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Abstract Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-
19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v2), which
implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19
pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net1) outputs the mask of
the lungs, and the final one (U-net2) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant
v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and
a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly
available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated
CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity
coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant
v2 achieves a vDSC (sDSC) equal to 0.96 ± 0.01 (0.97 ± 0.01) and 0.69 ± 0.08 (0.83 ± 0.07) for the lung and lesion segmentations,
respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean
Absolute Error (MAE) equal to 2%.

1 Introduction

Acute respiratory distress syndrome (ARDS) caused by COVID-19 is the main cause of Intensive Care Unit (ICU) admission
and fatality for affected patients [1, 2]. Evaluation of the severity of pulmonary involvement can be performed through computed
tomography (CT) images [3–5]. Evaluating CT scans is a time-consuming task; for this reason, artificial intelligence (AI) methods
for automated analysis of CT scans can be a useful tool to support the work of physicians [6]. The aim of this kind of approach is to
assist the clinician in making an automated assessment of the alteration of the lung parenchyma related to COVID-19 pneumonia.
To this purpose, a standardized assessment scheme for the reporting of radiological findings in chest CT of subjects suspected of
COVID-19 has been defined [7]. It is based on a five-level scale of increasing suspicion of pulmonary involvement. Another scoring
system, directly based on the extent of lung involvement (abnormal lung parenchyma), is the CT severity score (CT-SS), which has
been demonstrated to be directly correlated with disease severity [8]. The CT-SS is a score made of five classes which are defined
on the basis of the ratio between the volume of the infected areas and the lung one (CT-SS � 1 for P < 5%, CT-SS � 2 for 5% ≤P
< 25%, CT-SS � 3 for 25% ≤P < 50%, CT-SS � 4 for 50% ≤P < 75%, and CT-SS � 5 forP ≥ 75%).

The mere visual assessment of lung CT can hardly provide a reliable and reproducible estimate of the percentage of lung
involvement. To facilitate this task, an AI-based support tool is highly desirable. The quantification problem that needs to be solved
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Fig. 1 A sketch of the LungQuant v2 analysis pipeline: the input CT scans are processed by the BB-net, which identifies a bounding box enclosing the lungs
to be used to crop the images to be provided in input to U-net1, which is devoted to lung segmentation; its output is refined by a morphology-based method
(for details, see reference [30]); a bounding box enclosing the segmented lungs is identified and used to crop the original CT scan to be then processed
by U-net2, which is devoted to COVID-19 lesion segmentation. The LungQuant v2 provides as output: the COVID-19 lesion mask (directly provided by
U-net2), the lung mask (which is obtained as the logical union between the outputs of U-net1 and U-net2), and the ratio between the COVID-19 lesion and
the lung volumes, which provides the percentage of affected lung volume and the CT-SS for each patient

is actually a segmentation problem. To estimate the percentage of the affected lung in COVID-19 pneumonia, it is necessary to
accurately segment both the subject’s lungs and the COVID-19-related lesions.

The task of lung segmentation has been addressed over the years with several different techniques, including grey-value threshold-
ing, region growing, isosurface triangulation, morphological operations, and combinations of them [9–13]. However, most traditional
approaches fail when abnormalities introduce changes in the normal lung density [14], especially in the specific case where abnor-
malities are adjacent to the pleura surface. The latter is just the case of most CT images of subjects with COVID-19 lesions.
Traditional medical image segmentation methods have gradually given way to data-driven approaches mainly based on machine
learning (ML) and deep learning (DL) in the specific field of thoracic imaging [15] and in medical image analysis in general [16].
U-nets [17] are currently outperforming other artificial intelligence (AI)-based methods in the image segmentation task in many
research fields. They are also becoming widespread in medical imaging to identify organs, lesions and other regions of interest across
several imaging modalities [18, 19]. The main drawback of DL approaches to image segmentation is their need of large annotated
datasets for training the models. Collecting data and reliable annotations is particularly difficult and time-consuming especially for
image segmentation tasks, where pixel/voxel-level ground truth is required. DL-based lung segmentation approaches demonstrated
to be efficient in the accurate identification of lung parenchyma even in case of compromised lung appearance due to COVID-19
infection [20], or to chronic obstructive pulmonary disease (COPD) [21], or to any routine clinical condition affecting the lungs [22].
The challenging task of lung lobe segmentation is tackled in the paper by Xie et al. [20], where the transfer learning of a model trained
on thousands of subjects with COPD was applied on a sample of hundreds of subjects affected by COVID-19 pneumonia. Lobe
segmentation reference was acquired for all subjects, as it is a fundamental information for model train, test and evaluation. Such
large and annotated data samples are not publicly available at present. Since the outbreak of the pandemic, many research groups
have developed AI-based approaches to identify and segment ground-glass opacifications (GGO) caused by COVID-19 [23–29].

