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Abstract: The investigation of functional magnetic resonance imaging (fMRI) data with traditional
machine learning (ML) and deep learning (DL) classifiers has been widely used to study autism
spectrum disorders (ASDs). This condition is characterized by symptoms that affect the individual’s
behavioral aspects and social relationships. Early diagnosis is crucial for intervention, but the
complexity of ASD poses challenges for the development of effective treatments. This study compares
traditional ML and DL classifiers in the analysis of tabular data, in particular, functional connectivity
measures obtained from the time series of a public multicenter dataset, and evaluates whether
the features that contribute most to the classification task vary depending on the classifier used.
Specifically, Support Vector Machine (SVM) classifiers, with both linear and radial basis function
(RBF) kernels, and Extreme Gradient Boosting (XGBoost) classifiers are compared against the TabNet
classifier (a DL architecture customized for tabular data analysis) and a Multi Layer Perceptron (MLP).
The findings suggest that DL classifiers may not be optimal for the type of data analyzed, as their
performance trails behind that of standard classifiers. Among the latter, SVMs outperform the other
classifiers with an AUC of around 75%, whereas the best performances of TabNet and MLP reach
65% and 71% at most, respectively. Furthermore, the analysis of the feature importance showed that
the brain regions that contribute the most to the classification task are those primarily responsible
for sensory and spatial perception, as well as attention modulation, which is known to be altered
in ASDs.

Keywords: ABIDE; multi-site data; deep learning; machine learning; autism spectrum disorders

1. Introduction

Autism spectrum disorders (ASDs) are a group of neurodevelopmental conditions
characterized by repetitive and stereotyped behaviors as well as a deficit in social commu-
nication and interaction [1]. It affects approximately 1 child out of every 59, with a stronger
prevalence among males (1 in 37) than females (1 in 51) [2]. Currently, the diagnosis of
ASD is based on behavioral criteria, which requires a team of specialists, a process that
can be time-consuming and may not always yield a definitive result due to factors such
as comorbidity [3,4]. The heterogeneous nature of this condition requires continued study
across various fields, leading to constant updates of the diagnostic criteria [5,6]. Early
diagnosis and intervention are crucial for improving the quality of life and developing
effective intervention strategies [7]. To date, numerous studies have focused on analyzing
brain images acquired using resting-state functional magnetic resonance imaging (rs-fMRI).
This non-invasive imaging technique involves acquiring functional magnetic resonance
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images of the brain while the patient is at rest, without performing specific tasks. Rs-fMRI
is often employed in the investigation of brain functional connectivity, which refers to the
study of the correlation between the temporal signals of two anatomically distinct brain
regions. By assuming that functional connectivity is a phenomenon involving interactions
that occur on time scales shorter than acquisition times, it is possible to evaluate the corre-
lation between the temporal signals of two anatomically distinct brain regions, taking into
account the entire observation time interval, second by second. This process, repeated for
all brain areas, allows us to quantify the functional connection between the different brain
areas. These measures can be used to identify potential neurological distinctions between
typically developing (TD) individuals and those with ASD. Given the abundance of data in
neuroimaging, machine learning (ML) and deep learning (DL) classifiers have been widely
employed to try to predict the ASD condition [8,9]. Neuroscientists typically employ
both traditional machine learning classifiers, such as Support Vector Machines, [10] or
random forests, [11,12], and DL classifiers, like convolutional neural networks [13,14], for
classification purposes. Deep neural networks have achieved significant success in various
fields, including image and text processing [15,16]. In practical applications, tabular data
are the most common data type, particularly in medicine. Recent studies have shown that
deep learning-based methods can have a crucial role in the diagnosis of ASD [17,18]. Over
the past decade, traditional ML classifiers have remained dominant when dealing with
tabular data and frequently achieved better performance than DL classifiers. Usually, ML
classifiers are simpler than DL classifiers, and therefore, it is generally easier to understand
and interpret their response. On the other hand, the complexity of DL and their lack of
transparency and interpretability [19], limits their applicability in clinical contexts.

In this work, we investigated different ML and DL classifiers to show the differences
in classification performances and in most important features involved in the classification
of ASD subjects vs. TD ones, using tabular data derived from functional connectivity.

