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Abstract: Acoustic signals are important markers to monitor physiological and pathological condi-
tions, e.g., heart and respiratory sounds. The employment of traditional devices, such as stethoscopes,
has been progressively superseded by new miniaturized devices, usually identified as microelec-
tromechanical systems (MEMS). These tools are able to better detect the vibrational content of acoustic
signals in order to provide a more reliable description of their features (e.g., amplitude, frequency
bandwidth). Starting from the description of the structure and working principles of MEMS, we
provide a review of their emerging applications in the healthcare field, discussing the advantages
and limitations of each framework. Finally, we deliver a discussion on the lessons learned from the
literature, and the open questions and challenges in the field that the scientific community must
address in the near future.
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1. Introduction

Vibrations are oscillatory movements close to an equilibrium state that occur in any
physical body possessing a mass. Depending on the specific case, such displacements can
have a periodic or random nature. Acoustic waves are an example of vibrations that occur
through the alternated compression and decompression of a mean (e.g., air, water). They
can be perceived as sounds by the hearing apparatus or transient movements of physical
bodies (e.g., earthquakes—ground motion) [1].

Acoustic signals in healthcare can be classified into two main groups: external in-
puts used by auditory apparatus to perceive the surrounding environment, and acoustic
manifestations of structural displacements occurring in the body (e.g., heartbeat).

The first class is conveyed to the brain via two mechanisms: bone conduction and
air–bone conduction. In the first case, acoustic pressure waves are transferred to the cochlea
in the inner ear, and then to the brain, by exploiting the passive conduction given by the
bone structure of the skull [2]. In the second case, sounds are collected by the pinna and
then transferred to the cochlea passing through the middle ear, composed of the eardrum
and the ossicular chain, that filters and transmits acoustic inputs through the synergistic
combination of geometries and materials properties of the components [3]. Both these
mechanisms, due to pathologies and malfunctions of the native tissues, can be altered,
directly affecting the hearing sense [4].

The second class includes, for instance, signals from the cardio-respiratory apparatus,
and are usually detected by a stethoscope, a tool that amplifies body sounds through its
bell-like shape in contact with the soft tissues closer to the body part being monitored.
Although stethoscopes have been widely used by physicians and healthcare operators,
their employment presents a few relevant limitations. First, a stethoscope is a piece of
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equipment that is not wearable but has to be held in close contact with the skin and requires
the presence of a trained operator to assess the magnitude and features of the acoustic
signal. This also implies a non-neglectable subjectivity in the evaluation of the detected
signals that, therefore, does not possess a quantitative nature. Moreover, stethoscopes
can be efficiently used for an occasional auscultation but they cannot be employed for
continuous and long-term monitoring activities that, in contrast, are required for specific
needs (e.g., assessing lung activity during sleep) [5,6].

In order to overcome these issues, microelectromechanical systems (MEMS) have been
successfully employed as an alternative to gold standards, to detect and finely measure
body vibrations through benchmarks of their dynamics (e.g., displacements, accelerations),
or indirectly using other signals (e.g., force). These tools can be properly miniaturized, worn,
and customized for each specific application and also for long-term and continuous moni-
toring activities, eventually serving as point-of-care tools for at-home self-assessments [7].

This review reports the main prototypes and commercial MEMS products for detecting
and processing acoustic vibrations in healthcare applications. First, we provide a classifica-
tion of MEMS based on their working principles and their general employment as reported
in the literature. Then, we cover the most studied applications in healthcare where MEMS
are used to perceive acoustic signals from environmental or body sources, organizing the
dissertation based on the specific targeted organ/physiological phenomenon (Figure 1).
A final section is then provided to summarize the take-away messages from the literature
and discuss the open challenges to be addressed in the near future.
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2. MEMS: Classification and Employment

Microelectromechanical systems (MEMS) are mechanical and electro–mechanical
elements developed through microfabrication techniques that are usually made of three-
dimensional silicon microstructures, ranging between 1 and 100 µm in size. To fabricate
such devices, a number of different approaches have been pursued, e.g., film deposition,
isotropic and anisotropic etching, and masking and doping techniques [7–9].

MEMS are able to convert different types of environmental signals into detectable
electrical signals. Specifically, it is possible to highlight six main fields: electrical (e.g.,
resistance, capacitance, inductance), chemical (e.g., composition, reaction rate, concentra-
tion, and pH), mechanical (e.g., displacement, velocity, acceleration, acoustic wavelength,
and acoustic intensity), thermal (e.g., temperature, heat), radiative (e.g., intensity, phase,
polarization, wavelength), and magnetic (e.g., field intensity, permeability) [10].
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MEMS sensors rely on transducers, devices that convert a signal in one form of
energy to a signal in another for purposes of measurement or control. Although the
word “transducer” has historically been used to refer exclusively to devices that convert
mechanical stresses, such as force or pressure into an electrical signal, the current definition
has been extended to include all forms of input stimuli (mechanical, electrical, fluidic, or
thermal) and output signals other than electrical [11]. The classification of the main types
of MEMS sensors, which have been developedis shown in Figure 2.
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Inertial sensors are commonly used to estimate body attitudes by measuring linear
accelerations and angular rates along the three orthogonal axes; acoustic sensors are used
to acquire sounds propagating across different mediums such as air, water, or solids; optical
sensors can detect light perturbations in both the visible and invisible spectrum (e.g.,
IR, UV); radiofrequency sensors are used to acquire electromagnetic signals or perform
signal power monitoring; microfluidic sensors are used to handle or process fluids at the
microscale level; force sensors are used to detect mechanical pressures; thermopile sensors
are used to measure heat fluxes and temperatures with or without contact with the surfaces;
chemical sensors are used to detect chemical properties, e.g., gases concentration, pH levels
and osmotic pressures.

Thanks to their miniaturization and excellent mechanical and electrical properties,
MEMS usually exhibit low power consumption, high sensitivity, light weight, high res-
olution, stable performance, and ease of integration with other devices and systems. A
wide range of MEMS sensors, such as microphones, accelerometers, gyroscopes, pressure,
gas, thermal, flow, and biosensors, have been developed and are currently available on
the market. Their usage has grown steadily in commercial application, and are currently
extensively employed in almost all production fields [12]:

• Automotive, e.g., collision and rollover sensing devices for airbags deployment; fuel
level and vapor pressure detection; tire pressure; active suspension and braking
monitoring; navigation systems;

• Healthcare, e.g., blood pressure, breathing, glucose and heartbeat sensing; auditory as-
sessment; prosthetics; sleep monitoring; muscle stimulation; drug delivery
systems; pacemakers;

• Industrial automation, e.g., machine health monitoring; predictive maintenance; au-
tomatic safety mechanisms activation; surveillance of production processes; goods
tracking and logistics;

• Consumer electronics, e.g., temperature and vibration monitoring for PC, hard disks,
printers, home appliances; gesture recognition for gaming controllers and smart-
phones; sports training devices;

• Environmental and agriculture, e.g., environmental sensing and weather forecasting, soil
fertilization and irrigation planning; crop health monitoring; automated farming;

• Telecommunications, e.g., network devices monitoring; fault detection and localization;
electrical and optical signal processing;

• Aerospace and defense, e.g., surveillance; satellite monitoring; UAV and remote system
operations; weapons guidance; spacecraft and aircraft navigation.

Independent of the physical phenomena they are designed to acquire, MEMS sensors
can be built by exploiting distinct working principles. The main working principles can be
classified into eight categories (Figure 3).
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Inertial accelerometers, for example, can be manufactured to rely on the piezoelectric,
piezoresistive, capacitive or optical effect. Piezoelectric-based sensors exploit the capability
of a particular material (usually a metal or a semiconductor) to produce an electrical voltage
in response to applied mechanical stress (and vice versa) [13]. Electrothermal sensors are
based on materials that generate a voltage difference when exposed to a temperature
difference [14]. Resonant sensors are small electromechanical structures that vibrate at high
frequencies and typically produce, as the output, a frequency shift induced by the external
stimulus altering the mechanical properties of the resonator (e.g., the mass or stiffness) [15].
Electrochemical sensors generate electrical signals in response to chemical reactions [16].
Tunnelling sensors are based on the electron tunnelling gap transducers, which measure
a displacement by the change in tunnel current between two electrodes [17]. Capacitive
sensors rely on the variation of the electric capacitance of one or more pairs of plates when
the distance between them changes due to external stimuli. In contrast, optical sensors are
based on manipulating light signals through a mean, e.g., micro mirrors or switches [7]. A
different approach involves the so-called “localized surface plasmon resonance” (LSPR), a
term that is used to describe the electron density wave that travels over the metal surface.
Plasmonic biosensors are a class of devices that use sensitive noble metal nanoparticles
(NPs) integrated into a biosensing assembly for applications in environmental pollution
analysis, illness diagnosis, and human health monitoring (viral detection) [18–21].

In healthcare, microphones and accelerometers have been the most commonly em-
ployed sensors for acquiring acoustic and vibration signals.

Microphones are acoustic sensors operating in the human audio frequency range
(20–20,000 Hz) that are conventionally made of a flexible membrane and a back-plate where
a bias voltage is applied. As the sound wave hits the membrane, it induces its oscillation,
causing a proportional variation to the electrical capacitance that the coupled electronics
can subsequently acquire. Since this model has some limits in terms of maximum signal
level and sensitivity to environmental conditions, further sensing mechanisms have been
investigated to improve acoustic sensor performance, which include using a back-plate-
less design to minimize air damping, using piezoelectric sensing components to achieve
low-power directional detection, and optical sensing to deal with extreme environmental
conditions. Microphones based on the piezoelectric effect have been predominantly em-
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ployed due to the simple and robust construction coming from the absence of a backplate,
an improved linearity and very low power consumption that allows constant standby [9].

Accelerometers, in contrast, are inertial sensors that can be modeled as a unit com-
posed of a spring, mass and damper, one for each of the sensing directions. The mass is
suspended by a specifically designed suspension system that is characterized by a given
spring constant. Due to the small size of the micromachined sensing element, an additional
viscous damping factor is introduced to dissipate the energy and prevent the mass-spring
system from experiencing excessive vibrations. Under an acceleration input, the mass
moves relative to a fixed frame structure embedded in the sensor case. Different transduc-
tion methods, such as piezoelectric, piezoresistive or capacitive, can be used to measure the
displacement of the mass and, hence, determine the inertial force [22]. MEMS accelerom-
eters have advantages over traditional high precision electromechanical sensors, such as
small size, extreme ruggedness, low power consumption, and low-cost [23].