In this work, we present an improvement of the LungQuant v1 algorithm we have previously developed for the segmentation
and quantification of the lung volume affected by COVID-19 lesions [30]. The new software version we propose, the LungQuant
v2 publicly released package,1 is composed of three sequential deep neural networks (DNNs), as sketched in Fig. 1. The first DNN,
which is referred to as BB-net, identifies two points on a CT image, (x1, y1, z1) and (x2, y2, z2), which define the bounding box
(BB) enclosing the lungs. This bounding box is then used to crop the CT image to the lung volume. The cropped image is then fed
into a second DNN, the U-net1, which outputs the segmentation of the lungs. A third DNN, the U-net2, is then used to segment the
lesions related to COVID-19 within the lung. The improvements with respect to the previous version are: (1) the introduction of
the DNN for the bounding box, (2) the addition of a post-processing module for the separation of right and left lungs and (3) the
introduction of an additive term to the loss function of the last DNN to make the system response more linear with respect to the
severity of the lung infection.

The BB-net has been introduced to improve the robustness of the previous version of our analysis pipeline [30]. In this way, the
segmentation algorithm can be efficiently used to analyse lung CT images acquired with different field of views (FOV). In fact, it

1 https://doi.org/10.15161/oar.it/76937.
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Table 1 A summary of the
datasets used in this study. The
table reports the number of cases
available, the availability of: Lung
masks, COVID-19 lesions masks
and CT severity score (CT-SS)

Dataset name No. of cases Lung mask Lesions mask CT-SS

Plethora [31] 402 Yes No No

Lung CT segmentation
challenge [32]

60 Yes No No

COVID-19 challenge [33] 199 No Yes No

MosMed [34] 1110 Only 91 (in-house made) Only 50 Inferable

COVID-19-CT-Seg [29] 10 Yes Yes Inferable

Fig. 2 Graphical representation of the BB-net, image obtained with Net2Vis software [36]

may happen that the CT scan is reconstructed with a smaller FOV than the acquisition one in order to obtain an enlarged image in
the region of interest.

2 Materials and methods

The process of training a DNN-based segmentation algorithm involves the selection of appropriate training data and tailoring of the
network structures to the available data. As for the training of LungQuant v1 [30] segmentation algorithm, also in this work, public
available data samples were used. A summary of the data used in this work is shown in Table 1. The three DNNs used to build the
LungQuant v2 CT analysis pipeline are described in the next sections.

2.1 DNN for lung bounding box regression: the BB-net

The network model we chose for selecting the lung bounding box (BB-net) is based on the AlexNet [35]. Figure 2 shows a graphical
representation of the model. The input image has a shape of 100 × 100 × 100 voxels, which is obtained by resampling the original
CT scan. Then, the image is windowed in the Hounsfield unit range [−1000, 1000], and then linearly scaled to the [0,1] range. As
shown in Fig. 2, the model is made up of a series of convolution, max pooling, flattening and dense layers. The final layer of BB-net
is a vector with shape 6 which represents the (x,y,z) coordinates of the two points that define the bounding box enclosing the lungs.
The first three values are the first (x,y,z) coordinates, and the latter three, the second point. The training was performed through a
regression, the loss value being the Mean Square Error (MSE), which computes the distance between the true bounding box (defined
by two points) and the predicted box.

BB-net was trained on the data shown in Table 1 for which lung masks were available to derive reference bounding boxes for
model training. Since the data set is small, not all the available inputs are well-represented. In particular, there is an unbalance in
the different image FOVs. Most of the publicly available CT scans have large FOVs, and a very limited amount of CT scans showed
a FOV more focused over the lung volume. For this reason data augmentation was implemented by reducing the FOV, rotating and
displacing the centre of the images. An example of these augmentation techniques is provided in Fig. 3.