2. Materials and Methods
2.1. Data Selection

For this study, we used rs-fMRI data from the multicenter ABIDE dataset [20]. The
dataset comprises two collections: ABIDE I and ABIDE II. ABIDE I includes scans of
1112 subjects, evenly distributed between ASD and TD, collected from 17 different sites.
ABIDE II includes scans of 1114 subjects, evenly distributed between ASD and TD, collected
from 19 different sites. In addition to the scan images, ABIDE also provides phenotypic
information, such as age, sex, eye status at scan, and additional clinical information.

Although some sites in ABIDE II may be the same as those in ABIDE I, the pipeline
and acquisition parameters may have been modified between the two datasets. For this
reason, they will be considered as distinct acquisition sites. Furthermore, even within a
single collection, such as ABIDE II, there are sites that have released two different data
samples. For this reason, some of these samples are labeled with a subscription number
(e.g., 1 or 2). Subjects from the ABIDE II collection will have the prefix “ABIDE II” before
the site name. If this prefix is missing, the collection belongs to ABIDE I.

We selected 1001 male subjects , aged between 5 and 40 years, with eyes open during
acquisition. The data of these subjects are collected from 23 different sites. Male subjects
were chosen because the male sample is larger than the females one since males have
a higher probability of being affected by ASD than females [21]. Moreover, the female
dataset was insufficiently populated to allow for statistically significant studies. The choice
of the condition with open eyes was made to avoid including subjects who were potentially
sleeping during the examination. The dataset is evenly divided between ASD and TD,
containing 506 TD and 495 ASD subjects. Figure 1 shows the distribution of ASD/TD for
each site and Table 1 provides information on age distribution for each of the 23 sites.
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Figure 1. Dataset composition. Sites without a prefix belong to the ABIDE I collection.

Table 1. Information about the mean ± standard deviation, the minimum and the maximum value of
age, in years, across each of the 23 considered sites.

SITE Mean_Age ± Standard_Deviation Min_Age Max_Age

ABIDEII-TCD_1 15 ± 3 10 20

ABIDEII-SDSU_1 13 ± 3 8 18

ABIDEII-GU_1 11 ± 2 8 14

ABIDEII-NYU_1 9 ± 4 5 27

ABIDEII-OHSU_1 11 ± 2 7 15

ABIDEII-USM_1 21 ± 7 9 36

ABIDEII-IU_1 23 ± 5 17 34

ABIDEII-KKI_1 10 ± 1 8 13

ABIDEII-ETH_1 23 ± 4 14 31

ABIDEII-OILH_2 23 ± 3 18 28

YALE 12 ± 3 7 18

USM 21 ± 7 9 39

OLIN 16 ± 3 10 23

NYU 15 ± 6 7 39

UM_2 16 ± 3 13 29

UCLA_2 12 ± 1 10 15

UM_1 13 ± 3 8 19

SDSU 14 ± 1 12 17

KKI 10 ± 1 8 13

UCLA_1 13 ± 2 9 18

MAX_MUN 10 ± 2 7 13

LEUVEN_1 23 ± 3 18 32

OHSU 10 ± 2 8 14
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2.2. Feature Generation

The data selected for this study were processed using the Configurable Pipeline for the
Analysis of Connectome (CPAC) pipeline [22]. CPAC applies filters to remove noise from
respiration, heart rate, movements of the subjects’ heads, and other smoothing techniques.
CPAC is among the most frequently used pipelines, and previous research has found that
it leads to better ASD/TD classification compared to other pipelines, [23]. CPAC also
provides the time series of brain areas of interest (ROIs) for patients. In this work, we used
the Harvard–Oxford anatomical atlas [24], which consists of 110 ROIs. Figure 2 displays a
horizontal section of the Harvard–Oxford atlas partition.

In neuroimaging, Pearson correlation analysis is used to determine the potential
correlation between the instantaneous variation in the activation state of different brain
regions and their involvement in carrying out a specific function. The values, or coefficients,
of Pearson correlation rxy are defined as follows:

rxy =
∑n

i=1
(
xi − x̄

)(
yi − ȳ

)√(
∑n

i=1
(
xi − x̄

)2)(
∑n

i=1
(
yi − ȳ

)2) (1)

where x and y represent the time series of two brain regions and n is their dimension
(number of time points) [25]. Pearson coefficients were normalized using the Fisher trans-
formation (2) to make them statistically more significant [26].

