 1995) its modern and standard for-
mulation, in terms of the distinction between constitutive and regulative rules.

In order to exemplify this distinction, we can follow Searle’s paradigmatic exam-
ples of the rules of chess and the rules of etiquette. While the former are constitu-
tive of the game of chess, in the sense that it is only by following the correct rules 
that we can be said to be playing chess, the latter sanction a pre-existing set of good 
behaviours that only subsequently are normed by explicit rules.

Searle’s distinction attracted many criticisms (Ransdell, 1971; Warnock, 1971; 
Giddens, 1984; Ruben, 1997; Hindriks, 2009). One in particular is relevant to our 
discussion and it consists in arguing that it is far from obvious how to trace a precise 
dividing line to separate constitutive from regulative rules. On the one hand, it has 
been suggested that any constitutive rule regulates the behaviour of those who fol-
low it, and thus that all rules are regulative (Warnock, 1971; Giddens, 1984). On the 
other hand, it has been argued that regulative rules are also able to set up a web of 
norms which, alone, are constitutive of a new layer of reality (Hindriks, 2009). The 
main content of this discussion, thus, is whether Searle’s distinction is only a lin-
guistic one or, instead, if it is able to capture some genuinely independent aspects of 
language. For what concerns us here, it is not essential to take a stand on this debate, 
since we are only interested in axioms and their definitional component. But if we 
can infer anything from this specific case, this is a partial confirmation of the criti-
cism directed to Searle’s distinction, since we can find in axioms both constitutive 
and regulative aspects.

In a nutshell, we can present our view on the definitional character of axioms as 
follows. While a set of axioms constitute, as a whole, a new way to look at a col-
lection of mathematical facts, each axiom individually regulates how mathematical 

24 There is here an important connection with the Wittgensteinian notion of “seeing as”. We will not dis-
cuss the connection between Wittgenstein’s and our position, since this would lead us to exegetic matters 
that are beyond the scope of the present work. However, we acknowledge an already existing connection, 
in the literature, between this Wittgensteinian theme and mathematical creativity in Beaney and Clark 
(2017)
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objects should be, in order to be rightful elements of this new perspective expressed 
by the axioms. Before presenting the specific linguistic acts connected with these 
constitutive and regulative roles of axioms, a few important clarifications are 
needed. First of all, the reference to mathematical objects in the regulative com-
ponent of axioms might seem to contradict the neutral perspective of our linguistic 
analysis, with respect to ontology. At a closer look, however, we notice that this 
reference to objects is a by-product of the language at use: that of first-order logic. 
In other terms, it is a consequence of the basic feature of first-order language that 
axioms are meant to express facts about mathematical objects. Nonetheless, we take 
this aspect of logic to be constitutive of our mathematical practice, but not informa-
tive about mathematical ontology. A second important point to be clarified concerns 
the novelty of the new perspective offered by axioms. Since we are putting forward a 
neutral perspective on mathematical ontology, what axioms constitute are new roles 
or statuses that the (possible) referents of our theories play in our linguistic practice.

Let us exemplify this talk of roles or statuses with a concrete case. Consider the 
collection of all rational numbers with the sum operation ( ℚ,+ ). It is a basic alge-
braic fact that ( ℚ,+ ) has a group structure, but it is one thing to list the basic math-
ematical facts according to which the sum of a rational q with 0 gives the same 
number ( q + 0 = q ), but another to say that 0 is the neutral element of the group 
( ℚ,+ ). The former is a collection of mathematical facts that pre-dated the defini-
tion of a group and the axioms of group theory, while the latter is a direct prod-
uct of the group language, which constitutes a new role for the number 0. A third 
important point of clarification, directly connected to the second, is that, although 
we talk about roles or status, we do not consider any social dimension of the linguis-
tic constructions performed by axioms. As a matter of fact, when a mathematical 
definition is felicitous and well accomplished, it does not need a collective agree-
ment for its validation. Any mathematician has at her disposal the constitutive tools 
of definitions in isolation from the rest of the mathematical community. Notice that 
we are not claiming that mathematics does not have a social dimension and does 
not produce institutions, as any other human linguistic activity. We are only claim-
ing that at the level of definitions, and thus at the level of a definitional account of 
axioms, this social component is absent, since a mathematician is free in the con-
stitution of a new linguistic item.25 Fourth, the neutral perspective towards ontol-
ogy that motivates this account does not only apply to the existence of mathemati-
cal objects, but it also extends to the existence of the linguistic constructions that 
originate from mathematical definitions in general, and in particular from axioms. 
There is a sense in which the products of our linguistic practices participate in a 
(very light) notion of existence (Thomasson, 2015) and our scientific practice is full 
of defined terms, whose weak form of existence can therefore be justified internally 

