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Abstract. The problem of finding the density of odd integers which can be
expressed as the sum of a prime and a power of two is a classical one. In

this paper we tackle the problem both with a direct approach and with a

theoretical approach, suggested by Bombieri. These approaches were already
introduced by Romani in [16], but here the methods are extended and enriched

with statistical and numerical methodologies. Moreover, we give a proof, under

standard heuristic hypotheses, of the formulas claimed by Bombieri, on which
the theoretical approach is based. The different techniques produce estimates

of the densities which coincide up to the first three digits.

1. Introduction

In 1849 de Polignac [6] conjectured that any odd integer can be expressed as 2n+p
for suitable n and prime p. Actually Euler, long before, had found explicit coun-
terexamples, and this was recognised later by de Polignac himself. In the following
years, the naive de Polignac conjecture turned into the difficult question of deciding
which portion of integers has this kind of representation. The first important con-
tribution to this problem was given in 1934 by Romanov [18], who proved that there
is a positive proportion of odd numbers that can be indeed represented in such a
way, but the question of the existence of infinitely many counterexamples remained
unsolved until 1950, when van der Corput [7] and Erdős [8], independently, proved
that there is also a positive proportion of odd numbers that are not of the form
2n + p. Recently other authors examined related problems such as the extension of
Romanov’s theorem in number fields [13], or the proof that the sumset of integers of
the form 2n+q, where q is a prime or the product of two primes, has a positive den-
sity [12]. In [14] it is proved that the sumset {p2 +b2 +2n : p is prime and b, n ∈ N}
has a positive lower density. Very interesting is the paper by Pintz [15] where the
lower asymptotic density is estimated and connections with classical problems in
number theory such as the Goldbach-Linnik problem are shown.

Let N+ and P denote the set of positive integers and the set of odd primes, let

a(n) = #{(p, v) |n = p+ 2v; v ∈ N+, p ∈ P},(1.1)

A(x) = #{n ≤ x | a(n) > 0}.

The result of Romanov essentially states that there is a constant d1 > 0 such that

d1 = lim inf
x→∞

A(x)

x
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even if Romanov did not provide any explicit value for d1. The results of van der
Corput [7] and Erdös [8] gave an upper bound on the distribution, mainly that
there exists a positive constant d2 < 1/2 such that

d2 = lim sup
x→∞

A(x)

x
.

In [5] it is mentioned that the argument of Erdős can be a little generalized to
reduce the bound on d2 to 0.5 − 9 · 10−8. The bound on d1 has been refined in
the recent years [5, 15, 9] but the current value of d1 ≥ 0.09368 is still very distant
from the theoretical upper bound on d2 ≤ 0.49095 given in [9] as well.

In [16] the problem has been tackled in a computational way, assuming that
d1 = d2 = δ and proposing two different computational approaches to estimate the
density

(1.2) δ = lim
x→∞

A(x)

x
.

In this paper we treat this problem both theoretically and computationally mak-
ing a major progress to the initial work in [16]. In particular, we first give a proof,
under very natural assumptions, of some formulas in [17] proposed by Bombieri
about 40 years ago. Assuming the existence of the density δ, Bombieri described
the way to construct a sequence, which he conjectured to converge to δ, and claimed
a formula to compute it. More precisely, for each k ≥ 1, he considered a sequence
of squarefree numbers {Qk}k∈N with Qk | Qk+1 and for each of them a set TQk

of
integers coprime to Qk and with the same asymptotic distribution of the primes.
Bombieri conjectured that the set of integers representable as 2n+t, where t belongs
to TQk

, has a density δQk
, which depends only on Qk and claimed an explicit for-

mula for δQk
. In Section 2 we illustrate this approach and, using the circle method,

we prove Bombieri’s formulas for δQk
when TQk

is a generic sequence with the above
property, which, by probabilistic and heuristic arguments, can be assumed to be
“good” for our purposes. Finally, again by Bombieri’s conjectures, the sequence of
the densities δQk

is decreasing and converges to δ, so by computing the δQk
’s we

obtain approximations to δ.
The computational goal is to estimate the density (upper density / lower density)

both via Bombieri’s formulas and with a direct approach extrapolating the data
obtained directly generating an odd number as a sum of a prime and a power of
two.

In Section 3, following the theoretical argument introduced in Section 2, we
analyze how to approximate the sequence δQk

, for Qk the product of the first k-
primes. The formulas proved in Section 2 express δQk

as the average over Qk
terms, a number of terms that increases tremendously with k, so that the exact
computation of δQk

is impractical for k > 12. We approximate these quantities for
larger k using statistical techniques to compute the sample mean and to validate the
estimate of the error. The estimate of the density δ is then obtained extrapolating
the data (both exact and approximated).

The direct approach is presented in Section 4, where, after generating large odd
numbers as a prime plus a power of 2, we use extrapolating techniques to estimate
the lower and upper densities. In particular, we were able to measure A(x)/x
directly for x as large as 248, and up to 261 on selected intervals. Note that a
similar approach used in [16] allowed to estimate the density only for x < 231.
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With these methods we produce different estimates of d1, d2 and δ that coincide
for the first three digits. The fact that we produced similar results using different
techniques is certainly interesting even if we are not able to give a conclusive answer
about the coincidence of upper and lower densities.

2. Theoretical approach

In this section we present the approach to the computation of the density δ
proposed by Bombieri (see [17] and [16]) whose main idea is to define a decreasing
sequence {δQ} of values that conjecturally converges to δ. Bombieri claimed explicit
formulas to compute δQ. Here we give a proof of Bombieri’s formulas (B1) and
(B2) under a very natural heuristic assumption.

We will assume throughout the existence of the limit in (1.2), namely d1 = d2 =
δ. Recall that the function a(n) introduced in (1.1) counts the number of ways
one can represent a number n as the sum of a prime and a power of 2. Then
A(x) =

∑∞
`=1 #{n ≤ x | a(n) = `} is the number of representable integers up to x.

We set

δ∞(`) = lim
x→∞

1

x
#{n ≤ x | a(n) = `},

and

(2.1) δ∞ =

∞∑
`=1

δ∞(`).