Figure 4 shows four typical architectures employed in the design of acoustic and
vibration sensors, based on different working mechanisms [24]: in panel (a), the sensing
element, which can be a piezoresistive or piezoelectric material, is embedded in an oscillat-
ing cantilever holding a suspended mass. The sound waves hitting the structure entail a
bending of the sensing element that, in turn, generates a manageable voltage difference. In
contrast, in panel (b), the sensing element is assembled onto a diaphragm that deforms with
the incoming acoustic waves. The sensing element is made of piezoelectric or piezoresistive
materials, or even optical nanofibers, which exploit the propagation interference effect [25].
A capacitive sensing mechanism can also be used by employing both the suspended mass
design—panel (c)—or the diaphragm design–panel (d). In such cases, two parallel con-
ducting plates are used: one is fixed to the sensor support structure while the other is free
to oscillate. The variable distance among the plates causes a proportional change in their
capacitance that is indirectly measured by either controlling the frequency of an oscillator
or the attenuation of an alternating current signal.
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The architectures based on the suspended mass designs are also commonly used for
manufacturing inertial sensors where the primary structure is replicated for each of the
axes, along with the forces that are measured.
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3. Sensing Devices in Healthcare

Sensing devices in healthcare have had, and will have, a huge impact on the future of
the healthcare cycle. Currently, clinical devices are able to manage and analyze medical
data, environmental conditions, and personal habits from a multitude of (bio)sensors.

In the following subsections, we present the current and most significant applications
of sensing devices for detecting and processing acoustic signals in healthcare.

3.1. Auditory Apparatus

Hearing loss affects more than 5% of the population worldwide [4]. This condition
affects the ability to communicate between individuals, perceive sounds from the surround-
ing environment, as well as enjoy all leisure activities that involve sound perception, which
has been demonstrated to have substantial long impact on the body’s welfare.

Hearing loss can be caused by a malfunction of the middle or the inner ear. In the
first case, the condition is named conductive hearing loss since it affects the functioning
of the eardrum or the ossicular chain while, in contrast, with sensorineural hearing loss,
doctors identify an issue in the cochlea, the part of the inner ear where sound amplification
takes place, and pressure waves are converted into electric signals to be transferred to the
brain [26].

Conductive hearing loss is usually recovered by intervening with the damaged
structure by applying a biological or synthetic tissue replacement to patch/replace the
eardrum [27,28] or by using a prosthesis to recover material continuity between the tym-
panic membrane and the cochlea in place of the damaged ossicles [29,30].

A different situation applies for the sensorineural hearing loss that affects hair cells’
motility in the cochlea, so that they are not able to perform their tasks. In this case, hearing
aids for mild/moderate conditions consist of a microphone and a processor that amplifies
sounds, delivered directly into the ear canal. However, the amplification is not frequency-
sensitive and only 30% of the elderly could benefit from such devices [31].

In the case of relevant conditions, cochlear implants (CIs) are employed to directly
stimulate the auditory nerve, based on the amplitudes and frequencies of the external
sound, through an array of implanted electrodes, without relying on the hair cells [4,32].
This complex assembly presents external components (microphone and signal processor)
connected with the implanted part through a magnetic inductive link. The implanted
device is selectively activated by a signal processor that elaborates the sounds perceived by
an external microphone [33]. CIs are largely employed, and more than 180,000 people, both
children and adults, have benefited from such devices [31].

However, traditional CIs suffer several limitations in terms of day-to-day practicalities
(e.g., an external appearance that may induce a social stigma or the impossibility of being
treated with a magnetic resonance), and reliability in the long-term [34,35].

Scientists in academia and industry have been developing solutions to improve the
design of hearing devices in terms of efficacy and implantability in the body. Specifically,
most components, from the battery to the speech processor, can be successfully implanted
under the skin close to the pinna. The main issue, for almost total implantability, concerns
the tool to detect acoustic signals (e.g., the microphone) [36].

Figure 5 reports a classification of the acoustic sensors for hearing devices able to
perceive external acoustic pressures.

The first class is of subcutaneous capacitive sensors that transform the deformation
of a membrane into an electric signal. Such devices are usually placed above the pinna
to achieve the best directional sensitivity. The first commercial device was presented in
2001, a titanium-based microphone called TICA with dimensions in the order of 4 mm
and a weight of 0.4 g, covering a bandwidth up to 10 kHz. Although it was implanted
in 20 patients, there are no recent studies on it [37]. A different approach was pursued
with TIKI, a tool with two microphones, one external and one subcutaneous, which work
in parallel through a microprocessor. In particular, the implanted microphone covers a
volume of 7.5 × 28 × 28 mm under the skin, achieving the upper frequency of 6 kHz [38].
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Carina™ (Cochlear Ltd., Sydney, Australia) consists of an assembly with a subcuta-
neous condenser microphone with noise filtering, implanted surgically on the skull behind
the subject’s ear. Although its behaviour has been optimized to detect airbone sounds up
to 5 kHz and was implanted in 110 patients, successful integration in a totally implanted
cochlear implant has not been achieved yet [39–41].

Finally, Jung et al. designed a titanium membrane (diameter = 12 mm) with an acoustic
titanium tube to increase the first natural frequency. Tests were only conducted in the
laboratory using a skin-like membrane made of silicon up to a frequency of 8 kHz [42].

Concerning electromagnetic sensors, Maniglia et al. published an implantable 29 mg
displacement sensor comprised of a neodymium-iron-boron magnet encapsulated in a
titanium case that was fixed to the malleus. The motion of the malleus allowed the magnet,
interacting with a coil fixed on the temporal bone, detect a frequency of up to 3 kHz,
creating an electric signal. No clinical tests were reported in literature [43].

An optical sensor based on the reflection of a laser beam on the vibrating tympanic
membrane was proposed by Vujanic et al. in 2002. However, it was only a laboratory
prototype, and has not been further developed [44].

Piezoresistive MEMS sensors exploiting the acceleration of the incus were developed
by Park et al. in 2007. They exploited the low output impedance to enable remote amplifica-
tion. The prototype covered a volume of 387 × 800 × 230 µm3 with a total mass of 166 µm,
and consisted of a mass suspended by a flexible beam covered with piezoresistors. Tests
were only conducted in laboratory using temporal bones and a laser Doppler vibrometer
(LDV) with frequencies up to 7 kHz [45].

Capacitive transduction has also been used for implantable devices [46,47]. A MEMS
displacement sensor was developed by Huang et al. in 2007: it consisted of a coiled spring
(mass = 15 mg, stiffness = 10 N/m) that transfered the displacement of the umbo to the
condenser fixed to the bone walls in a bandwidth up to 5 kHz. The prototype was tested on
only one human temporal bone with an LDV [48]. Ko et al., in 2009, improved the previous
design, fixing the assembly not on the temporal bone, but directly onto the umbo through
springs. The total mass resulted in 25 mg and it was tested in human temporal bones
with frequencies up to 8 kHz [49]. Using a capacitance, but exploiting the accelerations
instead of the displacements, Zurcher et al. designed a mass plate (14 mg—1 × 1 mm2) that
moved between fixed walls to generate a voltage. The total weight was 25 mg with a size
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of 2.5 × 6.2 × 1 mm3 and it was fixed on the umbo, catching inputs up to 6 kHz [50]. In
2012, Young et al. investigated the response of a MEMS accelerometer under a vacuum,
giving new insights on reduced packaging needs [51]. In contrast, Sachse et al., developed
a lumped parameter model of a MEMS capacitive acceleration-based sensor to optimize its
features in terms of mechanical and electrical noise, as well as its resonance frequency. A
prototype was later fabricated and tested in human temporal bones in a bandwith up to
6 kHz [52].

A different approach was proposed by Woo et al., who aimed to measure pressure
variation inside the middle ear cavity due to the vibration of the eardrum. A membrane
whose diameter was 10 mm and thickness equal to 20 µm, made of stainless steel, was used
as a implanted acoustic sensor in the middle ear cavity [53].

Another exploited physical phenomenon is the piezoelectric effect. Javel et al. pub-
lished a work in which the acoustic sensor consisted of a piezoelectric bimorph material
in the shape of a cantilever beam positioned on the malleus of adult cats. An acousto–
mechanical assessment was carried out by measuring the vibration up to 10 kHz a LDV [54].

Esteem® (Envoy Medical Corporation, White Bear Lake, MN, USA), in contrast, is a
commercial device that exploits a piezoelectric acoustic sensor to detect the vibration of the
middle ear ossicles up to 10 kHz, but requires complex surgery and presents high surgical
complication rates [55–57].

A different concept was published by Koch et al. who developed a bidirectional
membrane transducer fixed at the incudostapedial joint to measure the force passing
through the joint. It was made of titanium with a volume of 4 × 2.5 × 1 mm3 and a
mass equal to 35 mg. Tests were carried out in silico and on a test bench with a reduced
bandwidth (0.4–4 kHz) [58,59] (Figure 6).
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Kang et al. designed a biocompatible piezoelectric accelerometer using a ceramic
bimorph element and an electronic chip enclosed in a titanium case with a total volume
of 4.5 × 1 × 0.3 mm3 and a mass equal to 38.4 mg. Tests were performed by gluing the
device on the incus of a cat and measuring the acoustic stimuli [60]. The same design was
tested by Gao et al. with a finite element model that included a human middle ear [61]. Jia
et al., in contrast, placed their piezolectric accelerometer on the long process of the incus,
achieving an increased volume of up to 5.91 × 2.4 × 2.0 mm3 and a higher mass equal to
67 mg. Tests were carried out on seven temporal bones with frequencies up to 10 kHz [62].

Beker et al. changed the goal of using piezoelectric MEMS accelerometers, to using
them as CI sensors. They showed a finite element model of the device to harvest energy
from the umbo movement, that was later validated in the laboratory using a prototype
made of silicone and lead zirconate titanate (PZT) (volume of 4.25 × 4 × 0.525 mm3) in a
frequency range of 0.5–2.5 kHz [63]. With the same objective, Yip et al. used a piezoelectric
MEMS accelerometer made of PZT and validated it with a dedicated amplification circuit
on human temporal bones. It was also optimized to reduce the power consumption of the
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connected cochlear implants in a frequency bandwidth of 0.3-6 kHz. No further technical
details were delivered by the authors [64].