Z =
1
2

√
n − 3 ln

(
1 + r
1 − r

)
(2)

In Equation (2), n represents the number of time points of the time series and r
indicates the Pearson coefficient calculated with Equation (1). The Pearson coefficients
were used as features for classification. The number of features depends on the atlas used.
For instance, for N regions, N(N−1)

2 features are obtained. This is because calculating the
Pearson correlation between the time series of each of the regions of an atlas generates a
square and symmetric connectivity matrix (see Equation (1), which is invariant under the
interchange of time series indices); thus, the upper triangle of the matrix contains the only
elements of interest. The use of the Harvard–Oxford atlas, composed of 110 regions, leads
to 110(110−1)

2 = 5995 features.
For this study, out of the initial 110 ROIs, 7 were excluded due to having null time

series in a substantial number of patients. As a result, 103 ROIs for each patient were
used. The correlation was then computed for each pair of brain areas, resulting in Ncomb =
103(103−1)

2 = 5253 independent combinations of connectivity features for each subject.

Figure 2. Horizontal section of Harvard–Oxford subcortical (left) and cortical (right) partitions.

2.3. Harmonization Procedure

Given that large datasets can be obtained by collecting images from different centers,
this results in a heterogeneity of data due to differences in scanners and/or acquisition
protocols that requires a harmonization technique to minimize these differences. In this
work, we used the Neuroharmonize tool proposed by Pomponio et al. [27,28], which is
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based on Fortin et al.’s ComBat [29,30]. Neuroharmonize aims to eliminate the site effect
while preserving the dependence of the features on biologically significant covariates, such
as age and sex.

According to Serra et al. [31], to avoid bias due to data leakage, the harmonization
parameters were estimated using only the subjects belonging to the control group of the
training set. Once the set of covariates is defined, the harmonization model is computed. In
this work, we used age and site as covariates. Subsequently, the model is used to harmonize
both the train and test sets. In a cross-validation scheme, the procedure is repeated for each
fold separately.

2.4. Classification Strategy

For this work, traditional classifiers, such as Support Vector Machine with a linear
kernel (L-SVM), Support Vector Machine with a Gaussian kernel (SVM-RBF) and Extreme
Gradient Boosting (XGBoost) were chosen, as well as deep classifiers like Attentive Inter-
pretable Tabular Learning (TabNet) and Multi Layer Perceptron (MLP). SVM classifiers are
the most commonly used classifiers in these classification problems. They have demon-
strated superior performance compared to other classifiers, particularly in scenarios with
a small number of samples and a large number of features [32]. XGBoost belongs to the
family of the three classifiers, which has proven to be particularly effective for tabular
data classification problems [33]. Furthermore, this classifier has better generalization
capability and is less susceptible to overfitting than other classifiers. TabNet is a deep
learning classifier mostly used when dealing with tabular data; it employs sequential
attention to select the most relevant features for reasoning at each decision step, enhancing
interpretability and optimizing learning efficiency by focusing the learning capacity on the
most significant features [34]. MLP consists of fully connected layers where every node
of each adjacent layer is connected; it is a classifier that is easy to implement, fast and
has shown performances that outperform other classifiers [35]. The L-SVM and SVM-RBF
classifiers were implemented using the sklearn.svm.SVC module from the Python library
scikit-learn [36,37].

For L-SVM and SVM-RBF, we specified only the kernel type, respectively, linear and
rbf, leaving all the other parameters with the default values. For XGBoost, we used the
XGBoostClassifier from the xgboost package inPython (V. 3.9.12) [38].

