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A B S T R A C T

Human errors are the primary cause of powered two-wheeler crashes worldwide due to the demanding control
required and the often ineffective rider-training programs. Literature on rider behaviour is limited, partly due
to the lack of standard investigation methodologies.

This work investigated the differences in riding style and capability of a diverse set of riders. It explored
the impact of familiarisation and riding instruction through objective metrics. Correlation with experience was
a particular focus.

Seven riders of various experience levels performed trials on an instrumented motorcycle, following three
riding instructions: ‘Free Riding’, ‘Handlebar Riding’, and ‘Body Riding’. Objective metrics assessed rider
familiarisation, capability and willingness to excite motorcycle dynamics, riding style, and input preference.

Results indicated that riders asymptotically converged to their motorcycle dynamics intensity level after
a specific distance; both intensity and distance were positively correlated with experience. Experienced riders
achieved higher longitudinal acceleration and utilised combined dynamics to a higher degree. The negative
longitudinal jerk during braking varied greatly among riders and correlated with experience. A clustering
approach identified two prominent trial groups concerning the motorcycle response intensity. Higher diversity
emerged in the inputs, leading to five clusters with distinct riding style meanings. Instructions influenced
behaviour, particularly regarding input usage.

The unsupervised approach and metrics proposed should make rider behaviour research more straight-
forward and objective. It could be applied to naturalistic riding sessions for more conclusive evidence of
inter-driver differences. The diversity that emerged concerning the command inputs used warrants a revision
of training practices to promote riding safety.
1. Introduction

Powered Two-Wheelers (PTWs), encompassing motorcycles, mopeds,
and scooters, have become increasingly numerous worldwide (Terra-
nova et al., 2022). While assistance systems and technological advance-
ments have improved road safety, PTWs still carry a higher risk than
other modes of transportation, with riders being more susceptible to
severe injuries and fatalities in accidents (Beck et al., 2007; Brown
et al., 2021).

∗ Corresponding author.
E-mail addresses: mirco.bartolozzi@unifi.it (M. Bartolozzi), abderrahmane.boubezoul@univ-eiffel.fr (A. Boubezoul), samir.bouaziz@universite-paris-saclay.fr

(S. Bouaziz), giovanni.savino@unifi.it (G. Savino), stephane.espie@univ-eiffel.fr (S. Espié).
1 In the present article, ‘experience’ refers to the comprehensive assessment of an individual’s knowledge, skills, proficiency, and practical understanding

acquired through an extended period of active motorcycle riding, training, and exposure to various riding conditions.
2 ‘Capability’ refers to the rider’s tendency to demand and sustain high degrees of vehicle dynamics, i.e. in terms of acceleration and its rate of change.

Global in-depth studies consistently attribute the primary cause of
PTW crashes to the human factor (ACEM, 2008; Hurt et al., 1981).
Various studies have found some rider training programs ineffective,
emphasising the need for improved training design (Ivers et al., 2016;
Savolainen and Mannering, 2007). To further reduce injury and fatality
rates, it is crucial to comprehend the human–vehicle interaction. This
understanding, which is useful for the development of any active assis-
tance system, becomes even more crucial for the development of sys-
tems acting on the steering, which could, in the future, reduce injuries
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in a significant portion of accidents involving such vehicles (Bartolozzi
et al., 2023b). A data-driven approach based on monitoring, recording,
and analysing rider behaviour facilitates its understanding (Vlahogianni
et al., 2011).

Literature on riding behaviour is limited (Diop et al., 2020). Most
studies focus on the inter-rider difference regarding vehicle dynam-
ics, independent of the input causing it. Hisaoka et al. studied the
driver–vehicle system behaviour through the g-g diagram, a scatter
plot combining lateral and longitudinal acceleration (Hisaoka et al.,
1999). In particular, they generalised the friction ellipse through the
‘capability envelope’ concept by recognising that the human constitutes
an additional limiting factor. Not only is the maximum measured
acceleration achieved lower than the physical limit, but the curve is
not necessarily an ellipse. A subjective trial-and-error process deter-
mined the exponent characterising the capability envelope shape. The
concept, first defined concerning cars, can also be applied to PTWs.
Biral et al. followed a similar approach to determine the exponent; then,
they determined the maximum longitudinal and lateral acceleration
values as those that let the envelope contain 99% of the data points:
however, multiple combinations of these two parameters satisfy the
threshold (Biral et al., 2005). Will et al. analysed professional and non-
professional riders’ behaviour in a naturalistic environment using the
g-g diagram (Will et al., 2020). They highlighted the qualitative differ-
ence between the diagram’s three typical shapes and their correlation
with experience.1 Some statistical features of the trials belonging to
each group were computed and discussed, yet, the clustering process
was manual and subjective. Even though these studies highlighted the
g-g diagram’s usefulness in investigating each rider’s capability,2 they
did not propose a method to objectively and automatically determine
the capability envelope.

Some studies compared the behaviour of different riders using addi-
tional signals. Magiera et al. assessed riding skill through the standard
deviation of high-pass filtered roll rate signal (Magiera et al., 2016).
The process was unsupervised; however, the two cut-off frequencies3

were chosen heuristically, and no indication was provided on general-
ising their selection. Diop et al. clustered the trials of different riders
using the statistics of the roll angle and its derivatives; the unsupervised
approach proposed is promising and should be applied to a broader
range of signals (Diop et al., 2023).

Studies investigating the influence of a specific riding instruction are
rare. In another article, Diop et al. studied the behaviour of eight riders
subject to different riding instructions (Diop et al., 2020). The study
highlighted that differentiating between instructions is challenging and
that various riding practices are possible. Limitations of the study are
that the riders were all gendarmes and that the clustering considered
only the signals describing the motorcycle response and not the specific
inputs applied by the rider, which should be more indicative of the
riding preference. No study automatically categorised riders under
different instructions based on the rider inputs.

A better understanding of motorcyclists’ behaviour, identifying the
most common lack of skills and highlighting the main areas of im-
provement for a given subject would improve traffic safety by sup-
porting preventive actions, like enhancing or re-designing training
programs (Huertas-Leyva et al., 2021). To overcome these gaps, this

1 In the present article, ‘experience’ refers to the comprehensive assessment
f an individual’s knowledge, skills, proficiency, and practical understanding
cquired through an extended period of active motorcycle riding, training, and
xposure to various riding conditions.

2 ‘Capability’ refers to the rider’s tendency to demand and sustain high
egrees of vehicle dynamics, i.e. in terms of acceleration and its rate of change.

3 One frequency for stationary riding and another for dynamical
2

anoeuvres. s
article investigates the differences in riding style4 and capability of a
diverse set of riders, considering any potential riding instructions pro-
vided and the effect of the familiarisation5 process. These differences
are to be sought not only in the PTW response but also in the actions
that cause it, many of which (such as the forces applied to the footpegs)
have little impact on the dynamics but can be used for psychological
and comfort reasons (Weir, 1972). Therefore, the study also has a
methodological purpose, whereby methods must be automated and
objective to be easily reproduced. All evidence must be compared with
the experience level and possible correlations discussed.

The paper structure follows: Section 2 describes the experimental
protocol and the participants, the instrumented motorcycle and refer-
ence frame, the metrics used to describe the familiarisation process
and rider capability, and the clustering process. Section 3 presents
the investigation results, which are further discussed in Section 4 also
concerning their broader meaning. Lastly, Section 5 summarises the
conclusions and implications and discusses the potential applications
and areas of interest for this study.

2. Materials and methods

2.1. Experimental test description

The riding data was obtained through an instrumented sports tour-
ing motorcycle (Honda CBF 1000) during an experimental test cam-
paign on a section of the La Ferté-Gaucher track; a single trial of
that dataset was used in another study having a completely different
purpose (Bartolozzi et al., 2023a). Seven riders were involved, having
vastly different experience levels. The declared licence age and distance
travelled in the previous year, used as a proxy for their experience level,
are given in Table 1. Each rider was also asked to state their preference
concerning riding using mainly the handlebar or mainly the body; the
answers are found in the table. One rider (S2) was still in the process
of getting his riding licence at the time of the experiment. Another one
(S7) was a professional trainer of riding trainers. Six riders were male,
and one (S1) was female.