More recently, Yüksel et al. presented a similar device that worked in a bandwidth
between 0.2 and 5.5 kHz, with dimensions of 5 × 5 × 0.62 mm3 (Figure 7). Tests were only
carried out on a testbench in the laboratory [65].
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A summary of the acoustic sensors for hearing aids, along with the main physical
and technical features, is reported in Table 1. As shown, there is a huge variety of sensing
devices for the auditory system to best suit the specific condition to treat and, most im-
portantly, because of the different working principles adopted to address the engineering
challenge. Therefore, it is difficult to deliver a global analysis in terms on advantages and
disadvantages for the different classes. However, it is possible to state that, overall, all the
devices aimed to fit the speaking frequency bandwith (1–4 kHz), leaving the highest part
of the hearing range (up to 20 kHz) uncovered.

3.2. Cardiovascular Apparatus

Bloodstreams make sounds in the frequency range of 20–1000 Hz while flowing
through the heart and procuring mechanical displacements [66,67]. Heart sounds are of
paramount importance since their features (e.g., intensity, frequency, duration) can be
associated with multiple physiological and pathological information related to the health
of the heart itself [68,69], and, therefore, have been considered to diagnose and monitor
cardiovascular diseases. Human heart sounds are composed of four main components. The
two dominant features are the first heart sound (S1-systolic) and the second heart sound
(S2-diastolic). The first heart sound, S1, which reproduces the closure of the mitral and
the tricuspid valves, is generally distributed in the low-middle frequency range, between
10 Hz to 140 Hz [5]. In contrast, the S2 sound is related to the closure of the aortic and
pulmonary valves [70] in a frequency range between 10 Hz and 400 Hz, with an upper
bound higher than S1 but, in contrast, with a shorter duration [5]. Additional heart sounds
are the third heart sound (S3) and the fourth heart sound (S4) [6] that can be present when
patients show congestive heart failure or adventitious pulmonary sounds [71,72] associated
with deteriorating cardiopulmonary conditions [72–74]. Their frequency distribution is
below 50 Hz, and the vibration amplitude is lower than S1 and S2. Due to the weakness of
S3 and S4 signals, their identification can be effectively assessed by using highly sensitive
accelerometers [71,75–77].
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Table 1. Acoustic sensors for hearing aids.

Device Size Weight Bandwidth Sensitivity Power
Consumption Tests Ref.

TICA:
subcutaneous microphone based on a

capacitive membrane
Diameter: 4.5 mm Mass: 0.4 g 0.1–10 kHz 5 dB ref. 1 mV/Pa 0.05–0.5 mW Implanted in 20 patients [37]

TIKI: two capacitive microphones (one
subcutaneous and one external) Volume: 7.5 × 28 × 28 mm3 - 0.2–6 kHz 10 dB ref. 1 mV/Pa 0.05–0.5 mW Implanted in 3 patients [38]

Carina™: subcutaneous microphone with
condenser microphone - - 0.25–5 kHz - 0.05–0.5 mW Implanted in 110 patients, but a

full integration was not achieved [40]

Subcutaneous microphone with a
titanium membrane Diameter: 12 mm - 0.1–8 kHz 35 dB ref. 1 mV/Pa 0.05–0.5 mW Tested in the laboratory with a

silicone-made skin [42]

Electromagnetic sensor: interaction between a
magnet fixed on the malleus and a fixed coil - - 0.25–3 kHz 30 dB ref. 1 mV/Pa ≈1 mW Tested in the laboratory [43]

Optical sensor based on the reflection of a laser
beam on the tympanic membrane (or one of

the ossicles)
- - 0.5–10 kHz 46 dB ref. 1 mV/Pa 6.4 mW Tested in the laboratory [44]

Piezoresistive MEMS that measured the
acceleration of the incus Volume: 387 × 800 × 230 µm3 - 0.9–7 kHz 46 dB ref. 1 mV/Pa >1 mW Tested in the laboratory with

temporal bones and the LDV [45]

Capacitive MEMS displacement sensor based
on a coiled spring that transferred the

displacement of the umbo to the condenser
- - 0.5–5 kHz 20 dB ref. 1 mV/Pa ≈4.5 mW Tested on one temporal bone and

the LDV [48]

Capacitive MEMS displacement sensor fixed
on the umbo through springs - 25 mg 0.8–8 kHz 20 dB ref. 1 mV/Pa ≈4.5 mW Tested on temporal bones [49]

Capacitive MEMS acceleration sensor: a plate
moved between fixed walls to generate

capacitance-related voltage
Volume: 2.5 × 6.2 × 1 mm3 25 mg 0.2–6 kHz 19 dB ref. 1 mV/Pa ≈4.5 mW Tested in the laboratory [50]

Capacitive MEMS acceleration sensor - - 0.5–6 kHz 9 dB ref. 1 mV/Pa -
Optimization through modeling;

tested in the laboratory with
human temporal bones

[52]

Capacitive MEMS that measured the middle
ear pressure variation due to the motion of

the eardrum

Diameter: 10 mm;
thickness: 20 µm - 0.1–10 kHz 28 dB ref. 1 mV/Pa ≈1 mW Tested in the laboratory [53]

Piezoelectric bimorph material in the shape of
a cantilever beam positioned on the malleus of

adult cats
- - 0.5–10 kHz 45 dB ref. 1 mV/Pa -

An acousto–mechanical
assessment was carried out by
measuring the vibration of the

sensor with an LDV

[54]
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Table 1. Cont.

Device Size Weight Bandwidth Sensitivity Power
Consumption Tests Ref.

Esteem®: a piezoelectric acoustic sensor to
detect the vibration of the middle ear ossicles

- - 0.25–8 kHz - - Tested on 134 patients [55–57]

Piezoelectric force sensor: a bidirectional
membrane transducer fixed at the

incudostapedial joint to measure the force
passing through the joint

Volume: 4 × 2.5 × 1 mm3 35 mg 0.25–8 kHz - - Tests in silico and on a test bench [58,59]

Piezoelectric accelerometer sensor: made of a
ceramic bimorph element and an electronic

chip enclosed in a titanium case
Volume: 4.5 × 1 × 0.3 mm3 38.4 mg 0.4–4 kHz 15 dB ref. 1 mV/Pa -

Tests in the laboratory on the incus
of cats and with a finite element
model that included the human

middle ear

[60,61]

Piezoelectric accelerometer sensor: placed on
the long process of the incus Volume: 67 mg 0.4–4 kHz 15 dB ref. 1 mV/Pa ≈1 mW Tested on seven temporal bones [62]

Piezoelectric accelerometer sensor: to harvest
energy from the umbo movement for powering

cochlear implants
- - 0.5–2.5 kHz 62 dB ref. 1 mV/Pa - Finite element model and tested in

the laboratory [63]

Piezoelectric (PZT) accelerometer sensor: for
powering cochlear implants - - 0.3–6 kHz 20 dB ref. 1 mV/Pa 0.01 mW Tested on temporal bones to

minimize energy consumption [64]

Piezoelectric (PZT) accelerometer sensor: for
powering cochlear implants Volume: 5 × 5 × 0.62 mm3 4.8 mg 0.25–5.5 kHz 26 dB ref. 1 mV/Pa - Tested in the laboratory [65]
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Stethoscopes and electrocardiographs (ECGs) have been the most popular tools used
to monitor and diagnose heart diseases. However, the main limitation of traditional
stethoscopes is related to the high dependency on the clinical experience of doctors, and
the limited applicability to long-term medical assessments [5,6]. In contrast, ECGs have
been considered more accurate, but there are specific heart diseases that are difficult to
diagnose [6].

A method to identify the S1 sound was proposed by Pharm et al. that employed a
miniature, battery-operated wearable device as shown in Figure 8. A dedicated algorithm
analyzed the power spectral of the acoustic pulse signal to detect the S1 sounds and to
remove the artifacts for an accurate heartbeat detection. The results showed a higher
accuracy, of up to 98.7%, with an error lower than 0.28 bpm, with respect to a commercial
photoplethysmography (PPG) device [78].
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In contrast, Sharma et al. developed a wearable device placed on the suprasternal
notch at neck. This new device is easier to manage compared with the traditional multiple
electrodes attached on the chest, in which the monitored heart sounds are usually corrupted
by other external artifacts and from the respiratory cycles [79].

The proposed algorithm was designed to accurately determine the heart rate, avoiding
the external noise. Specifically, the heart sound was extracted from the acoustic recording
and the cardiac cycle was segmented and classified into S1 and S2 sounds, achieving results
with an accuracy of up to 94.34% [80].

In contrast, Chan et al. presented a cuff-less, low cost and ultra-convenient blood
pressure monitoring device endowed with a 3-axis accelerometer, positioned on the upper
chest. This device was used for the estimation of the systolic and diastolic pressures and
was able to monitor the blood pressure at 1 Hz, as long as the accelerations data of the
patient was collected and available [81].

A new solution that did not require a direct contact with the patient to control the
heartbeat and the heart rate was proposed by Quian et al. The authors employed a
microphone and a speaker on a device, e.g., smartphones or laptops. It was possible to
generate an acoustic cardiogram (ACG) from inaudible acoustic signals, as schematically
depicted in Figure 9. By analyzing the ACG signals obtained from the human body, it was
possible to discriminate the heart rate and the heartbeat by employing frequency-modulated
sound signals able to discriminate the heart signal from external noise. Moreover, using the
double microphone endowed on a mobile device, it was possible to convert the acoustic
data into heart and breath rates. Results showed a median heart rate error of 0.6 bpm, and
median heartbeat interval error of 19 ms [82].

The use of a MEMS heart sound sensor was investigated by Cut et al., whose novelty
consisted of a bionic MEMS based on the pick-up mechanism of the three-dimensional
ciliary bundle structure of human ear hair cells. The acoustic sound was analyzed and
optimized using analytical and simulation methods, and eventually, experimentally tested.
The sensor possessed a small size, and showed very good results such as a high sensitivity
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to monitor heart sounds (−189.5 dB @ 500 Hz), a good working bandwidth of 10–800 Hz,
and low interference with environmental noises [83].
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Qu et al., in contrast, developed a device made of a piezoelectric MEMS acoustic
sensor with a low-noise amplification circuit integrated into silicone membranes with an
air cavity. This light-weight device resulted to be skin compatible, low-cost, and unaffected
by external environmental sounds [77].