Bombieri suggested to proceed as follows to estimate δ.
Let T denote an infinite sequence of natural numbers. Now define

aT (n) = #{(t, v) |n = t+ 2v; v ∈ N+, t ∈ T },

δT (`) = lim
x→∞

1

x
#{n ≤ x | aT (n) = `},

δT =

∞∑
`=1

δT (`).

Clearly, the quantities a(n), A(x) and δ∞(`) previously defined coincide with aP(n),
AP(x) and δP(`), where P is the set of odd prime numbers.

Using the definition of aT (n) and rearranging the summation we get, for each
integer s,

(2.2)
∑
n≤N

aT (n)s ∼ N
∞∑
`=1

`sδT (`).

The theory formulated so far holds for any integer sequence T , in particular for
the sequence of the prime numbers or for any sequence TQ, where Q is a squarefree
integer, with the following properties

(i): for any t ∈ TQ then gcd(t, Q) = 1,
(ii):

∑
t∈TQ,t<N log t ∼ N.

Observe that the second condition requires that the sequence TQ has the same
asymptotic distribution as the primes. Since the set TQ is a sieved set, in some
sense, and for suitable choices, it behaves like the set of primes bigger than the
prime factors of Q.

Bombieri (see [17]) proposes to compute the δTQ ’s to approximate δ. More
precisely, he claims the formulas (B1) and (B2) which show that δTQ does not
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depend on the particular choice of the sequence TQ but only on the squarefree
number Q, so we will denote it simply by δQ. With this notation, he conjectured
that for any increasing sequence {Qk}k≥1 with Qk | Qk+1

lim
k→∞

δQk
(`) = δ∞(`)

and

δQk+1
≤ δQk

from which clearly

δ∞ = lim
k→∞

δQk
.

Bombieri also conjectured that δ = δ∞. Following this idea, evaluating δQ leads to
an approximation of δ.

2.1. Bombieri’s formulas. Let Q > 0 be a squarefree integer and let TQ be a
sequence satisfying (i) and (ii). Let

γQ(m) =
Q

φ2(Q)

φ(Q)∑
u=1

gcd(m+2u,Q)=1

1

where φ is Euler’s totient function. Then

(B1)
∑
n≤N

aTQ(n)s ∼ N

Q

Q∑
m=1

∞∑
r=1

∑
i1+i2+···+ir=s

ij>0

s!

i1!i2! . . . ir!

1

r!

(
γQ(m)

log 2

)r

and

(B2) δQ =

∞∑
l=1

δQ(l) =
1

Q

Q∑
m=1

(
1− exp(−γQ(m)

log 2

)
.

To prove his formulas, Bombieri [3] suggests to use the circle method. In the
following, we prove (B1) and (B2) by a heuristic argument based on some widely
accepted assumptions connected with the good distribution of a generic sequence
TQ satisfying (i) and (ii) into the arithmetic progressions admissible under (i) and
similar phenomena. When using the circle method, these assumptions allow us to
disregard the contribution of minor arcs and to limit ourselves to the main terms
which occur in the estimate of the major arcs. A similar approach has been used
many times (see for instance [1], [2], [19] and [20]).

2.2. Auxiliary lemmas. The following immediate arithmetic lemma describes the
arithmetic progressions which are admissible for TQ (i.e., those which may contain
elements of TQ).

Lemma 2.1. Let Q be a squarefree positive integer. For any positive integer q let
d = d(q) be the largest factor of q coprime to Q and set q = q0d. Then the classes
modulo q admissible for TQ are those coprime to q0.

We now state and prove some simple lemmas that we will need in the course of
the proof.
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Lemma 2.2. For any real z with z > 0
∞∑
s=1

logs(z)

s!

∑
n≤N

aT (n)s ∼ N
∞∑
`=1

(z` − 1)δT (`).

Proof. Multiplying both sides of (2.2) by logs(z)/s! and summing over s we have

∞∑
s=1

logs(z)

s!

∑
n≤N

aT (n) ∼ N
∞∑
`=1

δT (`)

∞∑
s=1

`s
logs(z)

s!
;

we get the thesis observing that, from the exponential generating function, we have
∞∑
s=1

logs(z)

s!
`s = z` − 1.

�

Lemma 2.3. For any real z, with z > 0, and for each integer r ≥ 1 we have

(z − 1)r =

∞∑
s=1

logs(z)

s!

∑
i1+i2+···+ir=s

ij>0

s!

i1!i2! . . . ir!
.

Proof. Using the binomial theorem and the Taylor expansion of zh = eh log(z), we
get

(z − 1)r =

r∑
h=0

(
r

h

)
zh(−1)r−h =

∑
s≥0

logs(z)

s!

r∑
h=0

(
r

h

)
hs(−1)r−h.

We note that
∑r
h=0

(
r
h

)
(−1)r−h = 0 for each r ≥ 1, hence the term corresponding to

s = 0 vanishes. Moreover, by the inclusion-exclusion principle we have the equality
r∑

h=0

(
r

h

)
hs(−1)r−h =

∑
i1+i2+···+ir=s

ij>0

s!

i1!i2! . . . ir!

and the lemma follows. �

2.3. Proof of (B1) and (B2). In this proof we decided to sketch the details when
applying the circle method, avoiding the most technical facts, which are anyway
standard and can be found for instance in [21].

We rewrite the sum
∑
n≤N aTQ(n)s as∑

n≤N

(
∑

(p1,v1)
n=p1+2v1

1) . . . (
∑

(ps,vs)
n=ps+2vs

1) =
∑

v1,...,vs

∑
p1,...,ps
pi+2vi≤N

1,(2.3)

where p1, . . . , ps vary among the elements of the sequence TQ which in the following
will be denoted simply by T , since Q is fixed throughout the proof.

We can rearrange the previous sum by grouping together all the vj ’s with the
same value. Assuming that i1, . . . , ir among the vj have values u1, . . . , ur, respec-
tively, where u1 < u2 < · · · < ur, we obtain

(2.4)

∞∑
r=1

∑
i1+···+ir=s

ik≥1

s!

i1! . . . ir!