Each subject performed three runs for each of three different riding
instructions: Free-Riding (FR), Body-Riding (BR) and Handlebar-Riding
(HR), for a total of 7 × 3 × 3 = 63 trials. The free-riding instruction
preceded the other two, whose order differed among riders (shown in
the rightmost column of Table 1). It allowed the rider to familiarise
themself with the vehicle and the track and investigate their natural
riding approach, as no specific instruction was provided. Concern-
ing the BR trials, the rider was instructed to ride using their body
movements (foot, buttocks, knees) primarily; the rider was, instead,
instructed to use the handlebar to negotiate bends during the HR runs.
Each trial was referred to using the following naming convention:
S𝑖{FR/BR/HR}𝑗 , indicating the 𝑗th repetition of the FR/BR/HR trial for
the 𝑖th rider. The test aimed to compare the riding style of riders with
different experience levels and stated preferences, and the impact of the
instruction given. Fig. 1(a) illustrates the trajectory of one generic trial.
No additional instruction was given concerning the second or third
repetition of each instruction type, so they were nominally identical
to the first one.

4 ‘Riding Style’ is defined as the unique way a rider performs a manoeuvre
ype, i.e. entering a corner. It encompasses body positioning and movement,
cting on the steering, how the throttle and brake are used, and their general
pproach to riding. It is an aspect of the broader concept of ‘rider behaviour’.

5 ‘Familiarisation’ is defined as the process of becoming acquainted with a
ehicle, its controls, and the surrounding driving environment to operate it

afely and effectively.
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Fig. 1. Information on the experiment conducted.
Table 1
Subjects’ declarative data acquired before the test, including the Licence Age LA and the
distance travelled on a motorcycle during the previous year 𝑑. Handltot is the average
of the scores given by the rider to riding ‘using the handlebar’ and ‘counter-steering’.
Bodytot is the average of the scores given by the rider to riding ‘moving the body’,
‘applying pressure on the tank’, and ‘pushing the footpegs’. The ratio between the two
is also shown. A 0–10 scale was used, with higher numbers indicating higher preference.
The order of the instruction received is shown in the rightmost column.

Subj Experience Preference Score

LA (years) 𝑑 (km) Handltot (–) Bodytot (–) Ratio (–) Order

S1 10 0 8.0 5.9 1.36 FR,HR,BR
S2 0 0 8.0 5.8 1.38 FR,HR,BR
S3 9 25 000 8.8 7.0 1.26 FR,HR,BR
S4 5 2000 8.2 8.3 0.99 FR,BR,HR
S5 2 8000 5.2 8.4 0.62 FR,HR,BR
S6 1 6000 6.5 6.7 0.97 FR,BR,HR
S7 19 5000 9.3 3.3 2.82 FR,BR,HR

2.2. Signals and reference frame

The instrumented motorcycle and the sensors used are shown in
Fig. 2; each sensor type is denoted by a number. Several sensors
acquired the dynamic state of the motorcycle. Concerning the signals
used in the analysis:

• The longitudinal acceleration 𝑎𝑥 and lateral acceleration 𝑎𝑦 were
provided by an MTi Xsens IMU6 (1), which also measured the
motorcycle roll angle 𝜙.

• The Hall-effect sensor (2) on the rear wheel provided the travel-
ling speed reading 𝑣.

• A GNSS-RTK (Septentrio Altus APS3G7) (3) acquired the vehicle
coordinates. These were used to compute the travelled distance 𝑠.

Additional sensors acquired information about the rider-motorcycle
interaction. In particular:

• Four Strain gauges (4) are placed on the right and left half-
handlebars to measure the longitudinal and vertical forces acting
on them. The resulting torque produced by these forces was
computed. As the inclination of the steering axis (the caster angle)
was known, this torque was projected along the steering axis,
obtaining the steering torque 𝜏steer, and perpendicularly to it,
obtaining the ‘perpendicular torque’ 𝜏⟂. 𝜏steer is the primary input
for lateral motorcycle dynamics as it is responsible for the steer-
ing (Bartolozzi et al., 2023c; Weir and Zellner, 1978); instead, 𝜏⟂

6 https://www.xsens.com/products/mti-100-series
7 https://www.septentrio.com/en/products/gnss-receivers/rover-base-

receivers/smart-antennas/aps3g
3

Fig. 2. The instrumented motorcycle. The annotations show each sensor’s placement.

produces no steering action, but it will induce a relative angle
between the two, as it is a torque at the interface between the
rider and the motorcycle.

• Strain gauges (4) acquired the force the rider exerted on each
foot-peg; this was used to compute the rolling torque the rider
produced through their feet 𝜏feet.

• A large pressure matrix pad (XSENSOR8 PX100) (5) acquired the
pressure distribution over the saddle in the curvilinear coordi-
nates mapped over it. This information was used to compute the
coordinates CoP𝑥,𝑦 of the Centre of Pressure.

The sensors were non-invasive and did not appear in the rider’s field
of view. The only clearly visible sensors were the pressure pad and
the GNSS receiver. The subjects were told that data relative to rider
behaviour would be acquired, without further details not to influence
their behaviour. The signals were recorded through a data logger and
were down-sampled to the joint 10Hz sampling frequency; each signal
was timestamped during recording so that synchronisation would not
introduce errors. In the analysis, the dataset corresponding to each
trial began when the motorcycle speed exceeded 3m s−1 at the start
and stopped when the speed became lower than 3m s−1 at the end, to
remove time instants relative to the motorcycle travelling very slowly
that would introduce non-representative data.

This work is data-driven and uses peculiar sensing equipment;
data accuracy was crucial, so they have been thoroughly validated by
leveraging conceptual and physical models linking the measurements

8 https://www.xsensor.com/body-pressure-sensors

https://www.xsens.com/products/mti-100-series
https://www.septentrio.com/en/products/gnss-receivers/rover-base-receivers/smart-antennas/aps3g
https://www.septentrio.com/en/products/gnss-receivers/rover-base-receivers/smart-antennas/aps3g
https://www.xsensor.com/body-pressure-sensors
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Fig. 3. Examples of the general approach used to verify the correctness of the data acquired. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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of the various sensors. A few notable examples are provided in this
paragraph. Lateral acceleration, the product between the yaw rate
and the travelling speed, and the tangent of the roll angle multiplied
per the gravity of the Earth were very close in value, as expected:
𝑎𝑦 ≈ �̇�𝑣 ≈ − tan𝜙∕𝑔. The lowest correlation between the three was

= 0.945, which is extremely high considering that the relationship
s approximately true only in steady-state conditions. The measured
ongitudinal acceleration was very close to the time derivative of the
ravelling speed signal. In straight riding, the difference between the
peed measured by the GNSS and that sensed by each wheel’s Hall
ffect sensor was negligible. The variability in steering torque was
xplained mainly by the roll angle and roll rate, as simplified models
redicted (Bartolozzi et al., 2023b). The total vertical force sensed
y the rider-motorcycle interfaces (handlebar, saddle and footpegs)
pproximately equalled each rider’s weight on the straights and in-
reased when cornering due to the additional pressure generated by
he apparent centrifugal force; the increase followed that predicted
y the theory (Fig. 3(b)). The sum of the longitudinal forces applied
n the two handlebars was strongly correlated with the longitudinal
cceleration (Fig. 3(a), in blue). This relationship held concerning the
ertical forces (shown in orange), too; therefore, the longitudinal and
ateral forces were also correlated, and the ratio between the variation
f each depended on the rider’s height, which dictated the position of
heir arms. On the straights, the steering torque, perpendicular torque,
nd torque at the footpegs were about zero on average. For all runs, the
verage lateral position of the centre of pressure was on the saddle’s
enterline. The average longitudinal position depended on the rider’s
tature and did not change based on the instruction given.

Fig. 1(b) shows the signs convention used. A non-tilting reference
rame was used to express the acceleration: the forward 𝑥 and leftward

axes belonged to the ground plane, independent of the motorcycle
itch and roll angles. Therefore, 𝑎𝑥 and 𝑎𝑦 acceleration components
escribed the change of the magnitude and direction of the velocity,
espectively. As 𝑥 pointed forwards, the roll angle 𝜙 was positive when
he motorcycle was tilted to the right; similarly, 𝜏feet was positive when
t tended to make the motorcycle roll to the right. A positive CoP𝑥 value
eant the rider’s buttocks were placed forward compared to the saddle

entre; a positive CoP𝑦 value indicated a leftward movement over the
addle. The steering torque 𝜏steer was defined around the steering axis
nd was positive when pointing upwards. The perpendicular torque 𝜏⟂
as positive when it tended to roll the motorcycle to the right. For most

iding conditions, the steering torque that the rider applies has the same
ign as the roll rate. When the roll angle is positive (rightward corner),
r the rider is leaning towards the right, the steering torque is positive
4

anti-clockwise): this phenomenon is called ‘counter-steering’.
.3. Proposed metrics

.3.1. Familiarisation
First, a quantitative description of the familiarisation process was

f interest. The first three trials for each rider were relative to the
R instruction, so they were ideal for assessing it. In general, different
iders will be confident in reaching different longitudinal and lateral ac-
eleration values; moreover, the same rider will build confidence along
he ride and should become confident in reaching higher acceleration
alues.

