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The deconfinement transition at vanishing chemical potential can be
reliably studied by lattice simulations and its general features are by now
well-known. On the contrary, what happens at finite density is still largely
unknown and we will review the results obtained in the last year regarding
the dependence, for small density, of the (pseudo)critical temperature on
the baryonic chemical potential.
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1. Introduction

One of the goals of Lattice Quantum ChromoDynamics (LQCD) is to
provide a first principles description of the QCD phase diagram and of the
nonperturbative behaviour of the strongly interacting thermal medium. Be-
yond their purely theoretical interest, such informations are valuable for
a better understanding of several phenomenologically relevant processes,
among which heavy-ions ultrarelativistic collisions play a dominant role.

The study of the thermodynamical properties of QCD at the vanishing
baryon density by means of LQCD numerical simulations is a standard (al-
though not computationally easy) task. When a nonzero baryon density is
present, this is no more true: the usual importance sampling Monte Carlo
methods used in LQCD simulations cannot be used any more, due to the
well-known sign problem.
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The only physically relevant case in which the sign problem can be cir-
cumvented is the case of small baryon density or, more precisely, small
baryon chemical potential µB: if we are interested in the observable A(µB),
we can expand it as A(µB) ' A0 + A1µB + A2µ

2
B + . . . and try to estimate

the coefficients of the series. Which values of µB are “small enough” for this
procedure to give reliable results is something that can only be determined
a posteriori, given the accuracy that one can obtain in the evaluation of the
expansion coefficients.

This general idea can be implemented in two different ways: in the ap-
proach known as the Taylor expansion method, the coefficient An is ob-
tained by evaluating ∂nµBA(µB)|µB=0 using standard µB = 0 simulations [1].
In the analytic continuation approach, simulations performed at imaginary
values of the chemical potential µB = iµB,I (at which no sign problem is
present) are performed, and the coefficients An are then extracted by fitting
the results [2, 3]. The two approaches have complementary advantages and
drawbacks: in the Taylor expansion method, the coefficients An are directly
obtained, but their estimators become more and more noisy as n is increased;
in the analytic continuation method, the An values have to be fitted, but
one can use observables with good signal-to-noise ratios.

A property of the QCD phase diagram that can be investigated by using
LQCD simulations is the dependence, at least for small values of µB, of the
(pseudo)critical temperature on the baryon chemical potential: Tc(µB) can
be developed in even powers of µB, and the curvature κ of the critical line
is defined by

Tc(µB)/Tc = 1− κ (µB/Tc)
2 +O

(
µ4

B/T
4
c

)
, (1)

where Tc denotes the (pseudo)critical temperature at µB = 0. It is inter-
esting to compare the curvature of the QCD (pseudo)critical line with the
curvature of the freeze-out curve extracted from heavy-ion collisions, see
e.g. [4, 5]. While there is no compelling theoretical reason for the critical
and the freeze-out lines to coincide (in fact, the first is an equilibrium prop-
erty of QCD, while the second depends also on out-of-equilibrium properties
of the strongly interacting medium), a precise quantitative comparison of
these observables could help in better understanding the physical processes
involved in the cooling of the quark–gluon plasma.

2. Numerical results

At vanishing baryon chemical potential, a real phase transition is not
present, but just an analytic crossover; as a consequence, it is important to
specify the observable used in the determination of Tc(µB), since different
observables can, in principle, lead to different results. All LQCD results that
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will be discussed in the following refer to observables related to the restora-
tion of the chiral symmetry (chiral condensate or chiral susceptibility), see
Fig. 1 for a graphical summary of the results.
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Fig. 1. (Colour on-line) Recent determinations of the curvature of the freeze-out
curve (from [4, 5]) and of the QCD (pseudo)critical line (from [6–11]). Circles
(red) denote data obtained by the Taylor expansion method, while squares (blue)
correspond to data obtained by the analytic continuation method.

Given the great phenomenological significance of the curvature of the
QCD (pseudo)critical line, after the seminal works [6, 7] several LQCD
groups recently got involved in new computations of κ, with the principal
aim of improving the control of the systematics. The analytic continuation
method is attractive in this respect, since it enables to compute Tc(µB) us-
ing the same standard procedures that are used in the µB = 0 case: looking
for the inflection point of the chiral condensate or the maximum of the chi-
ral susceptibility χψ̄ψ (see [9] for a discussion of the effect on κ of different
renormalization procedures). A new source of systematics is in this case the
fitting procedure, that however can be kept well under control by checking,
e.g., the dependence of the results on the fit range used, see Fig. 2.

Another improvement with respect to the first determinations is a better
understanding of the role played by the quark chemical potentials: for the
results to be of direct physical relevance in heavy-ions collisions, the chemical
potentials have to be tuned in such a way that the total strangeness van-
ishes and the electric charge is related to the baryon number by 〈Q〉 = r〈B〉,
with r ' 0.4. The first studies [6, 7] adopted the chemical potential setup
µu = µd = µB/3, µs = 0 and in [8], the setup µu = µd = µs = µB/3 was
used, while strangeness neutrality (near the transition) implies µs ≈ µu/4
(see [12]). In [9], it was shown that the value of κ is insensitive (within
the numerical accuracy) to the value of µs, while higher orders in the de-
velopment of Tc(µB) depends on µs (see Fig. 2), a fact that can explain the
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Fig. 2. Left: Dependence of the critical temperature on the (imaginary) light chem-
ical potential for the two setups µs = µl and µs = 0. Right: Results of the fit to
extract κ for different fit ranges; empty symbols denote the purely quadratic fit,
while also the quartic correction is used for the filled symbols (from [9]).

slightly larger values of κ obtained in [8] and is likely related to the so-called
Roberge–Weiss transition, taking place at µu = µd = µs = iπT/3 [13].
A further confirmation of the µs-independence of κ is given by the results
of [10]: a value of κ in a very good agreement with the ones of [9] is obtained
by performing simulations directly at the strangeness neutrality. The effect
on κ of the isospin breaking constraint 〈Q〉 = 0.4〈B〉 was also shown in [10]
to be negligible with the present accuracy.

As a byproduct of the determination of the curvature κ, the continuum
extrapolated chiral susceptibility was obtained in [9] for several values of
the imaginary chemical potential, see Fig. 3 (left). The dependence on the
chemical potential of χψ̄ψ can give some hints on the location of a critical
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Fig. 3. Left: Continuum extrapolated chiral susceptibility for two values of the
light chemical potential. Right: Dependence of the half-width at half-maximum
(HWHM) of χψ̄ψ and of the maximum value of χψ̄ψ on the light chemical potential.
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endpoint: a critical endpoint for µB > 0 would suggest the maximum of
χψ̄ψ to decrease and its half-width at half-maximum (HWHM) to increase
as the imaginary chemical potential is increased. None of these behaviours
was however observed in the numerical data, see Fig. 3 (right). While this
is obviously not incompatible with the existence of a critical endpoint at
µB > 0, it is an indication that (if it exists) it cannot be too close to the
real axis.
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