∑
u1<···<ur≤L=log2N

∑
p1+2u1=···=pr+2ur≤N

1 .
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To use the classical circle method, we introduce the trigonometric sums

S(α) =
∑
p≤N
p∈T

e(αp) .

where we are using the standard notation e(x) = e2πix. In this notation we have

∑
p1+2u1=···=pr+2ur≤N

1(2.5)

=

∫ 1

0

· · ·
∫ 1

0

S(α1) . . . S(αr)
∑
n≤N

e(−((n− 2u1)α1 + · · ·+ (n− 2ur )αr))dα1 . . . dαr

=

∫ 1

0

· · ·
∫ 1

0

S(α1) . . . S(αr)K(α1, ..., αr)dα1 . . . dαr ,

where

K(α1, ..., αr) =
∑
n≤N

e(−((n− 2u1)α1 + · · ·+ (n− 2ur )αr)) .

The next step is again classical. We split the interval (0, 1) into two parts: the
so-called major arcs M and minor arcs m.

Let R be a small power of N and let V = N/R. We consider a Farey dissection
of the interval [0, 1[ of total level V and level of the major arcs equal to R. More
precisely, for 1 ≤ a ≤ q ≤ R and (a, q) = 1, a major arc M(q, a) will be an interval
with center in the rational point a/q and radius approximately 1/qV . We define
M as the union of the major arcs M(q, a) and m just as (0, 1) \M.

As mentioned above, we shall only consider the integral over M. By performing
the change of variable αj = aj/qj + βj each arc M(qj , aj) is translated into the arc
ξ(qj) with center in 0. The multiple integral over M becomes∑

1≤a1≤q1≤R
(a1,q1)=1

∫
ξ(q1)

S(a1/q1 + β1)...
∑

1≤ar≤qr≤R
(ar,qr)=1

∫
ξ(qr)

S(ar/qr + βr)·

K(a1/q1 + β1, ..., ar/qr + βr) dβ1 . . . dβr .

(2.6)

We now make precise our assumption that T is well distributed in the arithmetic
progressions. As in Lemma 2.1, set q = q0d. Recalling that the classes modulo q
admissible for T = TQ are those coprime to q0, the required distribution of T is of
type of the distribution of primes in the arithmetic progressions, namely,∑

p∈T
p≤N

p≡l(mod q)

1 ∼ 1

φ(q0)d

N

logN
if (l, q0) = 1 , for each q ≤ R.

We point out that this is the reason for not choosing T just as the sequence of
primes not dividing Q; in fact, in this case this kind of distribution is known only
when q is small with respect to N , which is not sufficient for our needs.
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Let us now estimate S(a/q) We have

S(a/q) =
∑
p≤N
p∈T

e(ap/q) =
∑

1≤l≤q

∑
p∈T
p≤N
p≡l (q)

e(ap/q) ∼
∑

1≤l≤q
(l,q0)=1

e(al/q) ·
(

1

φ(q0)d

N

logN

)

=
1

φ(q0)d

N

logN

∑
1≤l≤q
(l,q0)=1

e(al/q) =
1

φ(q0)d

N

logN

 ∑
1≤i≤q0
(i,q0)=1

e(ai/q0)


 ∑

1≤j≤d

e(aj/d)

 .

Now, if d > 1,
∑

1≤j≤d e(aj/d) = 0, so we need to consider only the terms S(a/q)
where d = 1 and q = q0. On the other hand,∑

1≤k≤q
(k,q)=1

e(k/q) = µ(q),

so we can further restrict to the terms for which q | Q. In this case we have

S(a/q) ∼ 1

φ(q)

N

logN

∑
1≤l≤q
(l,q)=1

e(al/q) =
µ(q)

φ(q)

N

logN
.

In conclusion, we get

(2.7)
∑
q≤R

(a,q)=1

S(a/q) ∼
∑
q|Q

(a,q)=1

µ(q)

φ(q)

N

logN
.

Moreover, we can rewrite the function K(a1/q1 + β1, . . . , ar/qr + βr) of (2.6) as

r∏
j=1

e(2uj (aj/qj+βj))
∑
n≤N

e(−n
(
(a1/q1+· · ·+ar/qr)+(β1+· · ·+βr)

))
= P (c+β)B(c+β),

where β =
∑r
j=1 βj , c = c(a1, q1, . . . , ar, qr) =

∑r
j=1 aj/qj , P (c + β) is the arith-

metic product over j, and B(c+ β) denotes the sum over n.
The function B(x) is the classical bell-shaped function centered in 0 and periodic

of period 1. So, denoting by ||ρ|| the distance of a real number ρ from its nearest
integer, we have B(c+β) = B(‖c+β‖). Moreover, B(0) = N and, for N sufficiently
large, it decreases very rapidly outside 0; in our asymptotic estimate it can be
approximated with the 2-piece linear function through the points (−1/N, 0), (0, N)
and (1/N, 0) in [−1/N, 1/N ] and with 0 in 1/N < |x| ≤ 1/2.

It follows that in the integrals in (2.6) we may neglect the contributions over the
points for which

(2.8) ‖(a1/q1 + · · ·+ ar/qr) + (β1 + · · ·+ βr)‖ >
1

N
,

while if

(2.9) ‖(a1/q1 + · · ·+ ar/qr) + (β1 + · · ·+ βr)‖ ≤
1

N
,

we can estimate the integral by approximating B(c + β) with the 2-piece linear
function above.
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Moreover, recalling that all the relevant q are divisors of Q, we need only consider
the pairs (aj , qj) for which

(2.10) a1/q1 + · · ·+ ar/qr ∈ N .

In fact, if a1/q1 + · · · + ar/qr is not a integer, then the distance from the nearest
integer is at least 1/Q and therefore the distance of (a1/q1 + · · · + ar/qr) + (β1 +
· · ·+βr) from the nearest integer is greater than 1/Q−

∑
j 1/qjV ≥ 1/Q−rR/N . If

N is sufficiently large, this distance is always > 1/N on the domain of integration,
so (2.8) holds and the integral is negligible.

Hence condition (2.9) becomes

(2.11) |β1 + ...+ βr| ≤
1

N
.