The hyperparameters used for the tuning were max_depth:[2,12], min_child_weight:[1,61],
eta:[0.1,1]. All the other hyperparameters have been left at their default value. The TabNet classi-
fier was implemented with the TabNetClassifier from the PyTorch library
pytorch_tabnet.tab_model [39] and the MLP was implemented using the MLPClassifier
from sklearn.neural_network package [40]. For TabNet’s hyperparameter tuning, we used
n_d:[8,64], n_a:[8,64], n_steps:[1,10], gamma: [1,2], momentum:[0.9,1] with max_epochs =
300, batch_size = 64, patience = 10, learning-rate: 2 × 10−2 and Adam optimizer. All the
other hypeparameters have been left at their default values. For the MLP, we used hid-
den_layer_size = (128, 64, 64, 32), activaction = relu, batch_size = 32, max_iter = 300, and
solver = adam, leaving all the other parameters set at default values.

We used the calculated features for each subject, along with the class labels +1 for
ASD subjects and −1 for TD subjects, for the classification task. We applied the Scikit-
learn’s RobustScaler function for feature scaling for each classifier, within the classification
step, and we conducted hyperparameter tuning for XGBoost and TabNet classifiers. The
classification outcomes were obtained using the repeated stratified k-fold cross-validation,
with 5 folds and 10 repetitions. To evaluate the classification performances, we used the area
under the ROC curve (AUC) [41,42], calculating it for each fold and repetition. The final
results are presented as the mean of the AUC with the associated the standard deviation
as error.

Considering the higher number of features compared to the number of samples, which
increases the complexty of the analysis and the risk of overfitting, we evaluated the classifier
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performances both with and without Principal Component Analysis (PCA). We varied the
number of principal components (PCs) from 30 to 300 PCs (30, 50, 100, 200, 300).

2.5. Feature Importance

Understanding the most important features that contribute to the classification of
ASD and TD individuals is crucial for advancing diagnostic and therapeutic strategies. To
determine the most discriminative pairs of regions for distinguishing TD from ASD, the
permutation importance [43] technique was used for each analyzed classifier, since it can
be applied uniformly to all of the classifiers tested.

Permutation importance is generally useful for understanding data and interpreting
classifier: by calculating the score for each feature, one can determine which features most
influenced the utilized classifier. Permutation importance is considered as one of the global
Explainable Artificial Intelligence (XAI) methods. It provides insights into the overall
behavior of a classifier and offers a comprehensive view of feature contributions across
the entire dataset. Using a global XAI approach, the interpretability and reliability of the
classifier are increased. The basic concept of permutation importance involves observing
how much a particular metric decreases when a feature is not available, with the score repre-
senting the importance of each feature. A higher score indicates that the feature in question
has a greater impact on the classifier. In principle, one could remove features, retrain the
classifier and check the score. However, this approach can be computationally complex
because it would require retraining the classifier for each feature removal. Additionally, this
method demonstrates which features might be important in the dataset rather than which
features are important for the classifier. If a feature is replaced with noise, derived from
the same distribution, as the original feature values during each permutation, it is possible
to avoid retraining the classifier. The simplest way to derive this noise is by shuffling the
values for a feature by using the values of the same feature across different examples.

In this study, we implemented the permutation importance as described above to
determine whether the key features for the classification vary depending on the classifier
used. We used the feature permutation importance implemented in the ELI5 python
library [44]. This library offers a function that takes into account a trained classifier, a
validation dataset, and a scoring metric, and it returns the importance score for each feature.
The importance score reflects the decrease in the classifier’s performance: the greater the
drop in performance when a feature is shuffled, the more significant that feature will be
considered. When a feature has a negative score, it means that the performance of the
classifier has increased when this feature is replaced with noise, meaning that it is not
important. We employed the AUC as a scoring metric and computed the permutation
importance for each fold of the 5-fold cross-validation and repetition. The final results were
obtained as the average importance score across the folds and repetitions.