25 There are important differences between this view and other accounts which consider the social 
dimension of mathematics relevant. The more developed one is that of Cole (2013). The most notable 
and important difference with Cole’s account is that, on the one hand, we do not identify linguistic con-
structions with mathematical objects or structures (and therefore we are not bound to claim that linguistic 
constructions are necessary; and indeed are in our view partially contingent), while on the other hand, 
contrary to Cole’s view, we do not consider here the social dimension of linguistic constructions.
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from the perspective of our linguistic practices. Lewis even argued that the possibil-
ity to define away a scientific term “serves the cause of scientific realism” (Lewis, 
1970). Although a similar argument can be applied to the implicit definitions con-
veyed by axiomatic presentations, we refrain from making this further step. As a 
matter of fact, our analysis is linguistic and our central claim is that axiom systems 
can be seen as constitutive definitions of new perspectives on mathematics. Thus, 
we leave open for now the question of whether the products of our linguistic declara-
tions exist and in which sense.

We can now present a more precise analysis of axiom systems and axioms 
through the lens of speech act theory.

3.1.2  Axioms as Declaratives

Let S be a set of axioms. We will characterize the linguistic act of laying down S 
using Searle’s taxonomy and notation. The illocutionary point of S is declarative 
and its mode of achievement is S itself. If we take �S to be the propositional con-
tent expressed by S , then the utterance of S has the following speech act structure:

Where D is the illocutionary point26 of a declaration, ↕ is the direction of fit of a dec-
laration,27 Ø is the null sincerity-condition,28 and �S expresses the content of the 
declaration. In other words, by uttering S , one is defining the way in which a collec-
tion of objects that satisfy S should be.

The double direction of fit implies that each successful and non-defective defini-
tion manages to perform some change in the world. But notice that by uttering or 
writing down S one is not bringing any domain of objects into existence, but only 
defining a way in which a collection of entities should be. In Hilbert’s approach, 
consistent systems imply the existence of a domain of objects satisfying the axioms. 
On the contrary, here, the existence of a domain of objects satisfying the conditions 
imposed by S is not part of the definitional role of S . Exactly as the creation of a 
chair in a department does not create a new person to fill it; and indeed such a chair 
is perfectly defined before anybody can fill it.

Given our neutral stance towards existence in mathematics, this definitional 
account of axioms takes into account that axioms can have no realization. Although 
a set of axioms can be shown to be inconsistent, still as far as its definitional aspect 
is concerned, a set of axioms represents a genuine definition. As a matter of fact, this 
separation between definition and realization is what allows us a meaningful use of 
reasoning by contradiction; thus keeping apart the success of a definition from the 

26 The point of an utterance is the intent of the speaker with the speech act.
27 The direction of fit is the relation between the propositional content and the utterance. The direction is 
word-to-world ( ↓ ) whenever the speaker tries to describe how the world is (assertions), and it is world-to-
word ( ↑ ) whenever the speaker tries to alter the world to match his words (directives). A double direction 
of fit ( ↕ ), as the above, is the attempt to alter the world by representing it as being so altered.
28 The sincerity condition of a speech act is the psychological state expressed by the speaker.
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truth of the propositional content that it expresses. For example, it is exactly the pos-
sibility to define Russell’s set that permits the statement of Russell’s paradox.

3.1.3  Axioms as Directives

As a whole, a set of axioms S is constitutive of a new perspective on mathematics. 
The regulative role played by a single axiom follows accordingly.29 But there are 
some caveats. In chess, the set of rules constitutes the game, as it defines what cer-
tain events must obtain in order to be in the presence of a move of chess. From this 
constitutive role, one derives a regulative one. For example, the bishop may move 
to any square along a diagonal on which it stands. This rule does not only constitute 
what a bishop is, but it gives players permission to move it diagonally if the relevant 
conditions are met. In speech act terms, we are dealing with permissives: a specific 
kind of directive speech acts that Searle and Vanderveken call denegations of prohi-
bitions (Searle & Vanderveken, 1985).