Numerous cardiovascular diseases are related to abnormal blood pressure values: in
particular, about 54% of strokes and 47% of coronary heart diseases are connected to blood
pressure, which has become a crucial indicator of a person’s health status [84].

Interestingly, some studies have suggested a correlation between the S2 and the aortic
blood pressure [85–88]. MEMS accelerometers have been used to measure systolic blood
pressure [81,89,90], and this approach has represented a good, non-invasive option to mon-
itor patients and predict cardiovascular diseases (e.g., the hypertension disease) [91,92].
Generally speaking, non-invasive diagnoses have relied on the monitoring of the electrical
activity or cardiac pump activity, exploiting the dynamic electrocardiogram, phonocardio-
gram, echocardiogram, or contemporary medical imaging techniques such as NMR, CT,
and PET [93].

Among the others, atherosclerosis is a coronary arteries disease that causes the dis-
ruption of normal laminar flow of blood and generates stream turbulences. This condition
occurs when the walls of the coronary arteries become thicker due to deposited plaques
(based on fat, cholesterol, fibers, calcium, and other substances from blood) in the arteries.
The accumulation of this plaque restricts the arteria, reducing the normal blood flow, and,
consequently, reduces the heart of oxygen. The result is a narrowed lumen in which the
blood flow creates a characteristic turbulent sound that can be detected with external tools
to avoid hearth attack and failure or arrhythmias [94]. A recent study by Whinter et al.
presented an investigation on a large group of patients with low and middle likelihood of
coronary artery disease (CAD). The portable acoustic device developed for the detection of
CADs was mounted at the fourth intercostal space. The heart sound was analyzed using
a dedicated CAD score algorithm that included both acoustic features and clinical risk
factors. With a negative predicted value of 96%, this acoustic system could potentially sup-
port a clinical assessment, reducing the demand for more advanced and costly diagnostic
tools [95]. Table 2 summarizes all the wearable devices developed to monitor heartbeat and
blood flow with high accuracy and low cost. Most importantly, they are unsusceptible to
external environmental sounds, compared with traditional devices.
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Table 2. Devices to detect heart-related acoustic signals.

Device Mechanism Application Results Ref.

New miniature,
battery-operated
wearable device

Wearable device to monitor
the heart rate at the wrist

An algorithm analyzed the
acoustic pulse signal to

detect S1 sounds

Removed the artifacts for an
accurate heartbeat detection,

with an accuracy of 98.7%
and an error lower than

0.28 bpm, compared with a
commercial

photoplethysmography
(ppg) device

[78]

Wearable device
Wearable device placed on

the suprasternal notch
at neck

The algorithm determined
the heart rate, avoiding the

external noise

The results showed an
accuracy of 94.34% for the
heart rate determination

[80]

Portable acoustic
device

The device was mounted at
the fourth intercostal space

Dedicated CAD score
algorithm that included both
acoustic features and clinical

risk factors

A negative predicted value
of 96%, this device could

reduce the demand for more
advanced and costly

diagnostic tools

[95]

Device for blood
pressure monitoring

The device was endowed
with a 3-axis accelerometer,

positioned on the
upper chest

Estimated the systolic and
diastolic pressures and

monitored the
blood pressure

Low cost and cuff-less, able
to monitor the blood

pressure at 1 Hz
[81]

Non-contact device to
control the heartbeat

and the heart rate

A microphone and a
speaker on a device, e.g.,
smartphones or laptops

ACG discriminated the heart
rate and the heartbeat by

using frequency-modulated
sound signals to identify the

heart signal from the
external noise

Results showed a median
heart rate error of 0.6 bpm,

and median heartbeat
interval error of 19 ms

[82]

Bionic MEMS

Device based on the
pick-up mechanism of the
three-dimensional ciliary

bundle structure of human
ear hair cells

The acoustic sound was
analyzed using analytical

and simulation methods, and
experimental test

Small size, high sensitivity to
monitor the heart

sounds—189.5 db @ 500 Hz,
a bandwidth 10–800 Hz, and

low interference with
environmental noises

[83]

Heart sound sensor
attached on the chest

Piezoelectric MEMS
acoustic sensor: a low

noise amplification circuit,
and silicone polymers

The device recorded different
heart sounds while at rest

and after training activities

Low cost, light-weight, skin
compatible device,

unsusceptible to external
environmental sounds;

good stability

[77]

3.3. Fetus

Accelerometers can be used to monitor fetal heart beats/sounds and movements,
picking the signal from the fetus. Acoustic signals from the fetus are sometimes too weak to
be detected in the early gestation stage, in particular, before the 30th week of gestation [96].
Fetal body movements are strictly connected with fetal health [97–99], and its reduction
is frequently a warning of health complications, for example, fetal distress, fetal growth
restriction, or hypoxia. Monitoring the fetal phonocardiography is also very important
in diagnosing congenital heart disease [96,100]. Currently, the standard methods of fetal
monitoring (FM) are limited to their use in clinical environments.

It has been estimated that early neonatal deaths and fresh stillbirths due to birth
asphyxia are, respectively, 1 and 1.3 million every year. Urdal et al. studied a multi-crystal
strap-on low-cost Doppler device, including an accelerometer, to monitor the fetal heart
rate (FHR) during labor using the signals detected by the accelerometer to estimate uterine
contractions [101].

Ghosh et al. evaluated the performance of an acoustic sensor-based, cheap, wear-
able FM monitor that pregnant women could use at home. A thresholding-based signal
processing algorithm based on the fusion of the sensors’ outputs to automatically detect
FM was developed to analyze the data. The new signal processing algorithm proposed
to combine data from all the sensors and to remove artefacts due to maternal movements.
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The achieved results showed a sensitivity, specificity, and accuracy of 83.3%, 87.8%, and
87.1%, respectively, relative to the maternal sensation of FM [99].

In a later study, Ghosh et al. compared an acoustic sensor, an accelerometer, and a
piezoelectric diaphragm as potential candidates for a wearable FM monitoring system.
The acoustic sensor and the piezoelectric diaphragm better determined the durations,
intensities, and locations of kicks, than the accelerometer. Moreover, they demonstrated
that the acoustic sensor and the piezoelectric diaphragm were able to detect weaker fetal
movements, compared with the accelerometer [102].

Zakaria et al. developed a system with six accelerometers and an Arduino microcon-
troller interfaced with a Matlab-based post-processing software to detect fetal movements
(Figure 10). The sensors were placed on the maternal abdomen and recorded signals from
the fetus, achieving an accuracy of 85.57%, very close to the ultrasound technique, which
has an accuracy of about 97%, while the maternal perception is 59.8% [103].
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Altini et al. proposed a new wearable device placed on the abdomen to better de-
tect fetal kicks. They proposed a system that combined data from accelerometers and
electromyography (EMG). The system drastically reduced the false-positive kick detec-
tion [104].

Zhao et al. developed the concept of e-health home-care for fetal signal perception,
applying the Internet of Things (IoT) to the system, to connect all the terminal monitoring
units to a control center. The wearable system provided four accelerometers for fetal signal
acquisition. The signal was processed using a microcontroller via Bluetooth combined
with an Android based device, that provided statistics and information on the fetal health
status [105]. A schematic of the system is depicted in Figure 11.
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Yusenas et al. studied the use of accelerometers and MEMS microphones to develop
a device for counting fetal movements to sense various types of fetal movement [106].
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In their study, acceleration sensors and MEMS microphones were used to detect three
actions performed on the subject’s abdomen: flicking, tapping, and knocking of the fetus.
The acceleration sensors showed an accuracy of 69.96% for the tapping action, while the
accuracy of the MEMS microphones was 71.11% for the flicking action; however, the
accuracy of MEMS microphones was very low for the knocking action (31.11%). The
combination of these two devices is a promising tool for monitoring fetal movements.

A good way to prevent fresh stillbirths and early neonatal deaths due to birth as-
phyxia is by monitoring the regular assessment of the fetal heart rate (FHR) in relation to
uterine contractions. Urdal et al. studied a method that reduced the noise increasing the
interpretability of FHR Doppler signals, and a method that used accelerometer signals to
estimate uterine contractions. The noise in the FHR signal was removed using only the
sampled heart rate. Using a three-axis accelerometer set near the Doppler sensor, it was
possible to evaluate the contraction when the maternal movement was little [101].

Table 3 lists the novel aspects of fetal monitoring devices that have been proposed to
date. These new technologies are able to monitor pregnant women at home without the
presence of a doctor and, in particular, show a high accuracy in isolating the mother move-
ments from that of the fetus in addition to when the mother is not in a resting condition.

Table 3. Devices to detect fetal acoustic signals.

Device Mechanism Application Result Ref.

A cheap acoustic
sensor-based device used by

pregnant women at home

Wearable acoustic sensor
monitor

Analysis of fetal
movements

Developed a
thresholding-based signal
processing algorithm to
detect fetal sounds by

removing artefacts due to
maternal movements

[99]

A comparative study of an
acoustic sensor,

accelerometer, and
piezoelectric diaphragm as
candidate vibration sensors
for a wearable FM monitor

A silicon-based membrane
similar to the abdomen to

mimic the vibrations due to
fetal kicks

Captured fetal sounds
produced by the kicks

Better determined the
durations, intensities, and

locations of fetal
kick movements

[102]

Six accelerometer sensors
and ARDUINO
microcontroller

MATLAB signal process tool
to record, display and store

relevant fetal movement

The sensors were
placed on the maternal
abdomen to record and

process the signals
from the fetal

Performed better in
identifying episodes of fetal

activity and episodes
of inactivity

[103]

IoT-based wearable system
for fetal movement
monitoring using

accelerometers and
machine learning

Internet of Things (IoT)
applied on the system to

connect all terminal
monitoring units to a control
center; the system consisted

of two parts: the local
monitoring unit and the

remote health
evaluation unit

Local monitoring unit

E- health home care, Internet
of Things (IoT) was applied
on the system to connect all

the terminal monitoring
units to a control center

[105]

Acceleration sensors and
MEMS microphones

The devices were used to
detect three actions

performed on the subject’s
abdomen: flicking, tapping,

and knocking

The noise was removed
using the sampled

heart rate; the
three-axes

accelerometer set near
the Doppler sensor,

evaluated the
contraction

The accuracy of using
acceleration sensors was

69.96% for the tapping action;
while for MEMS

microphones was 71.11% for
the flicking action

[106]

A multi-crystal strap-on
low-cost Doppler device,

including an accelerometer

Developed methods to
increase FHR Doppler

signals by reducing noise
and estimating uterine

contractions using
accelerometers

-

Noise present in the FHR
signal was reduced, for good

detection of contractions
when the maternal
movement was low

[101]
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Table 3. Cont.