3. Results
3.1. Classification Performances

In Figure 3, the classification performances in discriminating subjects with ASD from
controls are illustrated. The results are reported for each classifier analyzed (TabNet, MLP,
XGBoost, L-SVM, and SVM-RBF), and for different amounts of retained PCs. The best
classification results were obtained by the SVM-RBF classifier, which achieved an AUC
of 0.75 ± 0.03 (with 100 PCs), followed by L-SVM with an AUC of 0.74 ± 0.02 (with 50
and 100 PCs). As for the DL classifiers, the classification results fall behind for MLP, with
AUC = 0.71 ± 0.02 (with 200 PCs and without PCA), and for TabNet, with AUC = 0.65 ± 0.02
(no PCA). These results are shown in Table 2.
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Figure 3. The ASD and TD classification results are reported for each classifier considered and for
different values of PCs. The blue, orange, green, red and purple colors represent the different classi-
fiers (TabNet, MLP, XGBoost, L-SVM annd SVM-RBF, respectively). Dots and error bars represent the
average AUC score and standard deviation, respectively. The average and standard deviation are cal-
culated across the 5 folds and 10 repetitions of the repeated stratified k-fold cross-validation scheme.

Table 2. Best classification performances for each classifier.

Classifier AUC # of PCs

MLP 0.71 ± 0.02 no PCA
0.71 ± 0.05 200 PCs

TabNet 0.65 ± 0.02 no PCA

XGBoost 0.67 ± 0.02 no PCA

L-SVM 0.74 ± 0.02 50 PCs
0.74 ± 0.05 100 PCs

SVM-RBF 0.75 ± 0.03 100 PCs

3.2. Feature Importance

Identifying the key features that distinguish ASD from TD subjects is essential for
understanding ASD. Given that these features assess the correlation between the temporal
signals of ROIs, they provide valuable insight into which aspects most significantly impact
the distinction between ASD and TD subjects.

As we only obtained 59 features with a positive score (greater than zero) using the
XGBoost classifier, we selected the top 50 features with the highest scores for each classifier
to compare which regions were most significant in discriminating ASD/TD across all the
analyzed classifiers. Subsequently, we checked for common features among all the top 50
features. From this analysis, we did not find any common feature for all the classifiers but
only some features that were in common between two or three of them.

However, despite the lack of global common features, we looked for brain region
occurrences in the 50 most relevant correlations by counting the number of times these
regions were present in all classifiers. This allowed us to observe which regions had
the most significant effect on ASD/TD classification based on their connectivity to other
regions. The results are shown in Table 3. Consistent regions can be identified in all classi-
fiers. These regions are those whose correlation with other regions was most significant
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in discriminating between ASD and TD. We also examined the location of these regions
in the functional networks of the Mesulam [45] catalog. In this way, it was possible to
highlight that the most significant areas to distinguish between ASD and TD belong to
the heteromodal, unimodal, primary and paralimbic networks. The importance of these
networks has also been found in the literature [46–48]. These highlighted areas are crucial
for sensory perception, processing visual and auditory signals, spatial perception, and
attention modulation. They are fundamental for understanding social signals that require
the integration of complex sensory information such as facial expression, tone of voice,
and gesture [49]. Therefore, they are important in understanding the mechanisms under-
lying autism spectrum disorder [50]. A heteromodal network, involving various cortical
areas, is crucial for integrating complex sensory information and processing multisensory
knowledge. In contrast, a unimodal network is specialized in a specific sensory modality.
Neuroimaging studies have shown alterations in these areas in autism spectrum disorder,
suggesting dysfunction in sensory integration and the processing of complex information
in this disorder [51].

Table 3. ROIs whose connectivity with other regions had the most significant effect on ASD/TD
classification. The Occurrences column includes the number of times an ROI appears in the five
classifiers, while the numbers in the ROI column represent the identifiers of the ROIs in the HO atlas.
The Anatomical Part column lists the corresponding anatomical parts of the brain (according to HO
parcellation), while the Mesulam column identifies the associated functional networks.