The area of the g-g diagram is proposed in this article as a synthetic
ndicator of rider dynamics performance: a larger area indicates that the
ider reached higher acceleration values. Concerning familiarisation,
his work proposed tracking the g-g diagram area growth as a function
f the distance travelled since the beginning of the first FR trial.

The process to compute it follows. The corresponding 𝑘th couple
𝑎𝑘𝑦 , 𝑎

𝑘
𝑥) is added as a point on the diagram for each new time instant.

he convex envelope is computed as the smallest convex polygon that
ontains the set of 𝑛 acceleration couples produced up to that point.
he polygon will have 𝑄 ≤ 𝑛 vertices, each one having coordinates
𝑃𝑞 = (𝑥𝑞 , 𝑦𝑞), 𝑞 = 1,… , 𝑄. Notice that 𝑃𝑄+1 = 𝑃1. Its area 𝐴 is
then determined through the so-called ‘triangle formula’ formula that
transverses its vertices in order (e.g. clockwise) (Abreu de Souza et al.,
2018):

𝐴𝑛 = 1
2

𝑄(𝑛)
∑

𝑞=1

(

𝑥𝑞𝑦𝑞+1 − 𝑥𝑞+1𝑦𝑞
)

. (1)

As the trial progresses, more points are added to the diagram, so by
definition, the area computed through Eq. (1) is non-decreasing. This
area, which measures the extension of the ‘rider-capability envelope’,
is bounded between zero and the friction envelope of the vehicle,
which contains the set of physically feasible accelerations; therefore,
one expects this area to asymptotically converge to a value 𝐴∗ lower
than the theoretical limit given by the friction envelope. In particular,
the increase should be quicker at the beginning, when the area of the
envelope is smaller, compared to towards the end of the trial, where
increasing the area further requires going beyond now-higher acceler-
ation values. This fact suggests that the g-g diagram area as a function
of distance 𝑠 evolves following a negative exponential function:

𝐴(𝑠) = 𝐴∗
(

1 − 𝑒−𝑠∕𝑠
∗
)

, (2)

where 𝑠∗ is a constant indicating the distance travelled to reach 1−𝑒−1 ≈
63.2% of the asymptotic value 𝐴∗.
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2.3.2. Rider-capability envelope
After an initial familiarisation, each rider will reach longitudinal

and lateral acceleration values based on their confidence and experi-
ence. While the area 𝐴 of the rider-capability envelope is a synthetic
ndicator, riders could differentiate also based on the shape of the
iagram: a given area could be produced by different combinations of
aximum lateral and longitudinal acceleration; moreover, one rider

ould have a smaller performance envelope despite reaching higher
aximum acceleration values by using the combined dynamics to a

ower degree.
In general, the rider-capability envelope can be approximated by

he following inequality (Hisaoka et al., 1999):

|𝑎𝑥|
𝑎𝑥max

)𝑚
+
(

|𝑎𝑦|
𝑎𝑦max

)𝑚

≤ 1, (3)

here 𝑎𝑥,𝑦max = max𝑘 |𝑎𝑥,𝑦| (𝑘 is the generic data time index of the
oncatenated trials considered) are called ‘capable longitudinal/lateral
cceleration’ and determine the length of the two envelope axes and
> 0 is the ‘capability exponent’, which commonly assumes values

etween 1 (the envelope is a rhombus; the rider monitors the sum of
he two acceleration components) and 2 (the envelope is an ellipse); the
ider monitors the magnitude of the resulting acceleration vector, as in
he case of the friction ellipse. Higher 𝑎𝑥,𝑦max values indicate confidence
n reaching higher uncombined acceleration values; a higher 𝑚 value
eans the rider used the combined dynamics more frequently and to a
igher degree.

The proposed process to derive the rider-capability envelope fol-
ows. For each rider, 𝑎𝑥,𝑦max are computed; then, 𝑚 is determined as
he smallest value that makes the rider-capability envelope enclose

fraction of the time instants higher than a threshold (set to 0.98,
trade-off between encompassing the higher acceleration values and
aking the shape obtained robust concerning possible outliers9). The

nequality describing the capability envelope is now determined, and
our metrics can be derived from it: its area 𝐴, the capable longitudinal
nd lateral acceleration 𝑎𝑥,𝑦max, and the capability exponent 𝑚. The area
s equal to:

= 2∫

+𝑎𝑥max

−𝑎𝑥max

𝑎𝑥(𝑎𝑦) 𝑑𝑎𝑦, 𝑎𝑥(𝑎𝑦) = 𝑎𝑥max
𝑚

√

1 −
(

|𝑎𝑦|
𝑎𝑦max

)𝑚

. (4)

The process was then repeated using the jerk10 values, proposing
what in this article is referred to as the J-J diagram. While the g-
g diagram informs about the steady-state limits of the dynamics, the
J-J diagram describes how quickly the state moves inside the g-g
diagram. In the case of the jerk, it was found that the maximum
negative longitudinal values were higher than the maximum positive
longitudinal values. For this reason, when expressed in terms of the
jerk, Eq. (1) was split between an upper and lower bound.

It was expected to find some correlation between rider experience
and capability; a metric expressing each was defined to assess that. The
‘Experience Factor’ was defined for the 𝑖th rider by taking into account
both their motorcycle Licence Age LA and the distance travelled on a
motorcycle in the last year 𝑑:

expFactor𝑖 =
1
2

( LA𝑖

LAmax
+

𝑑𝑖
𝑑max

)

∈ [0, 1], LAmax = max
𝑖

LA𝑖, 𝑑max = max
𝑖
𝑑𝑖.

(5)

A factor indicating the rider’s willingness to use intense dynamics
was also defined using the following metrics. 𝑎𝑥𝑦𝑖 is the average total

9 The threshold was set through trial and error. This threshold is lower than
hat used by Biral (0.99), as that study used data relative to real roads, where
alues relative to low acceleration values are over-represented compared to
he current article (Biral et al., 2005).
10 The jerk is the time derivative of the acceleration.
5

p

Fig. 4. Scheme showing the meaning of the angle 𝜙𝑘𝑥𝑦, which is the angle between
the generic 𝑘-acceleration vector 𝒂𝑘 = (𝑎𝑘𝑦 , 𝑎

𝑘
𝑥) and the closest semi-axis, which is the

egative portion of the vertical axis in the case shown.

cceleration, each point’s distance from the centre of the g-g diagram.
𝜙𝑥𝑦𝑖 is the average angular distance of each point from the closest semi-
axis in the g-g diagram, weighted using the total acceleration as weight:
a value of 0 would indicate that the rider never produced longitudinal
and lateral acceleration at the same time, while a 𝜋∕4 value would
indicate that the longitudinal and lateral acceleration always had the
same value. Lastly, 𝐽𝑥𝑦𝑖 is analogous to 𝑎𝑥𝑦𝑖, but in terms of jerk.
Refer to Fig. 4 for a graphical representation of the 𝑎𝑘𝑥𝑦, 𝜙𝑘𝑥𝑦 values for
the generic 𝑘th data-point. The three metrics are computed using the
following formulae:

𝑎𝑥𝑦𝑖 = mean
𝑘

𝑎𝑘𝑥𝑦𝑖 ≥ 0, 𝑎𝑥𝑦 =
√

(𝑎𝑥)
2 + (𝑎𝑦)

2, (6)

𝜙𝑥𝑦𝑖 =

∑

𝑘 𝜙
𝑘
𝑥𝑦𝑖
𝑎𝑘𝑥𝑦𝑖

∑

𝑘 𝑎𝑘𝑥𝑦𝑖
∈
[

0, 𝜋
4

]

, 𝜙𝑥𝑦 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

arctan
|

|

|

|

𝑎𝑥
𝑎𝑦

|

|

|

|

, if |𝑎𝑥| < |𝑎𝑦|

arctan
|

|

|

|

𝑎𝑦
𝑎𝑥

|

|

|

|

, if |𝑎𝑥| > |𝑎𝑦|

0, otherwise

(7)

𝐽𝑥𝑦𝑖 = mean
𝑘

𝐽𝑘𝑥𝑦𝑖 ≥ 0, 𝐽𝑥𝑦 =
√

(𝐽𝑥)
2 + (𝐽𝑦)

2. (8)

The three indicators were then combined into a single metric, called
Confidence Factor’ expressing the willingness the rider had to excite
he motorcycle dynamics to a higher degree:

onfFactor𝑖 =
1
3

( 𝑎𝑥𝑦𝑖 − 𝑎𝑥𝑦min
𝑎𝑥𝑦max − 𝑎𝑥𝑦min

+
𝜙𝑥𝑦𝑖 − 𝜙𝑥𝑦min

𝜙𝑥𝑦max − 𝜙𝑥𝑦min

+
𝐽𝑥𝑦𝑖 − 𝐽𝑥𝑦min

𝐽𝑥𝑦max − 𝐽𝑥𝑦min

)

∈ [0, 1] ,
(9)

here ‘max’ and ’min‘ refer to all subjects’ maximum and minimum
alues.