Device Mechanism Application Result Ref.

Wearable system
Combination of

accelerometers and
bespoke acoustic

Local monitoring unit
on the

maternal abdomen

Successfully discriminated
fetal and maternal

movements, and also
movements when the mother

was active

[107]

Single wearable system
Variable length

accelerometer, combination
data with electromyography

Single wearable device
placed on the abdomen

Decreased false-positive kick
detection, and separation
from the maternal noise

[106]

3.4. Respiratory System

Respiratory sounds provide vital information about patients’ health and disease, such
as chronic obstructive pulmonary disease (COPD), chronic bronchitis, bronchial asthma,
etc. [108].

They are classified as normal or adventitious sounds, whose presence generally indi-
cates a pulmonary disorder [109,110]. The adventitious sounds are of two types: continuous
(wheezes and rhonchi) and discontinuous. Crackles, as well, may be produced either by
pressure equalization or by a change in elastic stress resulting from the sudden opening of
closed airways in the lungs [111].

During the first decades of the 1800s, Rene Theophile Hyacinthe Laennec invented
the stethoscope which, since then, has become the most employed tool of every medical
setting, and is even considered as synonymous with the profession itself [112].

However, as early as 1985, some scientists [113] pointed out the stethoscope’s limita-
tions because of its low diagnostic value ascribable to the attenuation of higher frequencies
which contain valuable diagnostic information regarding respiratory sounds. Indeed, the
stethoscope has a frequency response that attenuates frequency components of the lung
sound signal above about 120 Hz [114], and the human ear is less sensitive to a lower
frequency band. Hence, auscultation through stethoscopes is a subjective process that
depends on the physician’s own hearing perception, and the experience and competencies
of the medical staff, that can lead to a high inter-observer variability.

Respiratory sound analysis (RSA) or respiratory sound monitoring (RSM) seeks to
address the issues of the stethoscope by allowing physicians to record, store and visualize
the sounds produced by the respiratory system, as a digital recording, using specific
analysis equipment.

The application of new technologies, e.g., electronic stethoscopes, wearable accelerom-
eters, MEMS, could represent a new approach to detecting and diagnosing respiratory
disorders [115].

The electronic stethoscope, working as a traditional one, is able to amplify signals to
2000 Hz (respiratory sounds are limited to this frequency) and to record respiratory and
heart sounds, which are converted into electrical signals and saved as digital files, for more
accurate data processing and transmission [116–118].

Moreover, some research groups have used an electronic stethoscope to generate
input data for further analysis or classification, using machine learning algorithms such as
convolutional neural networks (CNN) or support vector machines (SVM), in the diagnosis
of asthma in children [119,120].

Compared with the stethoscope, miniaturized accelerometers can be taped onto the
chest wall, integrated into belts, worn on the skin or mounted into clothing, guaranteeing
continuous and unobtrusive cardio–respiratory monitoring. Therefore, they can be wear-
able sensors, as depicted in Figure 12, for different applications and operative scenarios,
thus, improving users’ life quality and preventing diseases [121,122].
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For instance, asthma is a chronic respiratory disease, whose continuous monitoring
becomes relevant for patients’ breathing without missing any asthma attacks. Yuasa
et al. [123] proposed continuous breathing monitoring in daily life, using a wearable chest-
mounted device, which consisted of a microphone, a photoreceptor and a flexible cover.
They was able to show that chest movement could be used for estimating the breathing
period and for tracking the asthma attacks of the wearer. In particular, the device was
attached to the upper chest with an adhesive gel sheet, while the chest movement signal
was acquired by a photoreactor using the deformation of the flexible cover accompanying
the respiring chest. In addition, the study allowed estimation of the preferred position
for placing the device, because the signal amplitudes at that location were large and less
affected by any shoulder movements. A correlation between sound amplitude and tidal
volume, detected by a MEMS microphone, was observed. Indeed, the breathing phase
identification experiment showed that the periodicity of the chest movements could be
used to estimate the breathing periods and phases, whose frequency strongly depends on
the wearer’s health condition, such as wheezing, which is typical of an asthma attack [123].

The work of Guesneau et al. [124] evaluated the respiratory rate from the signal of
a single-axis accelerometer fixed at the top of the abdomen. The use of a third-order low
pass Butterworth filter, the initial estimation of the respiratory rate, turned out to be a
deeply accurate method to demonstrate the potential of the accelerometer as a low-cost,
non-intrusive method of screening for sleep disorders through respiratory and cardiac
signals detection, extracted with a single and in situ measurement.

In the field of respiratory sleep monitoring, the work of Chunhua et al. [125] appeared
to be innovative due to the proposal of a novel smart flexible sleep monitoring belt with
MEMS triaxial accelerometer, developed to detect vital signs, snore events and sleep stages
with an achievable precision of 97.2%. This RS monitoring device was both feasible and
effective due to its low cost and high performance with detection accuracies of heart rate
and respiration rate of about 1.5 bpm and 0.7 bpm, respectively. Moreover, the sensitivities
awake, REM, light sleep, and deep sleep stages were 90.2, 77.1, 78.1 and 73.5%, respectively,
results that allow the collection of various vital signs during sleep monitoring.

Similarly, a two-stage amplified PZT sensor was investigated by Chen et al. [126]
for monitoring lung and heart sounds in discharged pneumonia patients. In the study,
they used a self-developed sound sensor based on a novel asymmetric gapped cantilever
composed of a piezoelectric beam made of piezoelectric ceramic, to continuously monitor
lung and heart sounds. The idea was to convert the biomechanical energy (such as the
acoustic vibration) to electric energy due to the piezoelectric effect, reaching high sensitivity
at a frequency less than 1000 Hz, suitable for weak lung and heart sound monitoring,
gaining great potential for clinical use and home-use health monitoring.
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The use of piezoelectric devices was also exploited within the investigation of Nguyen
et al. [127], where a MEMS-based microphone and a piezoresistive cantilever were able
to measure a 0.1-mPa acoustic signal with a frequency down to 2 Hz. The obtained
highly sensitive low-frequency device showed a compliance that was 200 times higher
than the conventional piezoresistive cantilever, with an SNR of ~80 dB in the range of 2
to 200 Hz, optimum in different applications, such as healthcare and photoacoustic-based
gas/chemical sensing, etc.

The novel coronavirus disease (COVID-19), which has rapidly swept around the globe,
has created the need for technological solutions for medical-preventive actions, such as the
capability to continuously monitor key physiological parameters of the disease.

In particular, the study of Xiaoyue et al. [128] proposed an automated wireless device,
tailored for COVID-19 patients, able to detect vital signs and respiratory activity, such
as cough, in revealing the early signs of infection and in quantitating the responses to
therapeutics, both in clinical and home settings. The system was characterized by soft,
skin-mounted electronics that incorporated high-bandwidth and a miniaturized motion
sensor, enabling digital and wireless measurements of mechano–acoustic (MA) signatures
of both core vital signs (i.e., heart rate, respiratory rate and temperature) and underexplored
biomarkers (coughing count), as indicators of both disease and infectiousness (Figure 13).

Biosensors 2022, 12, 835 21 of 39 
 

Similarly, a two-stage amplified PZT sensor was investigated by Chen et al. [126] for 
monitoring lung and heart sounds in discharged pneumonia patients. In the study, they 
used a self-developed sound sensor based on a novel asymmetric gapped cantilever com-
posed of a piezoelectric beam made of piezoelectric ceramic, to continuously monitor lung 
and heart sounds. The idea was to convert the biomechanical energy (such as the acoustic 
vibration) to electric energy due to the piezoelectric effect, reaching high sensitivity at a 
frequency less than 1000 Hz, suitable for weak lung and heart sound monitoring, gaining 
great potential for clinical use and home-use health monitoring. 

The use of piezoelectric devices was also exploited within the investigation of Ngu-
yen et al. [127], where a MEMS-based microphone and a piezoresistive cantilever were 
able to measure a 0.1-mPa acoustic signal with a frequency down to 2 Hz. The obtained 
highly sensitive low-frequency device showed a compliance that was 200 times higher 
than the conventional piezoresistive cantilever, with an SNR of ~80 dB in the range of 2 to 
200 Hz, optimum in different applications, such as healthcare and photoacoustic-based 
gas/chemical sensing, etc. 

The novel coronavirus disease (COVID-19), which has rapidly swept around the 
globe, has created the need for technological solutions for medical-preventive actions, 
such as the capability to continuously monitor key physiological parameters of the dis-
ease. 

In particular, the study of Xiaoyue et al. [128] proposed an automated wireless de-
vice, tailored for COVID-19 patients, able to detect vital signs and respiratory activity, 
such as cough, in revealing the early signs of infection and in quantitating the responses 
to therapeutics, both in clinical and home settings. The system was characterized by soft, 
skin-mounted electronics that incorporated high-bandwidth and a miniaturized motion 
sensor, enabling digital and wireless measurements of mechano–acoustic (MA) signatures 
of both core vital signs (i.e., heart rate, respiratory rate and temperature) and underex-
plored biomarkers (coughing count), as indicators of both disease and infectiousness (Fig-
ure 13). 

 
Figure 13. Working principle of the air–silicone composite device as presented in [128]. 

Similarly, Qixin et al. [129] proposed the idea of a triboelectric nanogenerator for res-
piratory sensing (RS-TENG), which was designed and integrated with a facemask that 
endowed respiratory monitoring function due to small volume, easy fabrication, simple 
installation and economical applicability, helpful for developing multifunctional health 
monitoring gadgets during the COVID-19 pandemic. 

Finally, the employment of smartphones for recording respiratory sounds has gained 
relevant interest [130,131]. Indeed, the built-in microphone was found to be a low-cost, 
contact-free, trustable, and straightforward solution for breathing monitoring, even 
though more studies and clinical validation are still required [115]. 

For instance, smartphones could be used for wheeze recognition using an SVM clas-
sifier in pediatric patients [132], or for developing an automatic system to detect crackle 
sounds [133]. 

Figure 13. Working principle of the air–silicone composite device as presented in [128].