We need to introduce some details in order to understand what a denegation is. 
Searle and Vanderveken (1985, p.4), a denegation is the negation of an illocutionary 
force, not to be confused with the negation of a propositional content. Consider the 
following cases: 

(1) “I promise not to P”
(2) “I do not promise to P”

While in (1) the speaker commits himself to a negative propositional content (not P), 
in (2) the speaker is denying a commitment, viz. denying an illocutionary force, not 
a propositional content. For that reason, a denegation is the negation of a speech act. 
Thus, while (1) is a commissive speech act with negative propositional content, (2) 
is the denegation of a commissive speech act. Although they are also speech acts, a 
denegation of a speech act A is not performed automatically simply because A is not 
performed, as Searle and Vanderveken put it Searle and Vanderveken (1985, p.77). 
In order for a denegation to happen, the speaker must do something: to make explicit 
the denial. This distinction mirrors the difference between the denial of an act, and 
the truth-functional denial of a propositional content. In order to distinguish the two 
cases, a denegation will be expressed with the symbol ¬ , while the truth-functional 
negation (of a propositional content) with the symbol ∼.

With this distinction in mind, let us now see how to define permissives from 
directives. First, “Do P” is a simple directive. Using the truth-functional negation, 
we obtain a prohibition, “Do ∼P ”, or more simply !∼P.30 And with the denegation, 
we obtain a permission ¬!∼P , that is, the denegation of the prohibition of P.31 Fol-
lowing this notation we can now see how the present case is similar to that of chess. 
29 Again, we do not delve into the dispute over which kind of rule is foundational with respect to the 
other.
30 The exclamation sign ! marks the illocutionary point of a directive.
31 Once again, the truth-functional negation is defined over propositional contents, while the denegation 
is defined over illocutionary forces. With the former, we can make the transition from a directive (Do P) 
to a prohibition (Do not P). With the latter, we can make the transition from a prohibition (Do not P) to 
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The regulative role played by the axioms in S is expressed in terms of permissions 
of assertability of each axiom, modulo S as a context of assertion. The idea is fairly 
simple: the definitional and constitutive role played by the axioms collectively sets 
forward what it means for a domain of objects to satisfy S , and, at the same time, lay 
down permissions for each axiom to be asserted individually in such context. Now, 
because of the internal structure of a speech act, these assertability conditions are 
expressed as a propositional content of a permissive speech act. We do so by taking 
the possible future assertion of A, qua member of S , as the content of the act. This 
possible future assertion is not, by itself, an assertion. It just expresses the general 
conditions for such assertions to be performed successfully and non-defectively by 
an agent.32

When specifying general conditions for directive speech acts, Searle and Van-
derveken take the propositional content as representing the state of affairs that the 
speaker wants the hearer to perform. By uttering “Leave the room”, the speaker 
wants the hearer to act in such a way that the resulting state of affairs includes 
the hearer as being out of the room. The propositional content P in this case must 
express that an action is expected to happen in the future, but at the same time, 
it should provide reasons to the hearer for doing so. Similarly, the regulative role 
played by an axiom system expresses a possible future course of actions (i.e. the 
assertion of an axiom A qua member of S ), together with reasons for an agent to 
assert it (i.e. that whenever we are in the position to give an interpretation to S , then, 
A expresses a true33 fact about that interpretation).

Offering reasons for an assertion is a common event in the context of a speech 
act, even when an assertion is not an expected action. If a speaker utters “I need 
water!”, she is primarily giving reasons for the hearer to bring her water, but she is 
also giving enough reasons for asserting that “The speaker is thirsty”. Something 
similar happens with respect to the regulative role of axioms. The permission for an 

32 Here we are considering the conditions of assertability in general, since, as we will show next, the 
specific conditions of an axiom, qua an assertion, are dependent on the specific interpretations under 
consideration for the assertion (i.e. a model in the model-theoretic sense). Since the concrete act of asser-
tion, then, depends on the possibility to provide an interpretation for an axiomatic system, these condi-
tions are concretely realized only when the assertion is successful and non-defective. In case of a contra-
dictory set of axioms, however, the permission that derives from the declarational role of axioms would 
only grant assertability conditions with respect to a false statement: i.e. a statement that when interpreted 
in a (any) model, would not be valid.
33 The truth regulated by this definitional dimension of an axiom is a trivial one, since it depends 
directly on its status of definition. This is what is normally taken to be the (analytical) truth by conven-
tion expressed by implicit definition. However, this notion of trivial correspondence generated by the 
double direction of fit of a definition, together with the truth that emerges from this correspondence, 
should not be confused with an autonomous and non-conventional notion of truth that acts in the asser-
tive dimension of an axiom and that is based on the (formal) notion of satisfaction within a model. A 
similar point, although not in a linguistic context, was made in Ben-Menahem (2006), in the attempt to 
defend a notion of conventionalism that does not accept a notion of truth by convention.

a permission, in denying the illocutionary force of the directive. In this case, the speaker makes it clear 
that if a prohibition for P is not being performed, then the hearer has the permission to make P the case.