.3.3. In-depth corner entry analysis
A data-mining approach was utilised to scrutinise the acquired

ignals, with no previous knowledge of the diversity of practices. While
he analyses described previously were relative to multiple complete
rials, the data mining approach was applied to single executions of a
orner entry manoeuvre (shown in Fig. 1(a)). The manoeuvre started in
he middle of the previous straight to capture the braking pattern and
nded slightly after the corner apex; considering a specific manoeuvre
ade it easier to compare different trials and interpret the results. The
nsupervised technique used the Hierarchical Agglomerative Clustering
HAC) algorithm (Hastie et al., 2009). This algorithm clusters observa-
ions with high levels of similarity in the same cluster (intra-cluster
omogeneity); it ensures that the clusters are as different as possible
inter-cluster heterogeneity). The bottom-up and hierarchical clustering
rocess starts from individual observations, producing more prominent
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Fig. 5. Familiarisation process described through the rider-capability envelope.
groups, including subgroups. The dendrogram is then cut at a user-
chosen height to attain the desired partition. Dynamic Time Warping
(DTW) (Senin, 2008) was used as a metric to determine the distance be-
tween two observations. In contrast, the distance between two clusters
was measured using the single-linkage criterion, the minimum distance
among cluster data points.

HAC was applied to identify trials showing similar behaviour and
to detect patterns relating each cluster to different riders or instruc-
tions. Two clustering processes were executed: one investigating the
motorcycle dynamics and another investigating the rider inputs:

• The ‘Motorcycle Dynamics’ clustering considered the speed 𝑣,
longitudinal acceleration 𝑎𝑥, and roll angle 𝜙 signals. Each signal’s
mean and standard deviation were used as features; for the roll
signal, the maximum and minimum values were also considered.

• The ‘Rider Inputs’ clustering considered the steering torque 𝜏steer,
perpendicular torque 𝜏⟂, foot-peg torque 𝜏feet, and saddle centre
of pressure coordinates CoP𝑥,𝑦 signals. The mean and standard
deviation of each signal were used as features, except for the
longitudinal position on the saddle for which the mean was not
considered.11

In the article, a symbol with an overline refers to its mean, while 𝜎 is
the standard deviation.

3. Results

3.1. Familiarisation

Fig. 5(a) shows the evolution of the g-g diagram during the three
FR trials of one rider (S3). The convex envelope corresponding to each
sampling instant is shown; the colour shifts from dark blue to yellow
as the rider covers the distance (840m for the sum of three trials).
Even in the third trial, the rider covered parts of the diagram whose
acceleration levels were not reached previously.

The evolution of the area of the rider-capability envelope is shown
for each subject as a function of the distance travelled as a dotted line
in Fig. 5(b). Eq. (2), computed with parameters 𝐴∗ and 𝑠∗ obtained
through best-fit regression, is plotted as a solid line. The coefficient of
determination was high for all subjects, ranging from 𝑅2 = 0.91 for S1
to 𝑅2 = 0.99 for S5. Subjects 3 and 7 had a particularly high asymptotic
area of the capability envelope, which spanned from 40.1m2 s−4 (S1)

11 This choice was made as the mean longitudinal position on the saddle
is influenced by the rider height, and only its standard deviation is linked to
their behaviour.
6

to 138.0m2 s−4 (S3). The distance constant 𝑠∗ spanned from 151m for
S1 to 386m for S3. The distance constant was positively correlated
with the asymptotic area (𝑅 = 0.72): the riders who reached higher
acceleration values tended to improve for longer. There was a strong
positive correlation (𝑅 = 0.90) between the experience factor and the
asymptotic area and a weaker one (𝑅 = 0.49) between experience and
the distance constant. In addition to improving for longer, more expert
riders improved quicker in the initial phase: the slope of Eq. (2) at
the origin, equal to 𝐴∗∕𝑠∗, had a 0.84 correlation with the experience
factor. The correlation would have been even higher if considering
‘time’ as the independent variable, as more expert riders tended to ride
faster, therefore covering the same distance in less time. Subject 5 was
peculiar: he had the lowest slope at the origin, showing modest initial
improvement; however, his capability envelope continued to expand
along the trials, becoming the third largest at the end. Table 2 contains
each subject’s various metrics values. In particular, the ‘Familiarisation’
section shows each rider’s coefficients related to the familiarisation
process.

3.2. Rider-capability envelope

Figs. 6(a) and 6(b) compare the g-g diagrams of a rider with mod-
erate experience (S1) with that of an experienced rider (S3). The area
of each dot is proportional to the corresponding total jerk. The area of
the capability envelope is shown in grey; two dash-dotted lines indicate
the contour of the envelope with 𝑚 = 1 (rhombus) and 𝑚 = 2 (ellipse)
as a reference: therefore, the red area indicates the potential area of
the capability envelope lost due to using of combined dynamics less
than what is theoretically possible, for the same maximum longitudinal
and lateral acceleration values. Subject 1 reached the highest lateral
acceleration values (7.65m s−2) when performing the left corners (pos-
itive lateral acceleration), but only modest longitudinal acceleration
values (≤4m s−2). Combined dynamics was limited (𝑚 = 1.02 ≈ 1): in
practice, the rider summed the two acceleration components to assess
the acceleration level. Subject 3 reached slightly lower lateral acceler-
ation values (7.35m s−2) but much more intense levels of longitudinal
acceleration (6.68m s−2), both in traction and in braking. Moreover, the
rider used the combined dynamics much more, as indicated by the 1.52
value of his capability exponent. Consequently, the area lost due to a
lower-than-possible use of the combined dynamics (in red) was limited.

Fig. 6(c) compares the riders’ capability envelope. Rider S3 covered
the widest area (135.6m2 s−4) of the g-g diagram, while S1 was the most
conservative (62.8m2 s−4). S1 made the most modest use of longitudinal
dynamics. S6 severely limited the use of combined dynamics, producing
the only concave capability envelope (𝑚 = 0.80 < 1). The properties
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Table 2
Each subject’s values of the metrics describing their riding style. The metrics are divided into four groups: those relative to the familiarisation process, to the g-g diagram, to the
J-J diagram, and to experience and confidence.