Similarly, Qixin et al. [129] proposed the idea of a triboelectric nanogenerator for
respiratory sensing (RS-TENG), which was designed and integrated with a facemask that
endowed respiratory monitoring function due to small volume, easy fabrication, simple
installation and economical applicability, helpful for developing multifunctional health
monitoring gadgets during the COVID-19 pandemic.

Finally, the employment of smartphones for recording respiratory sounds has gained
relevant interest [130,131]. Indeed, the built-in microphone was found to be a low-cost,
contact-free, trustable, and straightforward solution for breathing monitoring, even though
more studies and clinical validation are still required [115].

For instance, smartphones could be used for wheeze recognition using an SVM clas-
sifier in pediatric patients [132], or for developing an automatic system to detect crackle
sounds [133].

In [132], the presented device was 71.4% accurate in the sensitivity and 88.9% in
the specificity of the recorded sounds, requiring no direct contact with the patients, no
standardized environment, and only a standard smartphone. Conversely, in [133], the
authors described a device that allowed crackle detection with an accuracy ranging from
84.86 to 89.16%, a sensitivity ranging from 93.45 to 97.65%, and a specificity ranging from
99.82 to 99.84%. Moreover, it led to successful results related to crackle disclosure, the most
masked noise among the frequency components of respiratory sounds.

More recently, an app was developed for this purpose, taking 15 s to detect a crack-
ling sound [134] using a smartphone’s microphone to assess a potential COVID-19 infec-
tion [130]. Table 4 summarizes and highlights some of the most innovative features related
to the proposed devices for RS monitoring, to date. Such sensing typologies appear rather
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contextualized within the current scenario, which is strongly marked by the recent pan-
demic emergency. Concerning this specific scenario, such devices also allow a continuous
monitoring of the patient without a clinician present.

Table 4. Sensor equipment for respiratory sound monitoring (RSM).

Device Mechanism Application Result Ref.

Hybrid-based aspiration and
respiration sensing (HARS)

Elastic flexible cover, microphone
(MEMS) and photoreactor

Monitoring of asthma attacks
and detection of the

breathing phases

Breathing phase identification of patient
condition, such as wheezing [123]

Single-axis accelerometer
accessorized with a
third-order low pass

Butterworth filter

Wearable elastic belt, worn around
the subject’s abdomen

Non-intrusive method of
screening for sleep disorders

and patient follow-up

Testing of three different breathing modes:
normal, slow and fast, with an accuracy of

breathing frequency evaluation <1%
[124]

Digital signal processor (DSP)
circuit and a flexible

sensor film

Belt packaged by the micro-fiber
cloth of a PET-flexible sensor film

consisting of a pressure sensor array
and a MEMS triaxial accelerometer

Detection of heart and
respiration rates, snoring

recognition, and sleep
stages classification

Accuracies of heart rate and respiration rate
reached by the belt were about 1.5 bpm and
0.7 bpm, respectively. Accuracy of 97.2% in

the snoring recognition method

[125]

Small-sized and
ultra-sensitive accelerometer

A sound sensor made of an
asymmetric-gapped cantilever

structure with a ceramic
piezoelectric beam in zirconium

titanate (PZT) as the top layer

Lung and heart sound
monitoring in discharged

pneumonia patients

Tracking of the recovery course of
pneumonia patients with a rapid, simple

and highly sensitive detection of lung and
heart sounds with a great potential for

clinical use and home-use
health monitoring

[126]

MEMS-based microphone Sensing piezoresistive cantilever
with ultra-high acoustic compliance

Applications in
healthcare, monitoring

Small size device with a SNR of ~80 dB in
the range of 2 to 200 Hz and a high SNR in

low-frequency range
[127]

MA sensors Wearable real-time
monitoring system

Monitoring of COVID-19
infections due to a continuous
record of coughing frequency

and intensity

Detection of decay trend of coughing
frequency and intensity through the course

of disease recovery
[128]

Intelligent facemask
An ultrathin FEP film and Al foil as
triboelectric layers and a conductive

cloth tape as electrode

Respiratory sensing
(RS-TENG) for coronavirus

disease (COVID-19),
integrated with facemask

High sensitivity and feasibility in
respiratory monitoring in diagnosing many
respiratory diseases of human bodies, able
to give timely alarm after breathing stops

[129]

Built-in microphone of
a smartphone

Recording, by a built-in microphone
and the headset microphone of an
iPhone 4S (Apple, Inc., Cupertino,
CA, USA) placed on the subject’s

neck and nose

Detecting nasal airflow and
tracheal breath sounds

Accuracy with median errors of less than
1% for the nasal sound, for all breathing

ranges even if the smartphone’s
microphone was as far as 30 cm away from

the nose

[130]

Microphone of a smartphone

Smartphone (SH-12C, Sharp Corp.,
Osaka, Japan) attached to the

anterior chest wall over the sternum
using adhesive tape

Detection of snoring
condition as a marker of

obstructive sleep apnea (OSA)
and vascular risk

Diagnostic sensitivity and specificity of 0.70
and 0.94, respectively [131]

Microphone of a smartphone

Microphone (SP0410HR5H-PB,
distributed by Knowles Electronics,

Itasca, IL, USA) of the Nexus 4™
smartphone (Google, Mountain

View, CA, USA) placed near
the mouth

Monitoring of wheezing
respiratory diseases in

children as an outpatient
objective tool for recognition

of wheezing

Achieved 71.4% sensitivity and 88.9%
specificity in wheezing detection [132]

Smartphone-based system

Electret subminiature microphone
(BT-2159000, Knowles Electronics,
Itasca, IL, USA) encapsulated in a

plastic bell and a smartphone device
containing the developed mobile

app governing sounds acquisition,
display and processing

Recording, storage and
analysis of respiratory sounds

with crackle detection

Accuracy ranged from 84.86 to 89.16%,
sensitivity ranged from 93.45 to 97.65%, and

specificity ranged from 99.82 to 99.84%
[133,134]

Piezoelectric MEMS
acoustic sensor

A wearable mechano–acoustic
sensing device consisting of a

piezoelectric MEMS acoustic sensor,
a low noise amplification circuit and

silicone polymers for the package

Monitoring of heart sound
and detection of speech

and voice

Light-weight, low cost and skin-compatible
device to enable mechano–acoustic sensing

including heartbeat and speaking
[135]

3.5. Gastrointestinal Tract

Many people suffer from motility and functional bowel disorders that require an
effective assessment of their intestinal conditions, playing a vital role in the diagnosis and
evaluation of eventual diseases [136]. Indeed, out of nearly eight billion human beings, it is
likely that almost all emit and/or have heard bowel sounds (BS) [137].

Although such sounds are closely linked to vital processes of life and health, they are
notoriously difficult to be directly measured since they occur randomly in time and location
with very low amplitudes, compared with other body sounds. As a matter of fact, many
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physicians initially proceed with invasive testing (blood tests, stool tests, colonoscopy
and/or biopsy) to rule out potentially fatal organic disease before confirming the less
serious diagnosis. These invasive tests are not only unpleasant for patients, but could carry
significant risks together with physical discomfort, psychological distress and financial
costs due to time off work.

In addition, there is a diffused lack of effective tools other than the non-invasive
practice of auscultation [138]. However, while the sounds from the lungs and heart have
been widely investigated due to their characteristic and regular patterns, capturing sounds
produced by the stomach and intestines remains an open challenge.

Hence, for decades, many doctors and researchers have developed miniaturized, easy-
to-fabricate and wearable medical devices to support medical diagnosis as well as to reduce
cost [139].

Mamun et al. [136] proposed a novel, ultra-low power, real time bowel sound detector,
able to measure meal instances in artificial pancreas devices. This system provided aid to
long-term diabetic patients by the use of a front-end detector that transduced the initial
bowel sound, recorded from a piezoelectric sensor, into a voltage signal. Therefore, it
provided a non-invasive approach to detect and to correlate physiological measures in real
time with motility or meal instances. This system only consumed 53 µW of power and was
implemented on a 0.96 mm2 chip space. The frequency of bowel is well below 500 Hz, so
the detecting systems should detect bowel sounds with high accuracy in the presence of
environmental noise. The sensitivity of the proposed implant was not only easily tailored,
but could also isolate abdominal vibrations from a noise spectrum signal dominated by
the heartbeat, or from noise from talking and walking, showing about 85% accuracy in
detection of gastrointestinal sounds with a low number of false-positives.

In contrast, Dagdeviren et al. [140] showed the importance of piezoelectric-based
devices in detecting bowel sounds. They reported and designed an ingestible, flexible
piezoelectric device that sensed mechanical deformation within the gastric cavity in both
in vitro and ex vivo simulated gastric models. Indeed, despite advances in device develop-
ment for GI monitoring, significant risks associated with solid, non-flexible gastrointestinal
transiting systems remain, that can eventually lead to intestinal obstruction or are related
to limited battery lifespan drawbacks. This device does not display cytotoxicity for cell
metabolic activity or for plasma membrane integrity. Furthermore, cell adhesion and
spread was observed over the device surface, highlighting its potential biocompatibility.
Concerning the electrical performance, the PZT GI-S behavior depended on the type of
bowel motion occurring during the assessment. For instance, when air was introduced
into the stomach, the device reported a pressure increase given indirectly by a significant
voltage increase from about 10 to 60 mV. Then, after 40 s of inflation, pressure appeared
to be stabilized (plateau voltage curve) while, after the air was released, a decrease in
voltage occurred. The proposed example showed the potential sensitivity of the device to
detect changes associated with air ingestion, as well as the capacity to guide evaluation
and treatment in cases of aerophagia or intestinal bacterial overgrowth.

Hence, the development of a system capable of both sensing and remaining flexible
within the gastrointestinal (GI) environment, eventually reducing the mentioned risks,
may have a good impact on the diagnosis and treatment of motility disorders. The small
dimensions and flexible nature of such a device could also reduce the likelihood of GI tissue
damage, maximizing its broad applicability. Similarly, the smart shirt for digestion acoustics
monitoring, named GastroDigitalShirt, implemented by Baronetto et al. [141], monitored
the different digestion phases (peristaltic contractions) across six hours in participants
with no prior GI diseases, capturing the main bowel sound (BS) types reported in the
literature. The prototype embedded an array of eight miniaturized microphones connected
to a low-powered wearable computer for performing long-term, automated auscultation to
clinically monitor digestion and track a number of specific disease symptoms.

