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Abstract

We prove a uniqueness result for the stochastic transport linear equation (STLE), without any W 1,1 or BV
hypothesis on the coefficient, which is needed for the corresponding deterministic equation. We use Wiener chaos
decomposition to pass from the STLE to a deterministic second-order transport equation with uniqueness property.
To cite this article: M. Maurelli, C. R. Acad. Sci. Paris, Ser. ??.

Résumé

Chaos de Wiener et unicité pour l’équation de transport stochastique. On prouve un résultat d’unicité
pour l’équation de transport linéaire stochastique (STLE), sans aucune hypothèse de type W 1,1 ou BV sur le
coefficient, qui est nécessaire pour l’équation déterministe correspondante. On utilise la décomposition en chaos
de Wiener pour passer de la STLE à une équation de transport du second ordre déterministe avec la propriété
d’unicité. Pour citer cet article : M. Maurelli, C. R. Acad. Sci. Paris, Ser. ? ?.

1. Introduction

On a probability space (Ω,F , P ), we consider the stochastic transport linear equation (STLE)

dut + b · ∇utdt+

d∑
k=1

∂kut ◦ dW k
t = 0, (1)

where W is a d-dimensional Brownian motion with respect to a certain right-continuous completed fil-
tration (Ft)t, b is a deterministic field on Rd, u is a random function defined on [0, T ]× Rd.

The classical theory for the deterministic transport linear equation (i.e. without the stochastic integral),
developed by DiPerna-Lions ([6]) and Ambrosio ([1]) and based on renormalized solutions, gives existence
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and uniqueness in the class of weak L∞ solutions under hypotheses (a bit simplified for brevity) b ∈
L∞(Rd)∩BVloc(Rd) and divb ∈ L∞(Rd); such hypotheses cannot be relaxed too much. As Flandoli et al.
have shown, the introduction of noise allows some improvements: existence and uniqueness hold asking b
Hölder continuous, divb ∈ Lq for q > 2 ([7]) or b ∈ L∞(Rd) ∩BVloc(Rd), divb ∈ L1(Rd) ([3]).

In this article we prove a new uniqueness result for STLE; the direct hypotheses on b, namely b ∈
L∞(Rd), are weaker than those of the previous (stochastic) results, with the price of using the Brownian
filtration and of a stronger integrability assumption on divb. Our approach is based on Wiener chaos
decomposition, which allows to reduce the STLE to the associated Kolmogorov equation (namely the
equation obtained by taking the expectation), which has uniqueness property for the Laplacian term.
This approach was inspired by the article [9] by Le Jan and Raimond, where Wiener chaos is used to
prove uniqueness for generalized stochastic flows.

Note that this result is false in the deterministic case: we cite two counterexamples in the end. Relations
with pathwise uniqueness for the corresponding SDE are briefly recalled.

2. Wiener chaos decomposition and the main result

We define the operators Bf = b · ∇f , Dkf = ∂kf , Kf = tr(D2f) = ∆f ; we use B∗, D∗k,K
∗ for their

formal adjoint operators in L2(Rd).
Definition 2.1 If u0 ∈ Lp, a weak Lp solution of (1) on Rd is a function u ∈ Lp([0, T ] × Rd × Ω),
progressively measurable with respect to (Ft)t, such that, for every φ ∈ C∞c (Rd), urB∗φ is in L1([0, T ]×Rd)
for a.e. ω ∈ Ω, urD

∗φ is a continuous semi-martingale with respect to (Ft)t, and it holds∫
Rd

utφdx =

∫
Rd

u0φdx+

t∫
0

∫
Rd

ur
1

2
K∗φdxdr −

t∫
0

∫
Rd

urB
∗φdxdr −

d∑
k=1

t∫
0

∫
Rd

urD
∗
kφdxdW

k
r . (2)

Equation (2) is the weak formulation of (1), where we have used the link between Stratonovich integral
and Ito integral (since urD

∗φ is a continuous semi-martingale).
Definition 2.2 Let P be the Wiener measure on the space Ω = C([0,+∞[,R)d. We write ∆n(T ) :=
{(t1, . . . tn)|0 ≤ t1 ≤ . . . tn ≤ T}. For f ∈ L2(∆n(T ))nd we define the stochastic iterated integral

∫
∆n(T )

f(r)dnW (r) :=
∑

k1,...kn

T∫
0

rn∫
0

. . .

r2∫
0

fk1,...kn(r1, . . . rn)dW k1(r1) . . . dW kn(rn). (3)

The integral above is an injective isometry between the Hilbert spaces L2(∆n(T ))nd and L2(Ω,FT , P ).

We write Π0 = R, Πn =
{∫

∆n(T )
f(r)dnW (r)|f ∈ L2(∆n(T ))nd

}
for n ∈ N+ (this space is called n-th

Wiener chaos). The following theorem is well known (see, e.g., [4]).
Theorem 2.3 Take (Ft)t as the natural completed Brownian filtration. Then L2(Ω,FT , P ) has the fol-
lowing orthogonal decomposition (called Wiener chaos decomposition): L2(Ω,FT , P ) = ⊕∞n=0Πn.

From now on, (Ft)t will be the natural completed Brownian filtration.
The main idea is the following. The stochastic (standard) integral acts like a shift for the Wiener chaos,

i.e. formula (4). Then, if u is a solution of (1), Qnu solves an equation which is (2) but for the stochastic
part, which is driven by Qn−1u and thus can be regarded as a random external force, fixed a priori by
inductive hypothesis. So the equation for Qnu is morally the Kolmogorov equation for (2).