S1 S2 S3 S4 S5 S6 S7 Mean SD

Familiarisation
𝐴∗ (m2 s−4) 40.09 50.02 138.01 54.07 60.16 42.56 90.69 67.95 31.17
𝑠∗ (m) 151.23 227.47 385.52 227.16 364.81 163.87 234.49 250.65 91.12

g-g Diagram
𝑎𝑥max (ms−2) 4.02 5.70 6.68 5.95 4.72 5.66 6.36 5.58 0.92
𝑎𝑦max (ms−2) 7.65 6.62 7.35 6.58 6.78 7.56 6.76 7.05 0.46
𝑚 (–) 1.02 0.94 1.52 1.00 1.00 0.80 1.42 1.10 0.26
𝐴 (m2 s−4) 62.77 70.79 135.61 78.4 78.39 66.19 114.19 84.6 28.70

J-J Diagram
𝐽𝑥min (ms−3) −17.39 −20.98 −41.59 −28.90 −25.12 −22.45 −29.30 −26.53 7.89
𝐽𝑥max (ms−3) 15.16 15.13 29.23 19.36 17.17 14.43 17.16 18.23 5.13
𝐽𝑦max (ms−3) 14.67 12.79 15.09 12.75 11.65 17.19 17.60 14.54 2.28
𝑚 (–) 1.30 1.26 1.17 0.92 0.97 1.15 1.27 1.15 0.15
𝐴 (m2 s−6) 275.13 298.49 552.62 299.19 277.55 283.77 386.20 338.99 101.64

Experience-Confidence
expFactor (–) 0.26 0.00 0.74 0.17 0.21 0.15 0.60 0.30 0.27
𝑎𝑥𝑦 (ms−2) 1.77 1.94 3.84 2.55 2.27 2.12 2.97 2.50 0.71
𝜙𝑥𝑦 (rad) 0.27 0.25 0.30 0.26 0.27 0.27 0.30 0.28 0.02
𝐽𝑥𝑦 (ms−3) 4.01 3.75 5.46 3.90 3.71 3.93 4.93 4.24 0.68
confFactor (–) 0.21 0.04 1.00 0.18 0.17 0.17 0.72 0.36 0.36
Fig. 6. g-g diagrams and corresponding capability envelopes, relative to all trials. The area of each dot is proportional to the corresponding total jerk value.
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of each rider’s gg diagram are shown in the ‘g-g Diagram’ section of
Table 2.

Figs. 7(a) and 7(b) compare the previous subjects (S1 and S3) in
erms of jerk. Similar maximum lateral acceleration values for these
iders translated into analogous maximum lateral jerk values. As men-
ioned in Section 2.3, all riders reached higher values of the negative
ongitudinal jerk than positive ones: for example, Subject 3 reached
9.2m s−3 in traction and 41.6m s−3 when braking. All riders (Fig. 7(c))
eached higher jerk values in the longitudinal direction than laterally.
ompared to the g-g diagram, the exponent of the envelope was less
ariable: from 0.92 for S4 to 1.30 for S1. Values for all riders can be
ound in the section ‘J-J Diagram’ of Table 2.

Fig. 8 plots the ‘confidence factor’ (Eq. (9)) against the ‘experi-
nce factor’ (Eq. (5)). Rider’s confidence in exciting the motorcycle
ynamics to a higher degree, in terms of total acceleration, total jerk
nd combined dynamics, was highly correlated (𝑅2 = 0.97 for the
inear regression, 𝑝 = 7e−5) with their experience, based on the
ears of licence and distance travelled in one year. The order of the
even riders sorted based on the experience factor was the same as
he order based on the confidence factor, except for S4 and S5 which
ad almost identical skill factor values. S3 had a ‘confidence factor’
qual to 1: he had the most extreme behaviour based on all the three
etrics considered. Values for all riders can be found in the section

Experience-Confidence’ of Table 2.
7

.3. In-depth corner entry analysis

.3.1. Motorcycle dynamics
Fig. 9 shows the results of applying the clustering to the dynamical

eatures computed for the corner entry manoeuvre. The dendrogram
Fig. 9(a)) was cut using a 0.39 threshold for the DTW distance,
btaining two clusters and two outliers.

Fig. 9(b) shows the first two principal components, which explained
0% of the total variance of the dataset. In particular, the first principal
omponent PC1 explained 55% of the variance and was sufficient to
eparate the two clusters: there was no overlap concerning the PC1
alues. While PC1 described inter- and intra-cluster differences, PC2
nly represented the difference among trials belonging to the same
luster. PCA loadings showed that PC1 was negatively correlated with
he mean speed �̄� and the roll angle standard deviation 𝜎(𝜙) and
ositively correlated with the minimum roll angle 𝜙min and its mean �̄�:
his means travelling slower along the corner, producing a more modest
verage and maximum roll (as the roll is negative in a leftward corner).
verall, high PC1 values indicated less intense lateral dynamics. Trials
elonging to the blue cluster had negative PC1 values; this cluster was
amed High-Dynamics ( HD ). The green cluster had more positive PC1

values; therefore, it was named Low-Dynamics ( LD ). PC2, instead, was
positively correlated with 𝜎(𝑣), 𝜙max, and 𝜎(𝑎𝑥), and was negatively
orrelated with �̄�𝑥: trials in the upper part of Fig. 9(a) had a more
ariable speed, which decreased throughout the manoeuvre (negative
�̄� ) with a highly variable longitudinal acceleration (higher 𝜎(𝑎 )). High
𝑥 𝑥



Transportation Research Interdisciplinary Perspectives 22 (2023) 100971M. Bartolozzi et al.

c

t
c

t

Fig. 7. J-J diagrams and corresponding capability envelopes, relative to all trials.
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Fig. 8. Regression showing the relationship between rider experience and confidence
in exciting motorcycle dynamics.

PC2 values indicated more intense longitudinal dynamics: the rider
approached the corner at a relatively high speed and had to brake
more intensely and for longer. As a leftward roll angle is negative,
having a more positive 𝜙max meant the rider widened the trajectory on
orner entry by initially leaning to the right. One outlier (S2HR1) had

an abnormally high PC1 value, travelling the corner at a very modest
speed; the other (S6HR2) stood out compared to the Low-Dynamics
trials for a peculiarly high PC2 value, indicating intense braking and
high speed differentials.

These results, relative to the statistical features computed from the
measured signals, were confirmed by the signals themselves. The speed
and roll angle (Fig. 9(c)) were plotted against the distance travelled12

along the corner, and their statistical properties are shown through box
plots. The higher speed of the trials belonging to the HD cluster was
noticeable, with minimal overlap with the LD cluster, especially at
he beginning and at the end of the manoeuvre. In the High-Dynamics
luster, the speed variation was more evident: as riders approached

12 The distance travelled along the corner differed slightly between different
rials due to the trajectory variability.
8

the corner faster, they tended to brake more. The speed reached its
minimum around 5m earlier than for the Low-Dynamics cluster, with
arlier throttle use after the apex. There are some HD trials whose
inimum speed was higher than the maximum speed reached in some

D trials. The S2HR1 trial was characterised by an unusually low speed,
coherently with its high PC1 value: the maximum speed reached was
lower than the minimum speed of most LD trials. The S6HR2 trial was
characterised by a significant speed reduction from the beginning of
the manoeuvre to the apex, as predicted by its high PC2 value. The
higher speed of the trials belonging to the HD cluster produced higher
roll angle values: the maximum was higher and was reached sooner,
magnifying roll rate and roll acceleration compared to the LD trials.
The roll angle was also maintained longer towards the exit of the curve,
despite opening the throttle sooner: this indicated higher use of the
combined dynamics. The very modest speed of the S2HR1 trial reflected
on the low roll angle values (<20°).

Table 3 shows how the different riders and instructions were dis-
tributed between the clusters. Subject S3 was most often in the HD
cluster, with just one trial (his first BR trial) classified as LD. He was
followed by S7, whose FR and HR trials were classified as HD, and his
BR trials as LD. Therefore, Subjects 3 and 7 had the confidence to get
closer to the grip limits, but this was lessened when instructed to ride
using their body. No other rider had a run classified as HD; two of them
(S2 and S6) produced outliers. The BR instruction led to significantly
fewer HD trials than others (two for BR, compared to six for FR and
HR); HR was the only instruction that produced outliers.

3.3.2. Rider inputs analysis
Focus on S7. As the trials of Subject 7, a professional trainer of military
trainers, showed the most meaningful and repeatable difference based
on the instruction given, the clustering on the riding inputs was first
conducted considering his trials only.

As the trials considered just one rider, the large rider-dependent
trials variability was removed; consequently, the first two principal
components accounted for a significant portion (78%) of the variance.
The remaining variability should then be described by the instruction
and familiarisation process, mainly in the case of the FR trials, as they
were conducted first.

The resulting dendrogram is shown in Fig. 10(a). Cutting the den-
drogram at a 0.60 DTW threshold produced three clusters and one
outlier. The first two Free Riding trials were the first trials to merge;
then, the third FR trial joined the same cluster (in cyan, named ‘Free
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Fig. 9. Results of the clustering algorithm applied to corner entry when using statistical properties of motorcycle dynamics signals as features. The High-Dynamics cluster is shown
in blue, and the Low-Dynamics cluster in green. Outliers are shown in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Riding’, or FR ). After that, the two closest groups were the first two BR
trials, which were joined by the third BR trial to form the pink cluster
(named ‘Body Riding’, or BR ). The first two HR trials belonged to the
ame cluster (in orange, named ‘Handlebar Riding’, or HR ), whose
ntra-cluster similarity was lower than that of the other clusters. The
FR and HR clusters merged; the resulting group was about as similar
o the remaining HR trial as the BR cluster. Each cluster contained
rials relative to a specific instruction.