Moreover, (2.11) can be refined by considering just the r-tuples (β1, . . . , βr) for
which any single βj is smaller than 1/N . In fact, (2.11) individuates an r-dimensional
strip out of which the integral is negligible. By symmetry, we can change the signs
of the βi’s in all possible ways, obtaining 2r−1 strips such that the integral is neg-
ligible outside each of them. These strips divide the hypercube [−1/2, 1/2]r into
a finite number of regions and intersect in a region contained in [−1/N, 1/N ]r.
Every region other than the intersection is outside some strip, and therefore its
contribution to the integral is negligible.

We are then left to study the integrals in (2.6) over the domain

D = {(β1, . . . , βr) : | ± β1 ± · · · ± βr| < 1/N}.

The argument above shows also that enlarging the domain of integration to a D′ ⊇
D does not change the asymptotic value of the integral, since its value over D′ \D
is negligible.

Putting together all the previous considerations, and noticing that

D ⊆ {(β1, . . . , βr) : |βj | < 1/N ∀j},

we get that (2.6) is asymptotic to
(2.12)∑
qj |Q

∑
a1/q1+···+ar/qr∈Z

(aj ,qj)=1

∫
|β1|<1/N

S(
a1
q1

+β1)· · ·
∫
|βr|<1/N

S(
ar
qr

+βr)P (c+β)B(β)dβ1 . . . dβr.

Moreover, to obtain an asymptotic estimate of (2.12) we can replace P (c+β) with

P (c) and S(aj/qj + βj) with
µ(qj)
φ(qj)

N
logN and equation (2.12) is asymptotic to

∑
qj |Q

1≤j≤r

r∏
h=1

µ(qh)

φ(qh)

 ∑
a1/q1+···+ar/qr∈Z

(aj,qj)=1

r∏
j=1

e(2uj (aj/qj))

 Nr

(logN)r

∫
· · ·
∫

D

B(β)dβ1 . . . dβr

as N →∞. We now choose

D′ = {(β1, . . . , βr) : |
r∑
j=1

βj | < 1/N , |
r∑
j=1

βj − 2βi| < 1/N for 1 < i ≤ r}
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and perform the change of variables y =
∑r
j=1 βj xi = y − 2βi for 1 < i ≤ r. We

have ∫
· · ·
∫

D′

B(β)dβ1 . . . dβr =
1

2r−1

1/N∫
−1/N

· · ·
1/N∫
−1/N

B(y)dydx2 . . . dxr

=
1

Nr−1

1/N∫
−1/N

B(y)dy ∼ 1

Nr−1 .

Putting everything together, we obtain that (2.5) is asymptotic to

(2.13)
∑
qj |Q

1≤j≤r

r∏
h=1

µ(qh)

φ(qh)

 ∑
a1/q1+···+ar/qr∈Z

(aj,qj)=1

r∏
j=1

e(2uj (aj/qj))

 N

(logN)r

as N →∞.
Summing over the u’s, we obtain

∑
u1<···<ur≤L

∑
p1+2u1=···=pr+2ur≤N

1 ∼(2.14)

∼
∑
qj |Q

1≤j≤r

∑
a1/q1+···+ar/qr∈Z

(aj,qj)=1

r∏
h=1

µ(qh)

φ(qh)

 ∑
u1<···<ur≤L

r∏
j=1

e(2uj (aj/qj))

 N

(logN)r
.

Taking into account that 2u+φ(q) ≡ 2u (mod q), the expression in the last paren-
theses is asymptotic to

Lr

r!

r∏
j=1

1

φ(qj)

φ(qj)∑
uj=1

e(2uj (aj/qj))


and, after substituting in (2.14) we get the asymptotic estimate

(2.15)
N(log 2)−r

r!

∑
qj |Q

1≤j≤r

∑
a1/q1+···+ar/qr∈Z

(aj,qj)=1

r∏
h=1

µ(qh)

φ(qh)2

φ(qh)∑
u=1

e(2u(ah/qh)) .

Then, substituting in (2.4), we get∑
n≤N

aTQ(n)s ∼(2.16)

∼ N
∞∑
r=1

∑
i1+···+ir=s

ik≥1

s!

i1! · · · ir!
(log 2)−r

r!

∑
qj |Q

1≤j≤r

∑
a1/q1+···+ar/qr∈Z

(aj,qj)=1

∏
h

µ(qh)

φ(qh)2

φ(qh)∑
u=1

e(2u(ah/qh)) .

For each sequence {ω(m)}m∈Z, denote for simplicity

mean
m∈Z

ω(m) := lim
M→∞

1

2M + 1

M∑
m=−M

ω(m).
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With this notation we have

mean
m∈Z

e(m
∑
j

aj/qj) =

{
0 if

∑
j aj/qj 6∈ Z;

1 if
∑
j aj/qj ∈ Z,

and hence

∑
n≤N

aTQ(n)s ∼(2.17)

∼ mean
m∈Z

N

 ∞∑
r=1

∑
i1+···+ir=s

ik≥1

s!

i1! · · · ir!
(log 2)−r

r!

∑
qj |Q

1≤j≤r

∑
(aj ,qj)=1

∏
h

µ(qh)

φ(qh)2

φ(qh)∑
u=1

e((2u +m)ah/qh)


∼ N ·mean

m∈Z

∞∑
r=1

1

r!

(
ΓQ(m)

log 2

)r ∑
i1+···+ir=s

ik≥1

s!

i1! · · · ir!
,

where

(2.18) ΓQ(m) =
∑
q|Q

∑
(a,q)=1

µ(q)

φ(q)2

φ(q)∑
u=1

e((2u +m)a/q) .

Since the function ΓQ(m) is periodic of period Q, the mean over Z in (2.17) is equal
to the mean over one period, hence equation (2.17) can be rewritten as

(2.19)
∑
n≤N

aTQ(n)s ∼ N

Q

Q∑
m=1

∞∑
r=1

1

r!

(
ΓQ(m)

log 2

)r ∑
i1+···+ir=s

ik≥1

s!

i1! · · · ir!
.

We now multiply (2.19) by (log z)s/s! and sum over s. Applying Lemma 2.2 to
the left-hand side and Lemma 2.3 to the right-hand side, we obtain

(2.20)

∞∑
l=1

(zl − 1)δTQ(l) =
1

Q

Q∑
m=1

∞∑
r=1

1

r!