The training of the network was performed in two steps. Firstly, we optimized the following hyper-parameters (as described
below):

• Kernel size, Modifying the initial convolution kernel size with values from this list: (4, 8, 16, 32, 64, 128), keeping the ratio of
the convolution kernels as shown in Fig. 2.

• Dense layer size, Modifying the second-last dense layer size with values from this list: (4, 8, 16, 32), while the first dense layer
being double the size of the modified one.

• Optimizer, The optimizer changed between Adam, Adagrad and RMSprop.
• Learning rate, The tested initial learning rate values were: 10−2, 10−3, 10−4.
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Fig. 3 Example of the data augmentation performed to generate the BB-net training set: a Image without data augmentation; b Zooming to reduce the FOV;
c Rotation; d Shift

This task was performed by training the BB-net on 80% of the available data (i.e. Plethora, Lung CT Segmentation Challenge,
COVID-19 Challenge and MosMed) and its augmentation, while leaving 10% as validation data and 10% as test data. The latter
20% of data was composed only by the original data, i.e. without augmentation. Once the hyper-parameters were optimized, the
final training of the BB-net was performed on the same train, test and validation. The weights which provided the lowest loss value
on the validation set were saved and stored.

2.2 U-net1 and U-net2 for lung and lesion segmentation

The segmentation DNN model we chose is a U-net [17] which is a standard fully convolutional neural network, particularly suited
for segmentation tasks. With regard to the U-net for lung segmentation (U-net1), the architecture and the training parameters are
the same as in LungQuant v1, and are fully detailed in Lizzi et al. [30]. U-net1 has been trained to segment the lungs relying on the
available data with lung annotations described in Table 1, mainly composed by patients not affected by SARS-CoV-2 pneumonia.
The difference with respect to the LungQuant v1 release consists in the pre-processing of the CT scans. In fact, in order to reduce
the variability of the performance due to the different FOVs, the images have been cropped to the bounding box inferred by the
BB-net trained to this scope. The U-net for lung segmentation is thus trained on image portions (resampled to the U-net input size),
where the lungs appear with a standardized size, thus facilitating the learning process.

We introduced in the LungQuant v2 segmentation pipeline a post-processing script to separate the left and right lung, which is
based on a watershed transformation. The separation between right and left lungs is not trivial on CT scans since it is not unusual
that lungs appear as if they were connected especially near to the neck. Once the system computes the lung segmentation, the
mask is firstly resized at half of its initial size. This was necessary to reduce the computing time of the following procedure.
Then, the Euclidean distance transform is applied to the resized lung mask as well as a Gaussian filter to reduce noise. Using the
peak_local_max function of scikit-image, the local maxima has been computed on the Euclidean distance and hence applied the
watershed segmentation.

The lesion segmentation, instead, has been made using U-net2 that has slightly changed with respect to the one integrated in the
LungQuant v1 software, due to the fact that a different loss function has been introduced. In fact, since LungQuant v1 underestimates
the most severe cases, we applied a strategy to make the algorithm response more linear with severity. This defect was mainly due
to the unbalanced data used to train the lesion segmentation. In fact, the available public datasets mainly contain cases with mild
severity. Moreover, it is not straightforward to design a data augmentation strategy to augment severe cases only. For this reason,
a different loss function has been defined to re-train the U-net2. The vDSC used to train the U-net2 of LungQuant v1 in fact is a
volume metric which inflates when the volumes to be segmented are small. For this reason, a new term has been added to the loss
function, and it is defined as follows:

Ls �
∑

x∈�

Fpred · (Btrue − Ftrue) (1)

where Fpred and Ftrue are the predicted and the reference foreground masks respectively and Btrue is the reference background mask.
The loss function we used is hence defined as follows:

L � vDSCloss + CEweighted + Ls (2)

CEweighted � w(x)
∑

x∈�

log(Mtrue(x) · Mpred(x)) (3)

where CE stands for cross entropy, w(x) is the weight map which takes into account the frequency of white voxels, x is the current
sample and � is the training set. The U-net2 devoted to lesion segmentation has been trained for 150 epochs, and the training has
been stopped at the best validation vDSC. The performance of the LungQuant2 has been evaluated on the external independent data
set COVID-19-CT-Seg.
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Fig. 4 BB-net: a predicted bounding box example (red rectangle), compared to the true bounding box (yellow rectangle)