The time signals were then investigated, and their statistical prop-
rties summarised through box plots (Fig. 10(b)). All three FR trials
9

presented a rapid steering torque increase on corner entry and high
peak values. The HR and BR showed reduced use of the steering
torque. The rider used higher steering torque inputs (Around 50%
higher 𝜏steer and 𝜎(𝜏steer)) when receiving no specific riding instruction.

BR presented a much lower use of the perpendicular torque as
well. Peculiarly, in the HR cluster, the perpendicular torque grew
very quickly, even more than for the FR cluster, although the steering
torque was far smaller. FR instruction led to more intense actions on
the handlebar, the opposite of the BR instruction. Following the HR
instruction, actions were intense only in the direction perpendicular to
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Fig. 10. Results of the clustering algorithm applied to corner entry by Subject 7 when using statistical properties of rider input signals as features. The Free-Riding cluster is
hown in cyan, the Handlebar-Riding cluster in orange, and the Body-Riding cluster in pink. Outliers are shown in black. (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)
he steering axis: the rider used the handlebar to make the motorcycle
ilt.

Concerning the use of the foot-pegs, trials in the HR cluster
showed minimal 𝜏feet variation through the trial. In the FR trial, a small
negative torque (in the direction of the motorcycle lean) was generated
when the rider moved to the right on the saddle. In the BR trials, the
use of the foot-pegs was intense, particularly in the case of one trial:
again, 𝜏feet and CoP𝑦 had the same signs, but differently from the other
trials they were positive.
10
The difference among clusters was apparent regarding lateral dis-
placement over the saddle. In the FR trials, the rider sat centred on the
saddle at the beginning and end of the manoeuvre, and he moved to
the right (towards the outside of the corner) in the corner entry phase.
This repeated to a lower degree in the HR cluster. For the BR cluster,
the behaviour was radically different: the rider moved towards the left
on the saddle and kept this position throughout the remainder of the
manoeuvre.

The characteristics of the BR cluster were peculiar also concerning
the longitudinal displacement: the rider moved significantly towards
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Table 3
The number of runs in each cluster (High-Dynamics, Low-Dynamics) and of outliers,
for each subject S𝑖 and instruction (Free-Riding, Handlebar-Riding, Body-Riding),
when using the statistical properties of motorcycle dynamics signals as features. The
distribution of the runs among the three groups is shown for each row as a percentage
inside brackets.

Cluster Outliers

HD LD

S1 0 (0%) 9 (100%) 0 (0%)
S2 0 (0%) 8 (89%) 1 (11%)
S3 8 (89%) 1 (11%) 0 (0%)
S4 0 (0%) 9 (100%) 0 (0%)
S5 0 (0%) 9 (100%) 0 (0%)
S6 0 (0%) 8 (89%) 1 (11%)
S7 6 (67%) 3 (33%) 0 (0%)

FR 6 (29%) 15 (71%) 0 (0%)
HR 6 (29%) 13 (62%) 2 (10%)
BR 2 (10%) 19 (90%) 0 (0%)

Total 14 (22%) 47 (75%) 2 (3%)

the front of the motorcycle starting from the initial braking phase, while
he slid towards the back when starting to use the throttle; the rider in
the BR trials, therefore, could be modelled as a mass–spring system with
much lower stiffness. As the movement in both directions was intense,
the rider interpreted the BR instruction as ‘to move significantly over
the saddle’.

The outlier (S7HR3) showed analogies with HR and FR trials but
differentiated mainly concerning the use of handlebar torques. In this
trial, 𝜏steer was intermediate between FR and HR trials, while 𝜏⟂ was
ower than for both. The movement over the saddle was analogous but
igher than that of the FR trials.

ll subjects. After analysing the trials by Subject 7, the clustering was
epeated considering all the riders so that the placement of S7’s trials
n the various clusters could be used to understand the meaning of
ach. Fig. 11 shows the dendrogram obtained; a 0.35 DTW distance
hreshold was used to cut it, obtaining five clusters and several (11)
utliers, indicating significant variability in the inputs given to the
ehicle. Three clusters (indicated in yellow, green and red) contained
ew trials, all relative to a specific rider-instruction combination. The
ther two clusters contained a much higher number of trials; there-
ore, they were more diverse in terms of the subjects and instructions
epresented; in fact, the roots of the clusters were placed slightly
igher than for the three smaller clusters. The five signals considered
ere uncorrelated: except for the correlation between the steering

orque and the perpendicular torque, which are produced by the same
ction (the forces applied on the handlebar), the strongest correlation
mong other signals was just −0.19 (the one between 𝜏⟂ and 𝜏feet). The
orrelation between statistical features was modest as well; the highest
orrelation between any two features relative to different signals was
.37, between 𝜎

(

CoP𝑥
)

and 𝜎
(

CoP𝑦
)

: for a given trial, the rider tended
o move more over the saddle in one direction when there was higher
ovement in the other direction. The correlation between the time

ignals and that between the statistical features was lower compared
o what was obtained considering only S7, as expected.

Clusters are numbered from left to right in the dendrogram. Their
roperties are derived by looking where the previously discussed clus-
ers for S7 are placed among them and by looking at the statistical
roperties of each (shown in Table 4).

• Cluster C1 coincided with the BR cluster described previously
for S7. In these trials, the rider minimised the perpendicular
torque (smallest mean and standard deviation). The rider moved
significantly longitudinally on the saddle (maximum 𝜎

(

CoP𝑥
)

value) and quite a lot laterally as well (second highest 𝜎
(

CoP𝑦
)

value), varying the footpegs torque in the process (maximum
11
Table 4
Values of the statistical features computed from the rider input signals for each cluster.
For the mean values, the cell is red if the value is negative, white if it is null, and
blue if it is positive. For the standard deviation values, the cell colour goes from white
if the value is zero to dark grey for the highest value.

𝜎
(

𝜏feet
)

value). These evidences attest that S7 interpreted the BR
instruction as ‘Apply minimal torque on the handlebar; move the
buttocks and use the foot-pegs to lean the motorcycle’.

• Cluster C2 contained the three BR trials of S3. He used the
steering torque minimally (lowest standard deviation and modest
mean) and the perpendicular torque modestly. The foot-pegs
torque was negative on average, making the motorcycle roll more,
and it had the lowest standard deviation. The rider was on the left
side of the saddle on average (highest and positive CoP𝑦), moving
significantly (highest 𝜎

(

CoP𝑦
)

). S3 interpreted the BR instruction
as ‘Do not use the handlebar to make the motorcycle lean; move
the buttocks and use the foot-pegs for that’.

• Cluster C3 contained two HR trials by S5. The use of 𝜏steer was
minimal, while 𝜏⟂ was by far the highest as both mean and
standard deviation. This cluster was the only one with a clearly
negative CoP𝑦 value, and it also had the lowest 𝜎

(

CoP𝑦
)

: the rider
remained on the right side of the saddle, and moved minimally.
S5 interpreted the ‘HR’ instruction as ‘use the handlebar mostly to
lean the motorcycle and do not move laterally over the saddle’.
𝜏feet was the highest by far and positive: the rider used the foot-
pegs to straighten the motorcycle, and this action was probably
linked to his position over the saddle.

• Cluster C4 contained eight trials of S2, three of S3, three of
S4, and the three FR trials by S7. It contained four riders and
multiple instructions, mainly FR and HR. The cluster was relative
to intense use of the steering torque: 𝜏steer and 𝜎

(

𝜏steer
)

were
highest. Movement over the saddle was extremely limited in
both directions (low 𝜎

(

CoP𝑥,𝑦
)

values), as the rider sat on the
centerplane on average (CoP𝑦 ≈ 0). The FR cluster described
previously for S7 is a subset of C4 trials ∈ C4 are similar to how
S7 rode when subject to the FR instruction, applying high steering
torque and a small, negative torque through the foot-pegs, with
limited movement over the saddle.