Lemma 2.4 Let X be an (Ft)t-progressively measurable process, with values in Rd, such that E[
∫ T

0
|X(t)|2dt] <

+∞. Let Qn be the projector on the n-th Wiener chaos. Then
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Qn+1

T∫
0

X(t)dW (t) =

T∫
0

QnX(t)dW (t). (4)

Proof: Straightforward.
Hypotheses 2.5 b is in L2

loc(Rd)d and divb is in L2
loc(Rd).

We now state the main result.
Theorem 2.6 Suppose (Ft)t is the Brownian filtration. Suppose u0 in L2 (resp. L∞), suppose hypotheses
(2.5) and suppose uniqueness in the class of weak L2 (resp. L∞) solutions for Kolmogorov equation

∂vt
∂t

+Bvt =
1

2
Kvt. (5)

Then there is uniqueness for (1) in the class of weak L2 (resp. L∞) solutions adapted to (Ft)t.
Proof: Let u be a solution of (1) with u0 = 0. By Wiener chaos decomposition, it is enough to show

Qnu ≡ 0 for every n ∈ N. We will prove it inductively.
Projecting equation (2) on the n-Wiener chaos, for lemma (2.4) we obtain for every φ ∈ C∞c

〈Qnut, φ〉 =

t∫
0

〈Qnur, (
1

2
K∗ −B∗)φ〉dr −

∑
k

t∫
0

〈Qn−1ur, D
∗
kφ〉dW k

r , (6)

where we have posed Q−1 ≡ 0. By inductive hypothesis Qn−1u ≡ 0, this equation becomes equation (5),
which has by hypothesis uniqueness property among weak solutions. The proof in the L2 case is complete.

If u is an L∞ solution, we obtain, reasoning as above, that Qnu satisfies (5), but is not necessarily in
L∞. However, Qnut is the iterated stochastic integral of a deterministic function ft, so

∫
∆n(t)

ft(s)g(s)dns

is a weak L∞ solution of (5) for every g ∈ L∞(∆n(T )); thus f ≡ 0. We are done in the L∞ case.
Remark 1 In the L∞ case, the result is valid also for b ∈ L1

loc(Rd) with divb ∈ L1
loc(Rd), since one can

show that the integrals in the proof make sense under these hypotheses.

3. The uniqueness result

In order to exploit theorem (2.6), we want to find sufficient condition for uniqueness for equation (5).
Hypotheses 3.1 b is in Lp(Rd)d∩L2

loc(Rd)d, divb is in Lq(Rd)∩L2
loc(Rd) for p ∈]d,+∞], q ∈]d/2,+∞].

Lemma 3.2 Under hypotheses (3.1), equation (5) has uniqueness property in the class of weak L∞

solutions and in the class of weak L2 solutions.

Proof: Extending formula (2) for kernels φs,x(r, y) = (2π(s− r))−d/2 exp
(
− |x−y|

2

2(s−r)

)
, we get, if t < s,

〈ut, φt〉 = 〈u0, φ0〉+

t∫
0

〈ur, (divb)φr〉dr +

t∫
0

〈ur, b · ∇φr〉dr. (7)

We fix u0 ≡ 0. In the L∞ case (the L2 case being similar), the RHS in (7) is bounded by

C
(
‖divb‖Lq(Rd) + ‖b‖Lp(Rd)

) t∫
0

‖ur‖L∞(Rd)(s− r)−αdr, (8)

with α = max{d/(2q), (1 + d/p)/2} ∈]0, 1[ (since p > d and q > d/2). Now we let s→ t, so that ‖ut‖L∞

is bounded by (8) (with s replaced by t). We can conclude using classical Gronwall arguments.
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Corollary 3.3 Under hypotheses (3.1), the STLE (1) has uniqueness property in the class of weak L2

solutions adapted to (Ft)t and in the class of weak L∞ solutions adapted to (Ft)t.
Remark 2 Existence for such solutions is proved at least in the class of weak L∞ solutions, under more
general hypotheses, namely b ∈ L1

loc([0, T ]× Rd;Rd), divb ∈ L1
loc([0, T ]× Rd) ([7]).

Remark 3 In the L∞ case, corollary (3.3) works also for b ∈ L∞([0, T ];Lp(Rd)d), divb ∈ L∞([0, T ];Lq(Rd)),
for some p > d, q > d/2, with a similar proof and using remark (1). The corresponding deterministic
result does not hold: a counterexample is due to Depauw ([5], even if uniqueness holds in a smaller class,
see [2]). For this and the following example, also previous results on regularization by noise do not apply.
Remark 4 Another counterexample can be adapted from the example in [6], at pages 541-543. More
precisely, the drift b is generated on a bounded ball by the following Hamiltonian: H(x1, x2) = −x1/|x2|1/2
if |x1| ≤ |x2|1/2, H(x1, x2) = −x1 + sgn(x1)[|x2|1/2 − 1] if |x1| > |x2|1/2. It can be shown, as in [6], that
b ∈ L1

loc with divb = 0 and that the corresponding equation has more than one solution. In the stochastic
case uniqueness is restored, even if b does not satisfy hypotheses (3.1): one can prove an estimate like
(8), using the scaling property |b(βx)| = |β|−1/2|b(x)| if |x1| ≤ |x2|1/2.
Remark 5 Existence and pathwise uniqueness have been proved for the SDE dXt = b(Xt) + dWt, when
b is only in Lp(Rd) for some p > d ([8]). However, we do not know a way to exploit this result to obtain
uniqueness for weak solutions of STLE. Indeed, the relation ut(Xt) = u0 holds with some regularity
hypotheses on u (remark (4) gives a deterministic counterexample). Furthermore, the hypothesis divb ∈
L1
loc is needed to give sense to definition (2.1) and some integrability assumptions on divb are required

in many articles about the topic ([1], [6], [3], [7]). Nevertheless, some nontrivial links between SDE and
STLE could be possible; we plan to analyze it in a forthcoming paper.
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