Table 2 Performances of lung and COVID-19 lesion segmentations made by LungQuant v1 and LungQuant v2, respectively. The metrics are the vDSC
and sDSC computed with 5 mm of tolerance, and the Mean Absolute Error (MAE) computed on the percentage of lung volume involved in the COVID-19
pneumonia

Version Lung (vDSC) Lung (sDSC) Lesion (vDSC) Lesion (sDSC) MAE (%)

LungQuant1 0.95 ± 0.01 0.95 ± 0.02 0.66 ± 0.13 0.76± 0.18 4.2

LungQuant2 0.96 ± 0.01 0.97 ± 0.01 0.69 ± 0.08 0.83 ±0.07 2.0

3 Results

The BB-net training results are provided on the inner test set. Then, the performance obtained by the overall segmentation system,
the LungQuant v2 pipeline are provided on the completely independent test set, the COVID-19-CT-Seg dataset [29], consisting of
ten fully annotated CT scans that can be used as a benchmark.

3.1 BB-net performance

We optimized the hyper-parameters of the BB-net with a grid search, and the most performing one is represented in Fig. 2. The
training loss reaches a plateau value which is less than 10−5. A typical example of the bounding box around the lung predicted by
the BB-net is shown in Fig. 4. The red square inside the image shows the predicted bounding box, which nearly perfectly overlaps
the true bounding box (yellow square), is obtained from the reference lung masks of the annotated CT scans.

3.2 Results on the LungQuant v2 pipeline on the COVID-19-CT-Seg benchmark dataset

For both U-net1, which is devoted to lung segmentation, and U-net2, which is used to segment the lesions, the volumetric dice
similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) at 5 mm of tolerance have been computed on the
independent test set COVID-19-CT-Seg. The segmentation performances were evaluated separately for the lungs and the lesions.
The results of LungQuant v2 and the comparison with the previous version are reported in Table 2. In Fig. 5, we reported the
segmentation outputs computed on a test case (coronacases008.nii). Despite the effect on the metrics is limited, the advantage of
having introduced the BB-net in the LungQuant software is apparent when looking at the segmentations obtained for images with
a different FOV, as shown in Fig. 6, where the outputs of LungQuant v1 and LungQuant v2 are visually compared on three cases of
the MosMed data set. A direct quantitative comparison on labelled images with different FOVs could not be performed, as, to the
best of our knowledge, a suitable datasets to be used to this purpose is not publicly available. However, the visual assessment of the
two outputs supports the initial intuition that the introduction of the BB-net has a positive effect on the lung segmentation.

As described in the Materials and Methods, at the end of the CT inference, we applied our algorithm for the separation of left
and right lungs. Figure 6 shows some examples of the output of this procedure computed on three cases taken from the MosMed
data set.

Lastly, we computed the volumes of the lungs and of the COVID-19 lesions and their ratio to obtain the percentage of involved
lung volume and the CT-SS on the independent test set COVID-19-CT-Seg. We made a direct comparison of the performances of
the LungQuant v1 and LungQuant v2 software versions in the correct CT-SS assessment. We reported the estimated percentage
of affected lung volume versus the reference ones in Fig. 7. The capability of the system in providing a correct CT-SS is still
satisfactory, since eight out of ten cases are correctly scored but lower with respect the first version of the software. However, the
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Fig. 5 LungQuant v2 system: axial slices of case coronacases008.nii from COVID-19-CT-Seg test dataset. On the columns: original images (left), predicted
lung (centre) and COVID-19 lesion masks (right)

misclassification of one class at most occurs and the effect of the improvement is measurable in terms of the MAE that decreases
from 4.2% of LungQuant v1 to 2% of LungQuant v2, as reported in Table 2.