(
ΓQ(m)

log 2

)r
(z − 1)r,

and setting z = 0

δTQ =

∞∑
l=1

δTQ(l) =
1

Q

Q∑
m=1

(
1− exp

(
−ΓQ(m)

log 2

))
.

Note that δTQ(l) is the coefficient of zl in (2.20): looking at the right-hand side, we

have that the coefficient of zl in the inner sum is∑
r≥l

(
r

l

)
(−1)r−l

1

r!

(
ΓQ(m)

log 2

)r
=

1

l!

(
ΓQ(m)

log 2

)l∑
r≥0

1

r!

(
−ΓQ(m)

log 2

)r
,

hence

δTQ(l) =
1

Q

Q∑
m=1

(
1

l!

(
ΓQ(l)

log 2

)l
exp

(
−ΓQ(m)

log 2

))
.
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To conclude the proof of (B1) and (B2), it remains to show that ΓQ(m) = γQ(m),
namely,

ΓQ(m) =
Q

φ(Q)2

φ(Q)∑
v=1

(m+2v,Q)=1

1 .

Now, from equation (2.18) we have

ΓQ(m) =
∑
q|Q

µ(q)

φ(q)2

φ(q)∑
u=1

cq(2
u +m),

where cq(n) =
∑

(a,q)=1 e(na/q) is the Ramanujan sum, and it is well known that

(see for example [21, formula (3.14)])

cq(n) = µ

(
q

(q, n)

)
φ(q)

φ(q/(q, n))
.

Since q|Q, then q is squarefree and hence

cq(2
u +m) = µ(q)µ((q, 2u +m))φ((q, 2u +m)).

Using again that 2u+φ(q) ≡ 2u (mod q), we have

ΓQ(m) =
∑
q|Q

φ(q)∑
u=1

(
µ(q)

φ(q)

)2

µ((q,m+ 2u))φ((q,m+ 2u))

=
1

φ(Q)

φ(Q)∑
u=1

∑
q|Q

µ(q)2

φ(q)
µ((q,m+ 2u))φ((q,m+ 2u)).

We note that F (q) = µ(q)2

φ(q) µ((q,m+2u))φ((q,m+2u)) is a multiplicative function

and since Q is squarefree we have

ΓQ(m) =
1

φ(Q)

φ(Q)∑
u=1

∑
q|Q

F (q) =
1

φ(Q)

φ(Q)∑
u=1

∏
p prime
p|Q

(1 + F (p))

=
1

φ(Q)

φ(Q)∑
u=1

∏
p prime
p|Q

{
1 +

1

p− 1

({
1 if p - m+ 2u

−(p− 1) if p | m+ 2u

)}

=
1

φ(Q)

φ(Q)∑
u=1

(m+2u,Q)=1

∏
p prime
p|Q

p

φ(p)
=

1

φ(Q)

φ(Q)∑
u=1

(m+2u,Q)=1

Q

φ(Q)

=
Q

φ(Q)2

φ(Q)∑
u=1

(m+2u,Q)=1

1 = γQ(m) .

This concludes the proof.
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3. Computation and approximation of δQk

We apply the results of the previous section to the sequence {Qk}k≥1 where
Qk = p1 · · · pk is the product of the first k primes. This sequence satisfies the
hypothesis requested by Bombieri’s conjecture, i.e. that Qk is a squarefree number
and that Qk | Qk+1. Moreover, the fast increase of Qk should provide a sequence
of values δQk

rapidly converging to a limit, so that the values for small k can give a
good insight into the limiting value. The quantities δk := δQk

are evaluated using
formula (B2). In order to compute the quantities δk for increasing values of k we
need to compute the values of γQk

(m) for any integer m ∈ [1, Qk]. The computation
of δk for a given k requires a number of operations as large as k Qk φ(Qk), and can
be time consuming for a large k.

With direct calculation and careful programming, we were able to compute the
exact values of δk for k = 1, 2, . . . , 11 producing the values reported in Table 1. The
values of δk for k ≤ 9 can be computed with any precision using Mathematica R©.
Two other values δ10 and δ11, can be computed using double precision arithmetic.
The direct calculation for k > 11 seems unfeasible with the current computational
resources.

k pk Qk δk
1 2 2 0.4720834970750688
2 3 6 0.4595145846080572
3 5 30 0.4496940203924133
4 7 210 0.4456422156631219
5 11 2 310 0.4446427853024636
6 13 30 030 0.4429385971709090
7 17 510 510 0.4409762694311436
8 19 ≈ 9.69 · 106 0.4405196746923989
9 23 ≈ 2.2 · 108 0.4402994162717804

10 29 ≈ 6.4 · 109 0.4400964391954299
11 31 ≈ 2.00 · 1011 0.4393679993121766

Table 1. The first 11 values of δk.

Note that δk is obtained as the mean of Qk values, and for k = 12, the values to
be summed are approximately 7.4 ·1012. For larger values of k, Qk grows incredibly
fast so that, from a computational point of view, we can assume Qk as infinite.
The idea presented in this section is to approximate the average over Qk values in
(B2) with the sample mean taken over a set of Nk values, with Nk � Qk but as
large as possible.

3.1. Statistical estimate. Let Ik = {1, 2, . . . , Qk} and define the function β :
Ik → R, as

β(m) = 1− exp

(
−γQk

(m)

log 2

)
.

Note that the even values of m do not contribute to the average since β(2ν) = 0,

hence δk = 1
Qk

∑Qk/2−1
ν=0 β(2ν + 1).
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Let M be a sample set of Nk/2 values in Ik. Let us consider the sample mean
defined as

(3.1) ∆k =
1

Nk

∑
m∈M

β(m),

which is an approximation of δk. To measure how good is the approximation of δk
with ∆k, we need to estimate the variance of the quantities involved in the sum.
Given a set of n samples Xi, the unbiased sample variance of the population, and
the corrected sample standard deviation are defined as
(3.2)

V2(X) =
1

n− 1

n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2

, V(X) =
1√
n− 1

√√√√√ n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2

,

and represent an estimate of the population variance and standard deviation.
From the central limit theorem we know that the distribution of ∆k is approx-

imately N(µ, σ√
Nk

), where σ is the standard deviation of the whole population,

meaning that with probability at least 1− α the actual mean µ = δk lies in the in-
terval [∆k−zα/2 σ√

Nk
,∆k+zα/2

σ√
Nk

] where zα/2 is the critical value of the standard

normal distribution which can be read from the tables of normal distribution. For
example the critical value to have 1− α = 0.95 is z0.025 = 1.96. The application of
the central limit theorem requires the knowledge of the standard deviation, but for
a sufficiently large Nk the standard deviation can be substituted by the corrected
sample standard deviation V(X).