In the field of wearable devices, the work of Fengle et al. has gained great interest.
They developed a flexible, skin-mounted device for long-term and real-time monitor-
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ing/evaluation of bowel sounds based on the integration of a three-dimensional printed
elastomeric resonator with flexible electronics, attached to abdominal surfaces. Clinical
tests, conducted on patients with mechanical intestinal obstruction or paralytic ileus, high-
lighted the relevance of the device for capturing the characteristics of bowel sounds as an
auxiliary tool in the diagnosis of bowel issues [139].

Another flexible device, useful for the digital auscultation of bowel sound monitoring,
was proposed by Gang et al. [142]. They produced a flexible dual-channel with active noise
reduction, wireless, wearable and conformably attached to the abdominal skin. It allowed
the continuous wearable monitoring of BSs for patients with postoperative ileus (POI) from
pre-operation (POD0) to postoperative day 7 (POD7), providing performant guidance for
doctors to choose a reasonable feeding time for patients after surgery and to accelerate
their recovery. The main innovation of the abovementioned soft, light, and thin device
was the ability of digital auscultation with active noise reduction due to a synchronous
acquisition channel for ambient noise. The adaptive filter was used to subtract the ambient
noise from the noise-contaminated BS signals, with performant results for BS monitoring
in noisy clinical environments. The maximum NRR of active noise reduction was −19.7 dB
in testing under a sound level of 45 dB of ambient noise, rendering the detected final
frequency closer to the common standard value of doctors’ auscultation. The presented
device used a bandpass filter to elaborate low-frequency internal noise that possessed a
bandwidth of 10–20 Hz. In contrast, after the filter, the only frequency peak was at 280 Hz,
corresponding to the potential peak in the BS spectrum. However, the traditional bandpass
filter was not able to effectively suppress ambient noise. In attempting to solve this further
issue, Wang et al. adopted an adaptive filter, able to optimize the subtraction between the
ambient noise contained in BS signals [142].

Table 5 summarizes the keener and more innovative devices in BS detection, not
only for gastrointestinal motility sensing, but also for continuous wearable monitoring in
postoperative ileus patients. Such devices are a solid alternative to the traditional invasive
screening and prevention procedures. In fact, they are characterized, for instance, by
ingestible devices, free of any type of cytotoxicity, and with high biocompatibility within
the gastrointestinal system.

Table 5. Sensor equipment for gastrointestinal sound monitoring.

Device Mechanism Application Result Ref.

Integrated real time
bowel sound detector Wearable piezoelectric sensor

The physiological measure
of meal instances in

artificial pancreas devices

Remote real-time monitoring
was achievable with wireless

technologies in an
easy-to-fabricate, low-cost,
light-weight and wearable

device based on a piezoelectric
MEMS acoustic sensor

[136]

Flexible printed circuit
board (fPCB)

Polyimide fPCB film, equipped
with two auscultation and an

overall structure of
silicone packaging

Bowel sound monitoring

Continuous wearable
monitoring of BS for patients
with postoperative ileus (POI)
from pre-operation (POD0) to
postoperative day 7 (POD7)

[140]

Smart Shirt

Slim-fit T-shirt as a substrate
for the microphone system, in

elastane, and with an
embedded microphone matrix

The capture of abdominal
sounds produced
during digestion

Substantial data collected with
the accurate detection of 4 BS

types, as reported in
the literature

[141]

Flexible piezoelectric
devices

A PZT GI-S encapsulated with
a 1.2 µm-thick layer of

polyimide and a 10 µm-thick
layer of ultraviolet curable

epoxy (LOCTITE 5055;
Henkel), equipped with an
electrical connection and

computer-controllable
USB multimeter

Gastrointestinal motility
sensing

The ingestible device, sensing
mechanical deformation

within the gastric cavity, was
able to quantify the behaviors

of the gastrointestinal tract
using computational

modelling

[142]



Biosensors 2022, 12, 835 23 of 35

3.6. Sleep Monitoring

According to the National Institute of Health, sleep is an integral part of the daily
human routine, as essential as food or water. Therefore, several efforts have been made to
promote research on sleep and related areas. Sleep is a physiological process repeated every
24 h, and its description has involved researchers, clinicians, physiologists, technicians, and
engineers [143].

Currently, it is generally accepted that the essential sleep variables to characterize the
sleep process are: the amount of time needed to accomplish the transition from awake
to sleep (i.e., sleep onset latency, SOL), the total amount of sleep (i.e., total sleep time,
TST), the amount of wake time in minutes during the sleeping period after sleep onset has
been achieved (e.g., wake after sleep onset, WASO), the sleep efficiency (SE) commonly
defined as the ratio of TST and time in bed, and the number of awakenings (NWAK)
during the night [144]. This consensus starts from the definition of the cyclical pattern
of sleep, composed of a rapid eye movement (REM) and non-REM (NREM) phase. The
NREM phase is generally divided into four different stages, namely, Stage 1, Stage 2,
Stage 3, and Stage 4. Knowledge of these stages allows the further inference of new
variables. In a clinical setting, the gold-standard device to characterize human sleep
is considered polysomnography (PSG). PSG is a diagnostic tool able to record several
physiologic parameters and signals through electroencephalography, electrocardiography,
oximetry, and measures of respiration generally exploiting chest belts [145].

PSG is used to infer the different sleep stages, and represents an indirect measure of
sleep. Unfortunately, it is expensive, and a medical doctor generally supervises the tool in
a hospital setting. Consequently, many alternatives have been proposed in the literature to
enable sleep monitoring in a less intrusive manner and to allow continuous monitoring
at home.

Recent advances in smart health, both from the hardware and software point of view,
have, therefore, led to solutions for clinical settings and home monitoring. Wearable
technologies can monitor movements and physiological parameters (e.g., heart rate and
respiratory rate). In this context, actigraphy represents a typical wearable sleep monitoring
device: sleep and wake phases are detected by gathering information from body move-
ments, typically using sensors worn on the wrist [146]. Through inertial sensors, typically
accelerometer, gyroscope, and magnetometer, these devices are also able to estimate ori-
entation, and acceleration, thus, inferring information about body movements [147]. The
medical device industry have, thus, presented many devices both for sleep monitoring and
sleep apnea detection. These devices have relied on different combinations of raw signals.

From a clinical standpoint, many devices have been approved by national public health
administrations. In addition to the above mentioned actigraphy and polysomnography,
which are widely used in clinical and hospital settings, a few wearable devices have been
marked as “medical device” or have obtained FDA clearance. For example, the AcuPebble
SA100 is a small and wearable device able to detect obstrusive sleep apneas in adults
through the sensing of physiological sounds generated by the body and the detection of
respiratory and cardiac biomarkers. Acoustic signals are transferred to a mobile device, and
finally to the cloud, for further processing. The device achieves good accuracy compared
with gold standard devices [148]. Another interesting device that has received FDA clerance
is the DROWZLE Sleep Apnea, a mobile application that claims to be able to detect sleep
apneas using the patient’s phone [149].

From the consumer point of view, several proposals have been presented as enabling
technologies to monitor sleep through the heart rate: ballistocardiography, piezoelectric,
and photoplethysmography [150]. As an example, Emfit QS [151] is a ballistocardiography-
based device that exploits a thin strip placed under the mattress which is able to evaluate
sleep stages, giving information about apnea or bed occupancy. Similarly, the Withings
sleep device exploits a strip underneath the mattress and provides sleep stages, snoring
information, and HR monitoring during the night. In contrast, the Beddit device allows
the identification of similar features but relies on a no-contact piezoeletric strip [152].
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Another devise is the Beautyrest, which exploits passive piezoelectric sensors to detect
human pressure on the mattress [153]. Finally, an interesting new technology applied
to sleep medicine is the photoplethysmography (PPG). PPG, similar to a pulse oximeter,
exploits a light source and photodetector to identity differences of light intensity caused by
vascular tissue and blood flow. Based on PPG, remarkable consumer devices are produced
by Garmin, Fitbit, Whithing, and Xiaomi, and are able to identify sleep stages through
heart rate monitoring [154]. PPG is also used to evaluate respiratory rate and, in the
market, the Oura ring represents a consumer device able to identify sleep stages and total
sleep time [155]. It is important to remark that sleep monitoring devices show important
differences in sleep stage evaluation when compared with outputs of gold-standard devices.
However, as a main drawback, commercial devices are not able to identify sleep disorders.

Figure 14 shows a summary of recently developed systems with applications in
sleep monitoring.
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Wearable devices also incorporate technology to monitor the heart rate, but generally
are not able to accurately discriminate between sleep stages. Typically, they can discrimi-
nate if a user is awake, asleep, sleep duration and time awake. Validation studies about
actigraphy and wearable devices have shown an agreement with PSG of typically around
85–90% [156,157]. The literature shows that the accuracy of such devices has increased year
after year, and the performance of commercial products has started to be comparable with
gold-standard devices for sleep monitoring. In this review, we are focusing on sensing
devices for processing acoustic signals, and, therefore, we summarize in Table 6 those
MEMS-based wearable devices also able to collect heart rate and/or respiratory informa-
tion. Furthermore, we analyze recent findings on devices utilized to detect obstructive
sleep apnea syndromes (OSAs), often simply called apneas, namely, a breathing disorder
characterized by temporary obstructions of the upper airways (no breathing episodes)
during sleep [158]. In this regard, the authors of a recent review reported the most relevant
studies on the analysis of acoustic properties for classifying OSAs including peak intensity,
duration, and occurrences [159].

Table 6 shows some of the innovative approaches in the wearable devices industry
applied to the sleep framework. Despite some of the mentioned devices having reached
a research-grade prototype, the Table shows an increasing interest in sleep monitoring,
especially in the home setting. It is interesting to note that HR was the most-used informa-
tion, and that researchers tried to include respiratory information using accelerometers or
piezoelectric sensors. Another aspect to note, is the importance of collecting and publishing
public and open datasets of human sleep sessions, and more effort should be spent in
comparing devices’ outputs with the gold-standard devices generally used by clinicians.
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Table 6. Wearable devices for sleep monitoring and detection of OSAs.

Device Mechanism Application Result Ref.