4 Conclusions and discussion

In this work, we present an improved version of the LungQuant software (LungQuant v2 [37]), a system trained to segment the lung
parenchyma and the lesions related to COVID-19 pneumonia on lung CT scans. The algorithm, consisting in a sequence of three
DNNs (BB-net, U-net1 and U-net2), provides the segmentation masks for lungs and lesions and the percentage of affected lung
volume, also converted into the CT severity score. The segmentation strategy works as follows: (i) identification of the bounding
box enclosing the lungs; (ii) lung segmentation; and (iii) COVID-19 lesion segmentation. The BB-net achieves a good performance,
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Fig. 6 Visual assessment of the lung segmentations made with LungQuant v1 and LungQuant v2. On the left: the original image (cases study0002.nii,
study0089.nii and study1064.nii from MosMed dataset). On the centre: lung segmentation made by LungQuant v1. On the right: lung segmentation made
by LungQuant v2
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Fig. 7 Estimated percentages P of
affected lung volume versus the
ground truth percentages, as
obtained by the LungQuant v2
system (blue circles). The
performance obtained by the
previously reported LungQuant v1
system [30] is also shown as a
reference (orange circles). The
grey areas in the plot background
guide the eye to recognize the
CT-SS values to which each value
of P is assigned (from left to right:
CT-SS=1, CT-SS=2, CT-SS=3)

and the MSE on the test set is of order 10−3. The contouring efficiency of LungQuant v2 reaches a vDSC (sDSC) equal to 0.96
± 0.01 (0.97 ± 0.01) and 0.69 ± 0.08 (0.83 ± 0.07) for the lung and lesion segmentations, respectively. The performances of
LungQuant v2 have been directly compared to those previously presented for LungQuant v1 [30]. The segmentation performances
evaluated in terms of vDSC and sDSC of the two systems are fully consistent on the benchmark COVID-19-CT-Seg data sample of
ten fully annotated CT scans. The advantage of LungQuant v2 with respect to LungQuant v1 is its improved capability in segmenting
the lungs also in case the CT scans were either acquired or reconstructed with a small FOV. This is due to the BB-net prepended
to the segmentation pipeline, which has been trained to recognize the bounding box enclosing the lungs on images with variable
FOV, artificially generated though data augmentation. Adding this initial module to the analysis facilitates the learning process of
the lung segmentation network (U-net1), which receives only a subvolume of the chest image containing the lungs resampled to a
standardized size.

As regard the lung segmentation task, the LungQuant performances compare well with those obtained by Ma et al. [29].
Furthermore, a limitation of the LungQuant v1 software was to be prone to underestimate the amount of lung involvement in
more severe cases as visible in Fig. 7. This limitation in the system performance was due to the fact that most cases in the annotated
data samples belong to low CT-SS classes. The introduction of a new term in the loss function of the U-net2 of the LungQuant v2
version helped the system in generating a more linear response with case severity, as visible in Fig. 7 and demonstrated by the smaller
MAE obtained. However, more populated and representative samples, which could allow balancing training examples according to
the severity of radiological findings, would improve the U-net2 capability to correctly segment larger lesions. Training ML systems
on balanced datasets is a crucial point to obtain homogeneous performances that are independent from the severity of the disease.
The current lack of a large dataset, fully representative of the underlying population, i.e. collected by paying attention to adequately
represent all categories of disease severity, limits the possibility to carry out accurate training of AI-based models.

The possibility to access more populated and fully annotated data samples is fundamental to push the performance of image
processing models based on DNNs. Learning from data where the characteristics of a heterogeneous population are adequately
represented helps the DNN models to reach better and more homogeneous performances on previously unseen examples, i.e. to
improve its generalization ability. As a final consideration, this segmentation and quantification work opens the way to lesion
characterization studies. The segmentation of lungs and lesions related to COVID-19 pneumonia is a prerequisite to the extraction
of radiomic features that can help to distinguish COVID-19 infection from other non-COVID related pneumonia and to develop
predictive models of patients’ outcome. In this direction, the work by Fang et al. [28] developed an AI-based method to predict a
severity score, which showed the remarkable performance of AUC � 0.813 in predicting the subjects’ intensive care unit admission.
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To evaluate the capability of our LungQuant2 system to enable the development of predictive models of disease progression and
patients’ outcome, the availability of a fully annotated database with phenotypic and clinical information of patients is required.
Lastly, the LungQuant segmentation software underwent a clinical validation made on 120 CT scans and its outputs have been
compared to the visual assessments of CT images by 14 radiologists coming from five different Italian hospitals [38].
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