Of course this result holds when the sample set is large enough, or for a pop-
ulation already distributed normally. To have a population whose distribution is
closer to the normal one we chose to compute the sample mean as the average
over partial sample means. As we will see in Section 3.2 this has also the effect of
partially avoiding instability due to floating point arithmetic.

3.2. How to compute the sample mean. In order to sum the N = Nk different
samples, we may proceed by levels. We first form N/L1 groups of size L1, obtaining
N/L1 partial sums, and then we group them again in groups of size L2 and so on.
In particular if N = L1L2 · · ·Lr we can proceed computing the partial means at
level h obtained from the partial means at level h− 1, treating the means at level
h − 1 as observations. More rigorously, denoting by D(0)(m) = β(m) we compute
the quantities D(h)(g) as follows

D(h)(g) =
1

Lh

Lh∑
i=1

D(h−1)(i+ (g − 1)Lh), g = 1, 2, . . . ,
N

L1 · · ·Lh
,

and finally we have ∆k = D(r)(1) = 1
Lr

∑Lr

i=1D(r−1)(i), where Lr = N/(L1 · · ·Lr−1).
As already observed, computing the final sum proceeding by layers has an inter-

esting side effect since the partial sumsD(h)(g) tend to be more normally distributed
than the sums at the previous level. Each D(h)(g) can be interpreted as an obser-
vation for the sums at level h+ 1. Moreover we note that the variance of the values
D(h)(g) decreases with h since at each level the partial sums concentrate better and
better around the mean.
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5.0×1010 1.0×1011 1.5×1011 2.0×1011
N

10

11

12

13

14

- Log err

Figure 1. The solid line represent the value estL2
11 (i), for i =

2, 3, . . . , 437. The dots are the values of errL2
11 (i) for i = 1, 2, . . . , L3,

with L2 = 899 amd L3 = 437.

3.3. Validation of the Error Estimate. As observed in Section 3.1 the central
limit theorem allows us to estimate the error of approximating δk with the sample
average ∆k. The theoretical bound is expressed in terms of the corrected standard
deviation and of the critical value zα/2.

To understand how conservative this estimate is, and to use this result for large
values of k, we consider the value k = 11 for which we are able to compute directly
(see Table 1) the values of δk as the mean over all the Qk values. The value
δ11 obtained and reported in Table 1 has been computed in double precision. We
compute Qk/L1 partial means of L1 = Q7 = 510 510, values and we form L3 = Qk

L1L2

groups of L2 = 899 = 29 · 31 partial means. We compute the L3 = 437 = 19 · 23
partial means obtained averaging over i consecutive values of D(2)(g), i.e.

µ(n) =
1

n

n∑
g=1

D(2)(g), n = 1, 2, . . . , L3.

We know that µ(n) approaches δ11 and that the last value µ(L3) = δ11. By fixing
L2 = 899 independently of the values of L1 and Qk, we consider the following two
error measures, the actual error

(3.3) errL2

k (n) = |δk − µ(n)|, n = 1, 2, . . . , L3,

and the error estimate
(3.4)

estL2

k (n) =
2√
n
V(D(2)) =

2
√
n
√
n− 1

√√√√ n∑
g=1

(
D(2)(g)− µ(n)

)2
n = 2, 3, . . . , L3,

which should approach with high probability the theoretical value zα/2
σ√
n

, where

σ is the standard deviation of the population, n is the sample size, and zα/2 ≈ 2 if
we require an accuracy of 95%. The behavior of these two error estimates is shown
in Figure 1 and we see that the theoretical bound given by (3.4) is always better

than expected since no value of the vector estL2
11 is below the actual error even if

this can happen with a probability up to 5%.
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Figure 2. We see that for k = 13, L1 = 510 510 the histogram
almost overlaps with the theoretical Gaussian distribution, while
for k = 22, where we are taking only L1 = 210 samples for each
mean value there is a discrepancy between the histogram and the
theoretical distribution.

3.4. Numerical stability. When summing Nk positive numbers particular atten-
tion should be placed on the error produced by floating point arithmetic. When
using the customary algorithms, denoting by ε the machine precision, the error is
proportional to εNk or ε log2Nk depending on the algorithm used. With a little
computational overhead we can compute the sum with a floating point error of the
order of machine precision, independently of the number of terms to be added (as
long as Nk ε < 1). This technique, due to Kahan [11] (see also [10] and references
therein for more details) is the one adopted in this paper for

accumulating all the sums in our computation, which can therefore be considered
correct up to machine precision. The only error produced is then due to the trun-
cation of the original sum in (B2) to the first Nk terms, which can be estimated

by errL2

k as defined in (3.4).
The problem of computing the sample variance of N data points may be diffi-

cult [4] in particular when N is large and the variance of our data is small. The
algorithm given by (3.2), requires two passes through the data and it is a stable
algorithm [10] because it is minimally affected by cancellation.

3.5. Results of the statistical approximation. The choice of the sample set is
crucial since the samples selected should be representative of the whole population.
Selecting consecutive values of m ensures that we have no repeated samples and we
are exploring all the residual classes.