SimpleLink multi-standard
sensorTag CC2650STK

which includes an inertial
measuring unit (IMU)

An HR monitoring system that
uses the angular rate data from

a single axis of a MEMS
gyroscope to detect heartbeats.
IMU was secured to the chest

using an elastic fabric belt

Detection of HR in
real-time for sleep

physicians

Real-time monitoring, but
method still required

further testing with a larger
pool of participants in

real-life scenarios

[160]

Apple Watch

Apple Watch with a mobile
application was applied to the
wrist, containing a digital sleep

diary and psychomotor
vigilance test, sending data

remotely in real-time. Mobile
application needed for

accessing the accelerometer
and heart rate data was in the

Apple Watch

Distinguished sleep from
wake, and determined
sleep stages, compared

with gold-standard PSG

The sleep/wake
classification (without

motion) was consistent.
However, the

wake/NREM/REM neural
net classifier achieved a

best accuracy of 69%

[161]

Patch system composed of
ECG, stethoscope,
impedance, 9-axial

magnetic, angular rate and
gravity (MARG) sensors, a

digital stethoscope and
ambient sound recording

Using the derived standard
ECG leads, authors classified
the ECG fiducial points and

peaks in the stethoscope signal.
Respiratory signals and rates

were estimated using
ECG-derived respiration

techniques combined with a
novel

phonocardiogram-derived
respiration approach

Estimation of heart rate
and heart rate variability,

detailed ECG activity, and
respiratory monitoring

Application on long-term
home sleep monitoring [162]

MEMS-based 3-axis
accelerometer with

digital output

Accelerometer placed on the
space between the 7th rib and

the region above the
diaphragm (the solar plexus).

If apnea was detected, a signal
was sent to the wristband, and

a vibration started until the
patient started breathing again

Detection of apnea events
in real-time and alerting

the patient

A study group of
10 patients who had sleep

apnea (SA). All apnea
events were detected, and

all patients were
successfully alerted

[163]

Surface acoustic wave
(SAW) sensor

(piezo-electric based)

The flexible and passive sensor
was placed around the nostrils,
monitoring respiration using

its sensitivity to
humidity change

Nasal airflow monitoring
and sleep apnea detection

SAW sensors were suitable
for OSAS monitoring with
good sensitivity, reliability,

and response time

[164]

In order to avoid wearable or intrusive devices, researchers have also proposed tech-
nologies to enable sleep tracking in a non-instrusive but objective manner. Generally, these
devices are not classified as medical devices, and their main target is to understand user
habits. As well shown in [165], unobstrusive sleep monitoring is mainly performed through
the analysis of cardiac, breathing, and moving events. Authors also offer a taxonomy of
existing unobstrusive methods for sleep assessment, as shown in Figure 15.

In this context, MEMSs are particularly useful for detecting acoustic signals from
the heart and, moreover, the analysis of the sound during breathing cycles could lead to
understanding apnea events.

The emerging technologies based on MEMS include ballistocardiography, ultrasounds,
and phonocardiographic sensors. Ballistocardiography built upon accelerometers, relies
on the representation of cardiac events in order to give insights on blood injections. Bal-
listocragraphy based on accelerometers, can infer about cardiac events by detecting the
induced vibrations. In contrast, ultrasound sensors have been used to process breathing
rate and body movement. In [164], the authors proposed a no-contact ultrasonic device to
quantify breathing activity. Based on a low power ultrasonic active source and transducer,
the device measured the frequency shift produced by the velocity difference between the
exhaled air flow and the ambient environment, i.e., the Doppler effect.
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Existing methods and studies have shown remarkable effort in developing new meth-
ods to assess sleep information, nevertheless, they are generally not able to correctly identify
all the sleep stages, i.e., REM, SWS, and NREM1-3. In this regard, wearable systems are
more suitable for enabling home sleep monitoring. Recent advancements, new sensing
materials, and advancements in data analysis and deep learning methods could lead to the
full assessment of human sleep in non clinical settings, allowing a wide spread of tools for
monitoring and preventing sleep problems in the population.

Table 7 shows a few innovative examples of non-obtrusive and innovative devices
for sleep monitoring. These devices mainly rely on microphones in order to understand
breathing or snoring. The most interesting approach is represented by the ballistocar-
diograph applied to sleep monitoring. In addition to interesting results recently reached
by this technology, a wide validation campaign seems missing and, furthermore, these
devices seem strongly influenced by several external factors, e.g., the mattress thickness
and users’ weight.

Table 7. Unobtrusive sleep monitoring solutions which exploit acoustic signals.

Device Mechanism Application Result Ref.

Embletta®X100 PSG: IoT sleep
tracking platform, including

ballistocardiography,
environmental sensors,

and actigraphy.

BCG sensor used was the
SCA11H bed sensor from

Murata. Environmental data
loggers, including humidity,

temperature, light and sound.

Portable and long-term
sleep monitoring

The model could distinguish
between sleep and wake states,

but could not classify each sleep
stage as accurately as PSG

[166]

Ultrasonic transducers

A 40 kHz ultrasound transmitter
illuminated an area including

the subject’s head. One receiver,
tuned to the same frequency,
recovered the signal reflected

from the scene.

Breath monitoring with a
focus on sleep apnea detection

A validation on a subject
equipped with a pressure sensor

connected to a nasal cannula
showed the synchronization of
the pressure signal provided by

the nasal cannula with the
signal spectrogram.

[167]

Microphone

The reflections from the human
body arrived at a specific time

depending on the distance from
the phone speaker. Focusing on

the corresponding frequency
allowed authors to reliably

extract the amplitude changes
due to breathing.

Detection of apneas and
estimation of total sleep time

Results from a clinical study
with 37 patients showed good

performances on detecting apnea
events. The apneas–hypopneas
index could be improved. Other

respiratory-related events or
physiological information were

not detected.

[168]

Finally, an interesting topic strictly related to sleep monitoring is lucid dreaming [169].
It is the phenomenon that occurs when a person is aware that they are dreaming, and can
influence dreaming thoughts.
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Lucid dreams arise most frequently during REM sleep, but rarely during NREM or
immediately after the awake state. According to [170], currently the main challenge in this
field is to develop a reliable system able to induce this phenomenon. In fact, lucid dreaming
is rare, but the capability of inducing it could have a huge clinical application, e.g., for
treating recurrent nightmares in post-traumatic stress disorder [171]. As a consequence,
industries have started to introduce devices into the market that claim to induce lucid
dreaming. The authors of [170] offered an interesting review of the most recent devices
for inducing lucid dreaming. Generally, these devices rely on electroencephalographic
activity and eye movement. A few devices available in the market are also equipped
with MEMS and accelerometers. For example, Aurora is a headband equipped with
electrodes for EEG and accelerometers for detecting body movements [172]. Another
interesting example is the Hypnodyne’s ZMax device. Similar to Aurora, it is a headband
able to emit light, it is vibrotactile, and emits auditory stimuli. The device collects sleep
information through frontal sensors able to detect brain activity and ocular movements, in
addition to the collection of heart rate, temperature, sound, and body movements through
accelerometers [170]. Although lucid dreaming applications have not directly exploited
MEMS and accelerometers, as for sleep and apnea monitoring, they could represent a plus
for developing more accurate and reliable assessments in sleep medicine.

4. Conclusions and Future Overlook

MEMS have revolutionized data collection in many fields, but healthcare is definitely
one of the frameworks in which they have had a major impact. In particular, the possi-
bility of reliably catching information from physiological acoustic signals has changed
the approach of monitoring health conditions and providing personalized treatments to
patients. The employment of MEMS has progressively changed the traditional approach
consisting of using stethoscopes, to qualitatively appreciate the small vibrational signals
from internal organs or in relation to auditory apparatus, have improved the capability of
sensing devices to transmit pressure variations to improve the hearing sense and, more
importantly, the quality of life in patients with hearing loss conditions.

Figure 16 shows a roadmap of miniaturized sensing devices in healthcare, highlighting
past, present, and future directions. In the next five to ten years, we could witness a
wider range of applications, from implantable sensors to reliable vital signals monitoring
and telemetry.
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Despite the high number of useful benefits and opportunities for the near future, the
employment of miniaturized systems in “acoustic” healthcare has not really taken off,
because of a few limitations. First, acoustic signals generally possess small amplitudes
that are easily affected by different sources of noise: from noises from mechanical actions,
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e.g., friction between the device and the hosting tissue/fabric, to the more common electro-
magnetic noises due to external aleatory environmental conditions, particularly relevant in
long-term monitoring procedures. Moreover, wearable devices are not always accepted
for use on a daily basis, because they may limit movements and, psychologically, may
cause discomfort.

Therefore, from the technical standpoint, there a several challenges to be addressed.
The first challenge concerns the importance of lowering not only the footprint, but also
the cost of the entire life-cycle of the products, from the energy costs for the fabrication, to
costs related to the final end-users and, eventually, for their potential recycling. From a
design standpoint, effort for the development of a new generation of nanoscale sensing
materials is envisaged, aiming also to achieve a synergistic employment of different, and
occasionally overlooked, materials [173].

Moreover, the future of sensing devices in healthcare is also related to efficient algo-
rithms able to efficiently analyze big data and signals, involving users’ personalization
and clinical experts’ guidelines. A personalized healthcare will combine continuous health
monitoring, and real-time feedback from end-users and clinicians.

As reported, being an interdisciplinary field, we envisage a stronger collaboration and
involvement of different professional figures, including data scientists and engineers that
can deliver new techniques to collect and process data, including artificial intelligence, thus,
giving devices the capability of being “smart” in terms of data acquisition, processing, and
visualization in real time and remotely, in the global framework of the so-called Internet
of Things. This approach, particularly relevant in the current Industry 4.0 scenario, will
further improve the conditions and life quality of patients, making easier, at the same time,
the periodical clinical checks from professionals. The involvement of (bio)materials experts
will also improve the physical and psychological conditions of subjects, limiting issues
with internal hosting tissues, as well as creating “smart” fabrics able to better comply with
the body, thus, reducing the discomfort of wearing sensing devices.

Moreover, new research avenues could be considered, especially those that have been
only marginally treated by the scientific community, including sounds from swallowing for
dysphagic patients [174], or acoustic electromyography [175].

In addition to the technical aspects, clinicians struggle to fully trust new devices and
have preferred using the golden standards (e.g., stethoscopes, large pieces of equipment),
even though they are often costlier and more invasive. Therefore, in the near future, an
improved trust of MEMS must be built in order to increase their use in current clinics. This
will enable closer contact between the scientific community and the end users, while also
allowing the collection of more data that will help improve current designs to overcome
current technical limitations.
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