Occurrences ROI Anatomical Part Mesulam

18 3102 L-Precuneous Cortex Heteromodal

15 1002 L-Superior Temporal Gyrus; posterior division Unimodal

15 501 R-Inferior Frontal Gyrus; pars triangularis Heteromodal

14 1302 L-Middle Temporal Gyrus; temporo-occipital Heteromodal

11 1101 R-Middle Temporal Gyrus; anterior division Heteromodal

10 1301 R-Middle Temporal Gyrus; temporo-occipital Heteromodal

8 4301 R- Parietal Operculum Cortex Unimodal

8 3301 R-Frontal Orbital Cortex Paralimbic

8 2702 L-Subcallosal Cortex Paralimbic

8 1102 L-Middle Temporal Gyrus; anterior division Heteromodal

7 3401 R-Parahippocampal Gyrus; anterior division Paralimbic

7 2801 R-Paracingulate Gyrus Heteromodal

7 2302 L-Lateral Occipital Cortex; inferior division Paralimbic

7 1702 L-Postcentral Gyrus Primary

6 2201 R-Lateral Occipital Cortex; superior division Unimodal

6 401 R-Middle Frontal Gyrus Heteromodal

5 4402 L-Planum Polare Unimodal

4. Discussion

The obtained results in the classification task are in agreement with the current litera-
ture, where performance typically hovers around 70% in the multicenter dataset [52–54].
This AUC percentage is also achieved using advanced techniques like in [55], where they
used a multi-site clustering and nested feature extraction technique. When the analysis
is limited to homogeneous and small datasets, the identification of ASD has a high accu-
racy [56–58], while classification results for heterogeneous and multicenter dataset have
shown lower accuracy, like in Yang et al. [59]. With this type of analysis (multicenter
dataset, classification task, and tabular data), we believe that traditional ML classifiers are
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more suitable, but when dealing with multi-modal features, especially as the complexity
increases with data, we believe that deep learning still has potential.

The difference in the most important features between the studied classifiers can be
attributed to the high number of features (5253) and the intrinsic multivariate nature of the
problem. Hence, a large set of features appears to be relevant in the classification, while no
small subset can be defined relevant in the classification. To provide an example, the most
important features present a score that is in the range of 0.1–1% of AUC, depending on the
classifier. This result could also be related to overfitting, highlighting the challenges posed
by the dataset’s complexity and the abundance of features in achieving robust classifier
generalization and accurately identifying significant features.

One of the main advantages of DL classifiers is that it is possible to avoid the feature
extraction procedure. This is useful, for example, when directly analyzing raw images.
However, this approach brings an intrinsic challenge due to the high dimensionality of
MRI data and limited size of the datasets. Despite the fact that there are more advanced
DL classifiers to study brain images, as a consequence of the improvements in AI research,
functional connectivity still remains one of the most used and reliable method when study-
ing rs-fMRI. Hence, we chose to focus our work on comparing traditional ML classifiers
with DL ones using functional connectivity tabular data and to determine whether common
features emerged across different classifiers.

In this particular field, this work showed that, when dealing with tabular data, ML
classifiers have better classification performance than DL ones.

5. Conclusions

In this work, we investigated the effectiveness of both traditional ML and DL clas-
sifiers in classifying individuals with ASD against TD controls. Our findings revealed
that ML classifiers achieved state-of-the-art classification performance, outperforming the
DL classifiers, TabNet and MLP. These results suggest that DL classifiers may not always
provide optimal outcomes for this specific data domain. Moreover, our analysis empha-
sizes the need to pay attention when interpreting DL classifier performance, given that
optimizing DL classifiers presents greater challenges compared to traditional ML classifiers.
Additionally, the features that have the most significant impact in the classification task vary
across different classifiers. This result indicates the need for great caution in determining
the brain regions or features most involved in ASD when conducting a classification task.
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Abbreviations
The following abbreviations are used in this manuscript:

ABIDE Autism Brain Imaging Data Exchange
ASD Three-letter acronym
AUC Area Under the Curve
BOLD Blood Oxygenation Level Dependent
CPAC Configurable Pipeline for the Analysis of Connectomes
CV Cross-Validation
DL Deep Learning
fMRI Functional Magnetic Resonance Imaging
HO Harvard–Oxford
L-SVM Support Vector Machine with Linear Kernel
ML Machine Learning
MLP Multi Layer Perceptron
PCA Principal Component Analysis
PCs Principal Components
RBF-SVM Support Vector Machine with Gaussian Radial Basis Function
ROC Receiver Operating Characteristic
ROI Region of Interest
rs-fMRI Resting-state Functional Magnetic Resonance Imaging
SVM Support Vector Machine
TabNet Attentive Interpretable Tabular Learning
TD Typically Developing
XAI Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting
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