Of course as k grows we can only select a small portion of values to average
because the cost of computing β(m) increases with k. The central limit theorem,
which is the main tool we are using here to estimate the error, requires the sam-
ples to be independent and sufficiently large in number. We are not able to prove
independence of the observations – and, indeed, we doubt that the initial observa-
tions are independent – however, computing the means of the first layer of data for
k = 13 and k = 22 we get the two histograms1 in Figure 2 where they are compared
with the theoretical Gaussian distributions. A four months computation produced
the results reported in Table 2. In the table we report the values of L1 and L3,
while we omit L2 which is set to 899 = 29 · 31 for all the k, the sample size Nk is

1Each histogram is been obtained from L2L3 points and smoothed with the corresponding
command in Mathematica.
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k ≈ Qk L1 L3 ∆k est(L2)(L3)

12 7.42e+12 510 510 65 0.4391667926 6.16e-10
13 3.04e+14 510 510 65 0.4388427016 9.76e-10
14 1.31e+16 510 510 65 0.4385677997 1.03e-09
15 6.15e+17 510 510 43 0.4385202254 1.27e-09
16 3.26e+19 30 030 71 0.4384639848 1.60e-08
17 1.92e+21 210 371 0.4384402240 7.07e-07
18 1.17e+23 210 318 0.4383560374 8.42e-07
19 7.86e+24 210 265 0.4383219193 9.30e-07
20 5.58e+26 210 265 0.4382922878 9.23e-07
21 4.07e+38 210 238 0.4380775133 1.07e-06
22 3.28e+30 210 212 0.4380501081 1.14e-06

Table 2. The table reports the estimates of δk for values of k
between 12 and 22. The value of L2 is set to 899. From the
last column, we note that the accuracy is roughly of 6 digits for
the higher values of k. Due to the increase in the complexity of
computing the values β(m) for large k, the values of Nk = L1L2L3

are decreasing as k increases.

the product of L1, L2 and L3. The values ∆k ≈ δk are obtained using (3.1) and

the error estimate est
(L2)
k (L3) is computed accordingly with the definition in (3.4).

3.6. Extrapolating the δk. With our sequence of δk we can try to extrapolate
a possible limit value for δ. In general, it is not clear which can be a good
mathematical model for the convergence of the δk’s to a possible limit value δ.
However, assuming the convergence to the limit of A(x)/x to δ, a good model
for extrapolation seems to be the one derived by the prime-counting function
π(x) ≈ x

log x + x
log2 x

. Accounting also for repeated representations, since we have

approximately π(x)blog2 xc values for A(x), then it is reasonable to approximate
A(x)/x with the function

(3.5) ft(x) = α0 +

t∑
i=1

αi

logi x
.

The values α0, α1, . . . αt can be computed using the least squares method, and
then we can return α0 as the approximation of δ since for k →∞ the extrapolating
function converges to α0.

Setting α = (α0, α1, . . . , αt)
T , the vector of the unknown, and let (Qk, δk) for

k = 2, 3, . . . ,m be the data points, the least squares problem consists in minimizing
the 2-norm

‖d− Φmα
∗‖2 = min

α∈Rt+1
‖d− Φmα‖2

where d = (δ2, δ3, . . . , δ11,∆12, . . . ,∆m)T , and Φm ∈ R(t+1)×(m−1) defined as

Φm =


1 1

logQ2

1
log2Q2

· · · 1
logtQ2

1 1
logQ3

1
log2Q3

· · · 1
logtQ3

...
...

... · · ·
...

1 1
logQm

1
log2Qm

· · · 1
logtQm

 .
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The low dimension of the matrix Φm allows us to use one of the customary
numerical methods for the normal equations (ΦTmΦm)α∗ = ΦTmd. This computation
can be performed in Mathematica with high precision in order to keep the round-off
negligible. Since we are interested only in the first entry of the solution, and the

t = 2 t = 3
m α∗0 εin α∗0 εin
15 0.437648463 4.81e-10 0.4376394264 7.63e-10
16 0.437619800 2.26e-09 0.4375941534 3.61e-09
17 0.437603036 7.62e-08 0.4375701224 1.20e-07
18 0.437588229 1.51e-07 0.4375500504 2.32e-07
19 0.437578591 2.21e-07 0.4375384734 3.33e-07
20 0.437572717 2.81e-07 0.4375327153 4.15e-07
21 0.437554925 3.43e-07 0.4375091337 4.99e-07
22 0.437540758 4.03e-07 0.4374914180 5.76e-07

Table 3. The extrapolated values for different values of m and t
and the round-off error obtained in the computation.

solution can be expressed in terms of the pseudo-inverse F = (ΦTmΦm)−1ΦTm of Φm
as

α∗ = (ΦTmΦm)−1ΦTmd,

we have that α∗0 = fT1 d, where fT1 is the first row vector of the matrix (ΦTmΦm)−1ΦTm.
Table 3 reports for different values of m and t in (3.5), the values obtained for α∗0
together with the global error estimate. The global error is given by

εin = fT1 d̃− fT1 d =

m∑
k=1

f1k ε
(k)

where ε(k) represent the error in estimating δk+1 with ∆k+1 if k ≥ 11,while is zero
for k ≤ 11 since the values reported in 1 are correct to machine precision. The ab-

solute value of the errors |ε(k)| can be bounded from above by the values est
(L2)
k (L3)

reported in the last column of Table 2, hence |εin| ≤
∑m−1
k=1 |f1k| |est

(L2)
k (L3)|.

In Figure 3 we report the fitting of the data on the model with t = 2 and t = 3.
Accepting as adequate the model proposed in (3.5), we see that the values of

α∗1, T2 ≈ 0.437540758 for t = 2 and T3 ≈ 0.437491418 for t = 3 are very close, and
then we can propose the value 0.4375 as a possible approximation of the asymptotic
distribution δ.

4. Direct Approach

In this section we compute the function A(x)/x for very large values of x. Such a
function is obtained with an exhaustive approach by counting all the odd numbers
not exceeding x which can be written as the sum of a prime and a power of two.
This exhaustive approach is computationally very expensive and requires careful
programming. Using a segmented implementation of the sieve of Eratosthenes we
computed around 104 Billions of primes in the range [2, 3.3518 · 1014] storing them

in n = 187 805 chunks of size c = 23
∏9
i=1 pi = 1 784 742 960. For each chunk
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Figure 3. Fitting of the data (dots) with the model (3.5) with
t = 2 and t = 3. We see that the two curves are overlapping and
so we get a very good approximation of the data.
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Figure 4. Plot of the density function A(x)/x in a normal and
in a logarithmic scale. The presence of local minima at powers of
two is more evident when we use a logarithmic scale.

we computed the number of integers representable as p + 2n in the corresponding
interval.

Observing that there are few “big” primes and a large number of “small” primes,
it is not surprising to find out that the density function A(x)/x is oscillating with
local minima corresponding with powers of two as represented in Figure 4. As in
the previous section we can use extrapolation techniques to estimate d1, d2 and
understand if the conjecture d1 = d2 = δ is true, that is if indeed the density
function A(x)/x has a limit as x goes to infinity.