• Cluster C5 contained 26 trials belonging to six different riders
and all the riding instructions, about equally: 9 FR trials, 8 HR
trials and 9 BR trials. In particular, it contained all the trials by S1.
Consequently, the trial was relatively diverse; however, common
characteristics emerged. Longitudinal movement over the saddle
was the lowest, and the lateral movement was also very low. On
average, the torque applied through the foot-pegs was null. The
cluster contained trials which did not show extreme behaviour
concerning the other signals. HR ⊂ C5 : trials ∈ C5 show
analogies to how S7 rode when subject to the HR instruction:
much higher 𝜏⟂ than 𝜏steer, minimal movement over the saddle
and small foot-pegs torque.

Table 5 shows the distribution among the clusters of the trials by
each rider or instruction. Three categories of riders emerge concerning
whether they followed the instructions given:
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Fig. 11. Dendrogram showing the clustering algorithm results when using the statistical properties of rider input signals as features.
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Table 5
The number of runs in each cluster and of outliers, for each subject S𝑖 and instruction
(Free-Riding, Handlebar-Riding, Body-Riding), when using the statistical properties of
rider input signals as features. The distribution of the runs among the six groups is
shown for each row as a percentage inside brackets.

Cluster Outliers

C1 C2 C3 C4 C5

S1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9 (100%) 0 (0%)
S2 0 (0%) 0 (0%) 0 (0%) 8 (89%) 0 (0%) 1 (11%)
S3 0 (0%) 3 (33%) 0 (0%) 3 (33%) 1 (11%) 2 (22%)
S4 0 (0%) 0 (0%) 0 (0%) 3 (33%) 1 (11%) 5 (56%)
S5 0 (0%) 0 (0%) 2 (22%) 0 (0%) 6 (67%) 1 (11%)
S6 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 (89%) 1 (11%)
S7 2 (22%) 0 (0%) 0 (0%) 3 (33%) 2 (22%) 1 (11%)

FR 0 (0%) 0 (0%) 0 (0%) 9 (43%) 9 (43%) 3 (14%)
HR 0 (0%) 0 (0%) 2 (10%) 6 (29%) 8 (38%) 5 (24%)
BR 3 (14%) 3 (14%) 0 (0%) 2 (10%) 9 (43%) 4 (19%)

Total 3 (5%) 3 (5%) 2 (3%) 17 (26%) 26 (41%) 12 (19%)

• Subjects S1,2,6 did not follow the instructions, as all the trials
which were not outliers belonged to the same cluster, indepen-
dent of the instruction. These clusters were C5 for S1, C4 for
S2, and C5 for S1; therefore, S1 and S6 also had a similar riding
style. The familiarisation process did not influence their riding
inputs, as well.

• Subjects S3,7, the most experienced ones, followed the instruc-
tions. All the BR instructions by S3, and only those, belonged
to a specific cluster, highlighting a different behaviour compared
to his HR and FR trials. S7 had its trials classified in a different
cluster for each instruction.

• Subjects S4,5 had trials belonging to different clusters; however,
there was not a clear relationship between instruction and con-
sequent cluster: so their behaviour changed in a mostly chaotic
way. In particular, S4 produced five outliers: his riding style was
inconsistent and not repeatable.

The riding style preference stated before the test (handlebar vs body,
in Table 1) was compared with the clustering results. All trials by
S1 ∈ C5 which is relative to high perpendicular torque and minimal

ovement over the saddle: this is coherent with the higher score the
ider assigned to ‘riding through the handlebar’ compared to ‘riding
hrough the body’ (8.0 vs 5.6). Eight trials by S2 ∈ C4 which is relative

to high steering torque values while not moving on the saddle: also
S2 gave a clear preference to riding through the handlebar, coher-
ently with his behaviour. His only outlier is a BR trial. S3’s BR trials
are in a separate cluster: this instruction led him to ride differently
than when subject to the FR instruction, which is coherent with his
stated preference about riding using the handlebar. S produced five
12

4 v
outliers, which included his very first trial, probably due to the effect
of familiarisation, and all his BR trials; before the test, he stated equal
preferences concerning riding using the handlebar and using the body,
but after the test, he expressed an appreciation for the HR instruction.
S5 was the only rider to state a clear preference concerning riding with
the body (8.4 vs 5.2): in fact, the BR instruction was the only one that
produced trials belonging to the same cluster. S6 did not have trials
belonging to different groups as the instruction changed: his preference
was about the same concerning riding using mainly the handlebars or
the body (6.5 vs 6.7), and this lack of preference might have influenced
his lack of behavioural change.

4. Discussion

Overall, the results showed appreciable differences between the
riders, significantly influenced by experience. For a given rider, rider
behaviour evolved as the familiarisation process occurred. For most
riders, the instruction imparted clearly influenced behaviour, especially
concerning the inputs used.

The familiarisation analysis showed that all the riders tended to
explore additional portions of the g-g diagram along the trials. As was
hypothesised, the growth of its area as a function of the travelled
distance was excellently described by a negative exponential (lowest
coefficient of determination equal to 0.91). The expansion of the ca-
pability envelope continued in the subsequent familiarisation trials,
even though the riders were never told to ride faster as they gathered
experience: the process happened naturally. A significant variability
emerged among riders regarding the asymptotic area, for which experi-
ence was a precise predictor, and the distance travelled before reaching
the asymptote. The fit was worse in the first 100m, as the rider started
from a standstill on the initial straight: as such, the first points on the
g-g diagram were all located on the upper part. Therefore, even if the
longitudinal acceleration was significant, the envelope area was small;
it was only in correspondence to the first corner that the rider explored
a different part of the diagram, producing an abrupt area increase.

Concerning the estimated capability envelope of each rider, some
patterns emerged. All riders reached higher acceleration values in
the lateral than the longitudinal direction. The inter-rider difference
was surprisingly modest in terms of lateral acceleration (1.07m s−2

difference between the lowest and highest 𝑎𝑦max values). It was more
significant in terms of longitudinal acceleration (𝑎𝑥max ranged from
4.02m s−2 to 6.68m s−2). Each rider had similar longitudinal accelera-
tion levels when using the throttle compared to braking. The difference
in the longitudinal dynamics concerning jerk was even higher, partic-
ularly when braking: the highest 𝐽𝑥min value was around 2.5 times
he lowest. The high variability in the negative jerk values confirms
he results of previous research on the braking patterns of riders with

arious skill levels (Huertas-Leyva et al., 2019). Concerning the riders
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who reached the highest negative jerk values, the high jerk was pro-
duced by quickly transitioning from high throttle use to strong braking,
producing a significant and quick longitudinal acceleration differential.
Opposite to the evidence concerning the acceleration values, the lat-
eral jerk was more modest than the longitudinal one. Although there
was a clear indication that more experienced riders tended to excite
the combined dynamics more, the variability of the jerk capability
exponent was more modest and less correlated with experience. A
higher frequency of the feedforward control, required for minimising
travel time given friction conditions or minimising the grip required
for a given travel time (Limebeer and Massaro, 2018), inherently
produces higher jerk values. A more intense feedback action, which
might be linked to a less stable vehicle or a more erratic rider (Lot
and Sadauckas, 2021), can produce higher jerk levels, too. Further
research should differentiate between the two, potentially providing
suggestions to improve training programs. To summarise, more expert
riders used a more intense braking action, which was applied more
abruptly and continued well into the corner. Experience predicted very
well (𝑝 = 7e−5) the intensity of the riding dynamics in terms of
acceleration magnitude and combination and jerk magnitude. The J-
J diagram, proposed in this work, was useful for comparing riders in
terms of jerk values in addition to acceleration. It should be noted that
jerk, and in particular the measured peaks, are particularly dependent
on the specific motorcycle used (e.g. suspension damping) and the
filtering performed on the computed jerk.13 However, this does not
impact the comparison of trials performed using the same hardware and
software, like in the case of the present study or for an instrumented
motorcycle employed by a riding school. Other studies have shown
that rider behaviour can repeatedly differ between right and left-hand
corners (Magiera et al., 2016); future work could extend the asymmetry
of the ellipse to the lateral direction, too. In naturalistic riding sessions,
elements like roundabouts, which are always travelled in the same
direction, might explicitly induce this phenomenon.