Footnote 31 (continued)
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assertion means both to open the possibility for a given future course of action, the 
assertion proper, and to provide reasons for doing it truthfully.

In order to express this permission, we take a few notational liberties. Follow-
ing Searle and Vanderveken, we will take �P to denote a future action which brings 
about P.34 But since � leaves the action unspecified, and since we are speaking about 
future assertions, we will denote by 𝛿

⊢
P the future assertion of a content P.35 With 

this in mind, and for a given axiom AS , the regulative role is expressed generally by 
the following structure:

Breaking down the expression, ¬ is the denegation of the illocutionary point, ! is the 
illocutionary point of a directive speech act, while ↑ is the direction of fit from world 
to words and W is the sincerity condition of desire.36 And, as we explained, the con-
tent being denied by the truth-functional negation is the future assertion of AS , that 
is of A qua member of S.

This explains the regulative aspect that axioms may have according to the declar-
ative effects the axiomatic system puts forward. But allowing an assertion to be 
made in the future is a different act from the actual uttering of the assertion. For this 
reason we now turn to analyze the assertability conditions of the axioms.

3.2  Axioms’ Assertability

We are now in the position to account for the assertive component of axioms. The 
idea is simple: axioms assert a content only when an interpretation is provided. Con-
sequently, an uninterpreted axiom is not an assertion, but, following the previous 
discussion, only a permission of assertability, when considered as part of an axi-
omatic system. Now, since an axiom can be seen as an assertion only when an inter-
pretation is provided, we can restrict our attention to axioms belonging to consistent 

¬! ↑ W∼(𝛿
⊢
AS)

34 The notation follows from the distinction between actions and reasons in Searle and Vanderveken 
(1985,  pp.34-5). In Searle and Vanderveken’s reading, a proposition P expresses a course of action if 
P = �utQ , where u is a hearer, t is a time, Q is the propositional content that u is supposed to bring 
about. Truth conditions are given in terms of possible worlds, meaning that �utQ is true in a world if u is 
successful in making Q true at t in that world. In this sense, a future course of action is any such action in 
which t > t′ , for t′ being the time of the utterance. On the other hand, a proposition P will express a rea-
son for a given action if P = �utQ , which is true in a given world if u has theoretical or practical reasons 
to take Q as true at t in that world. Here, we’ll take a simplified notation, dropping u and t. Another rea-
son for simplifying this notation is that we do not commit to a notion of time within mathematical prac-
tice. Indeed, we leave the notion of possibility that arises from the regulative role of axioms undefined.
35 Notice the important distinction between a future assertion 𝛿

⊢
P , which has no illocutionary force, 

from the actual assertion ⊢ P , which has one. This is so because a future assertion is not properly an 
action: it is a proposition that roughly states that some given action will or will not be performed in the 
future.
36 These permissions are consequences of the system S . It may sound odd to say that S is expressing a 
desire as sincerity condition. One possible solution would be to maintain that such condition is carried 
over from the declarational act that poses S in the first place, in the same way that a written law may 
carry the sincerity condition of its promulgator as a directive.
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axiomatic systems, which, by the completeness theorem have a model. Once a 
model is fixed, we can then evaluate the assertive component of an axiom. In order 
to exemplify these ideas, let us consider the following example.37

Given a countable set of first-order variables x, y, z, ... and an unspecified relation 
R, we take a miniature system S comprised of just the following axioms: 

A1: ∀x(xRx)
A2: ∀x∀y∀z((xRy ∧ xRz) → yRz)

From both, it follows as theorems: 

T1: ∀x∀y(xRy → yRx)

T2: ∀x∀y∀z((xRy ∧ yRz) → xRz)