As done in Section 3.6, assuming the existence of the limit δ of A(x)/x, we can
approximate A(x)/x with the function

(4.1) f(x) = α0 + α1
1

log x
.

The values of α0 and α1 can be estimated using the least squares method and then
we can return α0 as the approximation of δ since this is the asymptotic behavior of
f(x). In Figure 5 we show the fit obtained. The matrix of the least squares problem
has size n × 2, with n the number of chunks, that in our case is n = 187 805, but
the normal equations give rise to a 2 × 2 system. Using the computed values of
A(x) for x as large as 248 we estimate α0 with the value of F ≈ 0.437641.
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Figure 5. Plot of the density function A(x)/x together with the
fitting function from (4.1), where the parameters α0, α1 have been
computed with the least squares method.

To better represent the oscillatory behaviour of A(x)/x at a power of two, we can
design a model where we add to the inverse logarithmic term a periodic oscillating
function, where the amplitude of the oscillations is damped as x increases. Setting
t = log x, for a fixed integer s > 0 we can use as a model for the density function
the following

g(t) = α0 +
α1

t
− 1

t

s∑
k=1

βk cos

(
k

2πt

log 2

)
.

Again, since g(t)→ α0 as a t→∞, the density δ can be estimated with the value
α0. With s = 1 we obtain the value G1 ≈ 0.437641, and with s = 6 the value
G6 ≈ 0.437645 that are very close, so it is not really interesting to introduce other
terms. Note that G1 and F coincide in the first six digits.

As an alternative, we can estimate separately the lower and upper density d1
and d2. In this case, setting as before t = log(x) we add periodic terms without the
dumping terms so that even the model function does not admit a limit. We have,
for a fixed integer s > 0,

h(t) = α0 +
α1

t
−

s∑
k=1

βk cos

(
k

2πt

log 2

)
.

In this case, we can use Ls = α0 −
∑s
k=1 |βk| as an estimate for d1 and Us =

α0 +
∑s
k=1 |βk| as an estimate for d2. With different values of s we get different

ranges [Ls, Us]. In particular, for s = 1 we get [L1, U1] with L1 ≈ 0.437572 and
U1 ≈ 0.437714, and with s = 6, the range is [L6, U6] with L6 ≈ 0.437541 and
U6 ≈ 0.437752.

Another possibility consists in extrapolating only local maxima or local minima.
We first identify local maxima between 233 and 248, and then we extrapolate these
values obtaining an approximation of d2 of M ≈ 0.437863. We can observe that
this value is outside the ranges given before but the values coincide for the first
three digits.

When extrapolating the minima, we can take advantage of the fact that they are
localized at powers of two hence we can estimate the density on selected “small”
intervals [x − h, x] around powers of two. The computational complexity is much
lower than the computation of the density up to the value x. This has allowed us
to estimate densities on intervals as far as 261 ≈ 2.30 · 1018 while with the first
technique we were not able to go further than 3.35 · 1014 ≈ 248.
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Since limx→+∞
A(x)
x = δ, we have that, if A′(x) has limit at infinity, then

limx→∞A′(x) = δ and the derivative can be estimated with the difference quo-
tient

A′(x) ≈ A(x+ h)−A(x)

h
≈ δ, for h� x, x→∞.

We can then compute how many odd numbers are representable in the interval
[xi, xi+h] and divide that number by h to have an estimate of A(xi)/xi. Applying
this reasoning on powers of two, we can estimate the values of the density function
at a power of two. The results of the extrapolation with h = 226 gives an estimate
for d1 of m ≈ 0.437588, which still coincides with the other estimates for the
first three digits. The results of the extrapolation are not upper or lower bounds
of the quantities d1, d2 or δ but only possible estimates. However, the fact that
with different models and data points we get results which are so close, is a very
encouraging result.

T2

T3

G6

F

L1

U1

U6

L6

m

M

0.4374

0.4375

0.4376

0.4377

0.4378

0.4379

Figure 6. The estimates obtained using the direct and theoreti-
cal approach. F is the value obtained using the computed values
of A(x) up to 248 and as a model for the density the function
f(x) in (4.1), G6 is the value obtained by incorporating six oscil-
latory terms, the ranges [L1, U1], [L6, U6] are obtained as estimate
of the lower and upper densities [d1, d2] with one or six terms,
while [m,M ] are obtained by extrapolating minima and maxima
of A(x). The gray dots T2 and T3 are the values we get pursuing
the theoretical approach in Section 2.

5. Conclusions

In this paper we studied the problem of the existence and of the computation of
the density of the integers of the form 2n + p, where p is a prime. Figure 6 summa-
rizes our results. While we cannot give a conclusive answer about the existence of
an asymptotic density for odd integers that can be expressed as the sum of a prime
and a power of two, the figures we get are very close and allow us to fill the gap
between upper and lower density as produced using only theoretical reasoning. The
experimental results moreover give great evidence to the likelihood of Bombieri’s
conjectures.



ON COMPUTING THE DENSITY OF INTEGERS OF THE FORM 2n + p 21

Acknowledgments

We would like to thank the Signals and Images Laboratory of the Italian National
Research Council (CNR-ISTI) for providing us the computing resources on which
we tested our algorithms. Special thanks goes to Marco Righi for his help and
assistance with the machines at SILab and to Alberto Perelli for his suggestions on
the use of the circle method and for providing us some very helpful references.

References

1. P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution

of prime numbers, Math. Comp. 16 (1962), 363–367.
2. , Primes Represented by Irreducible Polynomials in One Variable, Proc. Symp, in

Pure Math. VIII (1965), 119–132.
3. E. Bombieri, Private communication, 1977.

4. Tony F. Chan, Gene H. Golub, and Randall J. LeVeque, Algorithms for computing the

sample variance: analysis and recommendations, Amer. Statist. 37 (1983), no. 3, 242–247.
MR 713834

5. Yong-Gao Chen and Xue-Gong Sun, On Romanoff’s constant, J. Number Theory 106 (2004),

no. 2, 275–284. MR 2059075
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