The HAC algorithm classified the different trials concerning the
corner entry manoeuvre, highlighting the characteristics of the various
riders and each one’s behaviour following a specific instruction. The
‘Motorcycle Dynamics’ clustering produced two groups, distinguished
by the intensity of the corresponding dynamics. The ‘High-Dynamics’
(HD) cluster only contained trials by the two most expert riders:
therefore, rider experience was a more impactful factor than the riding
instruction concerning the intensity of the dynamics observed. Still, the
Body Riding (BR) instruction could (always in case of S7, in the first
attempt in the case of S3) move a subject’s trial from the HD cluster
to the Low-Dynamics (LD) one. Notably, the opposite effect was never
observed: in no case did the BR instruction move a rider from cluster
LD to cluster HD. The principal components projection proved useful in
understanding the intra- and inter-cluster differences. Each component
described one distinct aspect of the motorcycle response: lateral dynam-
ics in the case of PC1, mainly the mean lateral acceleration or roll angle,
which for a given trajectory is linked to the mean speed, and the lon-
gitudinal dynamics in the case of PC2, in terms of mean and variation
of the longitudinal acceleration. The HD trials were also characterised
by more intense use of the combined dynamics. The HD cluster had
a lower variance in the speed signal across different trials (Fig. 9(c))
compared to the LD cluster: this is partly due to fewer trials (14 vs 47).
However, there could be an additional explanation: as a rider reduces
the manoeuvre execution time, they will, on average, remain closer to
the edge of the friction envelope; in doing so, the set of acceleration
signals resulting in a given travelling time reduces. The limit case is
the ‘optimal manoeuvre’, consisting of a unique combination of inputs
that leads to the theoretical minimum time. On the contrary, when

13 In this work, jerk was computed as the central finite difference of the
cceleration signal (sampled at 10Hz), then filtered through a Savitzky–Golay
ilter with a cubic polynomial and a 5-points window size.
13
travelling slower on average, a rider can complete the manoeuvre in
a given time using various combinations of longitudinal and lateral
acceleration profiles: one could say that ‘there are many ways to ride
slowly and fewer ways to ride quickly’. Another factor could be that
the HD consisted of trials by S3 and S7 only, who are very experienced
riders that probably found it easier to have a repeatable behaviour. Just
two trials (3%) were outliers: in terms of motorcycle dynamics, most
attempts could be described as a variation of a more general case. The
S2HR1 trial was abnormally slow; however, no instabilities or events
of interest emerged when checking the video footage. For S2, the HR
nstruction followed the FR trials, so the HR1 trial was the first one
n which a specific riding instruction was given: this probably caused
ome discomfort to S2, which was the only rider still getting their

licence at the time of the test. The other outlier (S6HR2) was produced
by the rider with the shortest licence age (one year).

On the other hand, the ‘Rider Inputs’ clustering showed high vari-
ability concerning the possible input combinations a rider can use to
enter a corner. Some riders followed the instructions, changing their
behaviour based on their instruction interpretation. For example, S3
and S7 both followed the BR instruction but did so in slightly different
ways, both coherent with the concept of ‘riding using the body’: the
instruction was deliberately generic, leading to this result. Others did
not follow the instructions to the same extent: a subset of riders did not
change behaviour based on the instruction, and others did chaotically
such that the instruction only explained a part of riding style variation.
A much higher number of clusters (five) and outliers (eleven) resulted
when classifying the trials based on the inputs given instead of the
consequent motorcycle response. All the measured inputs were relative
to lateral dynamics, for which the steering torque 𝜏steer is the primary
input; instead, the other actions, like pushing the footpegs or moving
laterally over the saddle, have a modest effect on the motorcycle
response and are mainly linked to psychology and comfort (Weir and
Zellner, 1978). In fact, S7, who has high consciousness and preparation
being a professional trainer of trainers, expressed a strong preference
concerning the use of the handlebar and counter-steering (9.2 and
9.3, respectively), and very low scores about pushing against the foot-
pegs (1.3) and the tank (3.4). In his case, the instruction dictated
the inputs he used, with solid repeatability. The clear instruction-
dependent behaviour difference manifested in each one of the time
signals considered in the clustering. Identifying the meaning of each
cluster using the proposed approach was relatively easy, despite the
high number of subjects, instructions, trials, repetitions, and features
used. The statistics of each feature cluster showed the peculiar aspects
of each cluster. Even though not all riders followed the instructions,
their behaviour was overall in line with the preference given before
the test; when this was not true, the rider corrected their opinion in
the post-test questionnaire. In all trials, the rider counter-steered and
applied a leaning torque towards the fall (𝜏steer, 𝜏⟂ < 0 in the leftward
corner): this is coherent with the results by Wilson-Jones (1951).
Notably, even though counter-steering was always clearly present as it
is an unavoidable phenomenon, S5 stated in the questionnaire that they
make limited use of it: this lower consciousness might induce the rider
to apply a steering torque in the wrong direction during emergencies,
greatly limiting the probability of avoiding the obstacle (Nugent et al.,
2019). The clustering process considered either the rider inputs or the
corresponding motorcycle response, while the link between the two
was only considered indirectly: in the future, the relationship between
the two should be assessed explicitly, for example, by applying the
HAC to the union of the two sets of features proposed in this work.
Additionally, statistics relative to the throttle position and brake pres-
sure signals (not recorded during the experiment) should be added as
features to complement the inputs related to trajectory control to those
linked to managing the speed. In particular, a given deceleration can
be achieved through different front-rear brake pressure combinations,

possibly linked to experience and skill.
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This work investigated riding preferences and style concerning the
inputs used and the corresponding motorcycle dynamics for a diverse
set of riders and evaluated the impact of familiarisation and the in-
struction given on their behaviour. A strong correlation was found
between the rider’s experience and several traits, such as the level
of acceleration and jerk used and the usage of combined dynamics,
and suggests conducting additional research to draw more general
conclusions. Limitations consist of the modest length of each trial,
which was conducted in a controlled environment: future work should
extend the approach to a longer naturalistic ride on open roads to
assess riding style and preferences in the real world, as the road width
and absence of traffic could have impacted the rider behaviour. On
the other hand, conducting trials following a pre-defined path in a
controlled environment removed several external factors, like traffic or
the properties of the road chosen, making the trials, whose statistics
are compared, likewise. Moreover, the sophisticated instrumentation
was not invasive and only a few sensors were visible: as the subjects
did not know which quantities were measured, their behaviour was
influenced less by the measurement apparatus. The work considered a
small sample (𝑁 = 7) of riders, and only one of them was a professional
rainer, even though one can expect professional riders to have less
ariable behaviour due to the training; therefore, the generalisability of
he values obtained concerning the various metrics is limited. However,
ost other studies that compare the behaviour of different subjects
sing sensors consider a lower or analogous number of participants.14

et, inter-rider variability was significant, and the correlation with
xperience was statistically significant. The main contribution of this
ork is methodological: the approach and metrics proposed can be
mployed for more extensive panels of participants. The work proposed
n automatic approach to identify several metrics related to riding
references and capability: these could be used as features for the HAC
lgorithm to classify riders based on their macroscopic behaviour, for
xample, concerning using combined dynamics or the familiarisation
rocess. The approach could aid researchers in characterising rider
odels relative to different skill levels or even corresponding to a

eal rider. Lastly, comparing the signals to the corresponding cluster’s
tatistical features might help detect instabilities or the cause of a crash.

. Conclusions

This work investigated the difference in riding style, preference,
apability, and willingness to excite the motorcycle dynamics of a
iverse set of riders. A significant inter-rider difference was found
oncerning the riding inputs employed and the corresponding motor-
ycle response. The effect of the riding instruction received, the rider’s
tated preference, and the familiarisation process was investigated.
he novelty consists in the reproducibility of the objective and auto-
atic approach proposed and the focus on the impact of experience

nd stated preference on behaviour, including the inputs used. This
pproach, which worked well even in such a repetitive riding condi-
ion, discriminating well between subjects doing the same manoeuvre,
as considerable application potential for analysing naturalistic data,
here the differences between riders will be even more apparent. The
iversity of riding practices, and the minimal effect of some inputs
sed, warrant a revision of training and retraining practices to direct
ehaviour towards improved safety and make riders aware of the inputs
hat determine much of the PTW response, such as steering torque.
heir consequences in terms of comfort should also be investigated

n more detail. The most safety-effective riding styles, i.e. those that
llow for greater manoeuvrability, should be identified and taught; in
erms of capabilities, one could aim to raise the level of each trainee.
he approach proposed could make research on rider behaviour more

14 𝑁 = 2 (Magiera et al., 2016), 𝑁 = 3 (Biral et al., 2005), 𝑁 = 7 (Diop
t al., 2023), 𝑁 = 8 (Diop et al., 2020), 𝑁 = 12 (Will et al., 2020).
14
traightforward and objective and allow trainers to track the progress
ade by the trainees easily.
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