What are the axioms in S asserting? At first sight, this cannot be answered without 
offering a domain for interpreting each variable and the relation R. For instance, we 
can take S as a fragment of geometry, by taking x, y, z... to denote line segments 
in a domain G , and R to be the relation of congruence ≅ . In this case, A1 and A2 
are asserting, respectively, that every line segment is congruent to itself, and that 
two segments congruent to the same segment are congruent to each other. Likewise, 
theorems T1 and T2 show that the congruence relation is also symmetric and transi-
tive. Thus, we say that ⟨G,≅⟩ is a model for S . But S may have different readings. 
Let x, y, z, ... be integers in ℤ , and R the equivalence relation ≡ holding between two 
numbers x, y just when their difference x − y is also an integer. In this case, A1, A2, 
T1 and T2 are true assertions about integers, and ⟨ℤ,≡⟩ is a model for S.

Since we have at least two alternatives in interpreting S , what are we actually 
asserting when A1 or A2 are uttered? Truths about line segments or truths about 
integers? Given that axioms are assertions, modulo the interpretations of the the-
ory, what are their propositional contents? Call this the problem of determining the 
scope of assertability, or the assertability problem for short. Our solution consists 
in relativizing the assertive component of an axiom to a given interpretation. In this 
way we are faithful to a model-theoretic approach to axiomatics which, by investi-
gating formal systems from an abstract perspective, allows one to gain knowledge 
about all its possible interpretations.38 In this way the formal study of an axiomatic 
system is clearly separated from its use in expressing a specific mathematical con-
tent. As a matter of fact, T1 and T2 can be proved regardless of which interpretation 
we choose. Once proved, they become truths about any model of A1 and A2; spe-
cifically about line segments and integers. Similarly A1 and A2 can be seen both as 
assertions about ⟨G,≅⟩ and about ⟨ℤ,≡⟩.

37 Taken and adapted from Tarski (1994).
38 It is exactly this movement from the abstract to the “concrete” that provoked Frege’s criticism of Hil-
bert’s axiomatics: “If a general proposition contain a contradiction, then every particular proposition 
included under it will do likewise. Therefore from the consistency of the latter we can infer that of the 
general one, but not vice versa.” Frege (1980, p. 19).
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Now, if we choose an interpretation of a system of axioms S in terms of a 
model M, we can evaluate the speech act structure of an axiom A of S along the 
following lines.

Here, ⊢ marks the illocutionary point of an assertion and ↓M is the direction of an 
assertion about the model M. Given the possibility of multiple interpretations of a 
system of axioms, we have to specify which is the (semantic) reality described by 
our language. Moreover, the content AM is given by the standard notion of interpre-
tation and satisfaction of a sentence in a model.

Coming back to the example that opened this section, if we choose the model 
⟨G,≅⟩ as the world to which our language refers, then uttering A1 as an assertive 
speech act would have the following structure.

Therefore, in concrete cases, the assertive component of axioms coincides with their 
model-theoretic interpretation, which is a natural realization of the idea that axioms 
(and theorems) say something about their interpretation.

4  Conclusion

We hope we have convinced the reader that an illocutionary perspective can help 
not only to clarify the roles of axioms and postulates in the history of mathe-
matics, but also in expressing different philosophical views about mathematics. 
Surely, axioms and postulates have been generally considered as starting points 
for mathematical reasoning. Yet, mathematicians intended to do different things 
as these notions evolved: from postulates as directions for geometrical construc-
tions, to axioms as assertions about a previously given domain of mathematical 
objects, to finally the modern idea according to which axioms are both assertions 
and definitions.

This double reading of modern axioms is precisely what makes Hilbert’s model-
theoretic perspective so peculiar and innovative. If history shows a progressive iden-
tification of directive, assertive, and declarative components, the complex notion of 
axioms that we inherited from Hilbert still manifests an interesting mixture of these 
three components. The possibility that axioms may convey different assertions in 
the context of different interpretations is what drives axiomatic investigations. Its 
richness lies in this inherent multifaceted aspect. On the other hand, the possibility 
to use axioms for the definitions of new fruitful perspectives on (a possibly inde-
pendent) mathematical reality is a fundamental component of the creative dimen-
sion of mathematical language, the recognition of which serves to bring mathemati-
cal knowledge closer to its human dimension. Speech Act Theory serves exactly this 
purpose: to offer a concrete description of the many things we can do with language 
in mathematics and to draw a more complete picture of our mathematical practices.

⊢↓M B(AM)

⊢↓⟨G,≅⟩ B(∀x(xRx)
⟨G,≅⟩)
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