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A modular framework for multi-scale tissue
imaging and neuronal segmentation

Simone Cauzzo 1,2 , Ester Bruno 1,3, David Boulet 4,5, Paul Nazac 5,
Miriam Basile 3, Alejandro Luis Callara1,3, Federico Tozzi1,3, Arti Ahluwalia1,3,
Chiara Magliaro1,3, Lydia Danglot 4,5,6 & Nicola Vanello 1,3,6

The development of robust tools for segmenting cellular and sub-cellular
neuronal structures lags behind the massive production of high-resolution 3D
images of neurons in brain tissue. The challenges are principally related tohigh
neuronal density and low signal-to-noise characteristics in thick samples, as
well as the heterogeneity of data acquired with different imagingmethods. To
address this issue, we design a framework which includes sample preparation
for high resolution imaging and image analysis. Specifically, we set up a
method for labeling thick samples and develop SENPAI, a scalable algorithm
for segmenting neurons at cellular and sub-cellular scales in conventional and
super-resolution STimulated EmissionDepletion (STED)microscopy images of
brain tissues. Further, we propose a validation paradigm for testing segmen-
tation performance when a manual ground-truth may not exhaustively
describe neuronal arborization.We show that SENPAI provides accuratemulti-
scale segmentation, from entire neurons down to spines, outperforming state-
of-the-art tools. The framework will empower image processing of complex
neuronal circuitries.

Describing themammalian brain connectome at the cellular and sub-
cellular scales is one of the holy grails in neuroscience1–3. The brain
comprises billions of densely packed neurons4. Isolating single cells
in their native arrangement within brain tissue represents a crucial
step for describing neuronal shape, size and complexity, which
enables in turn the characterization of cell types and the identifica-
tion of any morphological abnormalities characterizing
neuropathies2,5. Dendritic spines are tiny membranous protrusions
on dendritic shafts that can be contacted by glutamatergic axons to
form excitatory glutamatergic synapses. Spine morphology was first
described by RamonYCajal in 1888 using theGolgi Technique6. Their
3D morphology can be studied using the gold standard 3D electron
microscopy (as reviewed in Harris et al. and Rasia-Filho et al.7,8).
Dendritic spines can harbor various morphologies, from stubby

spines (short bulges of the membrane) to mushroom shapes (with
thin necks and bulbous heads)9. More recently, based on ultra-
structural analysis of mouse neocortical dendritic spine necks, the
existence of subtypes of spines has been questioned, and a con-
tinuum of spine morphologies has instead been proposed10. Den-
dritic spines receive electric inputs which are locally regulated by
spine neck geometry and resistance11,12. Furthermore, spine shape
anddensity are linked to synaptic function, such as learning,memory
and motivation13,14 and changes in synaptic activity are associated
with alterations in spine shape, size and number15,16. Structural
alterations of spiny synapses are found in the pathogenesis of major
neurological disorders (ASD, schizophrenia and Alzheimer’s
disease)17–19. Reduction in spine density and synaptic loss are found in
patients with Alzheimer’s disease and Mild Cognitive Impairment
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(MCI)17,20,21, suggesting their collective and individual role in brain
dysfunctions18,21.

Several imaging methods have been developed to explore neu-
ronal structures at different spatial scales. Among these, single22 and
multi-photon confocal microscopy23 are the cardinal tools to visualize
neurons from ex vivo or in vivo samples within their native environ-
ment, since they offer deep imaging solutions, with lateral and axial
resolutions from 180nm in the XY plane to 500 nm in the Z direction,
respectively24. On the other hand, super-resolution microscopy (e.g.,
STimulated Emission Depletion—STED), enables the characterization
of tiny dendritic spines25–28. However, brain tissue is prone to scattering
which limits the imaging depth (Z) in the tissue. The performance of
both confocal and super-resolution imaging canbe improved via tissue
clearing and refractive index matching29, which enable the acquisition
of larger sample volumes with improved signal-to-noise and contrast-
to-noise ratio (SNR and CNR), while maintaining low laser power30.

Parallel to the advances in brain tissue labeling and imaging at
both the micro and nanoscale, automatic algorithms aimed at high-
fidelity three-dimensional (3D) reconstruction of single neurons have
been extensively developed. Recent reviews on the topic2,31 provide a
categorization point for more than forty algorithms (see Supplemen-
tary Table 1), each one exploiting key aspects of image properties (e.g.,
signal-to-noise ratio, point-spread-function, image contrast) and/or
neuron features (e.g., axon tubularity, soma sphericity, tree-like
structure) for developing a custom neuron reconstruction strategy.
As such, their success is strongly influenced by both the acquisition
modality and cell type and by the kind of features they rely on. For
example, local methods based on a progressive propagation of the
tracing or segmentation from a reference point are particularly sen-
sitive to noise or local inhomogeneity, while global methods based on
SNRwill fail at handling smooth changes in SNRacross the image stack.
For this reason, developing general-purpose solutions is often
impracticable. Some of these issues are partially solved by meta
methods, i.e. modules that can be used on top of base tracing or
segmentation algorithms to solve specific problems and improve the
result (e.g., G-cut32 for post-hoc separation of interweaving neurons
and UltraTracer33 for increasing the scalability of tracing algorithms to
large image stacks). It is worth highlighting thatmost of the algorithms
for neuron segmentation from microscopy images proposed cannot
isolate neurons acquired with different imaging modalities, and only
few of them are able to deal with densely packed cells32,34–36.

Similar considerations apply to methods based on Artificial
Intelligence (AI) approaches such as machine learning and deep
learning (for a summary categorization see Tables 3 and 5 in Chen
et al.37), which have been successfully introduced thanks to the avail-
ability of high quality and large training datasets38–40. For the same
reasons, convolutional neural networks were recently introduced38–40.
AI approaches are in fact rapidly emerging as a solution to the complex
problem of neuronal reconstruction in microscopy images. However,
their direct application to previously unseen data (e.g., different
acquisition modality, cell type, SNR levels) strongly depends on the
training set (e.g., type of data, number of training examples), or ad-hoc
solutions (e.g., transfer learning41,42), limiting their generalizability.
Although considerable effort is now being made to achieve explain-
ability in deep learning models43, their black-box nature makes it dif-
ficult for users to exercise control over common issues such as over- or
under-segmentation. In addition, existing algorithms based on deep-
learning currently struggle in dealing with separating multiple struc-
tures within an image block37 and to retrieve information beyond the
limits posed by image resolution, i.e., for spine morphology or spine
neck reconstruction. Finally, independent of themethod used,manual
correction and fine-tuning of the automatic results by experts are still
required44.

Neuroimaging data obtained from clarified tissues2, a genre of
methods which clear high opacity tissue lipids, represent unique

features in termsof both image quality (e.g., enhanced signal intensity,
SNR, CNR) and the capability of imaging densely packed cells in a 3D
arrangement2,34,45,46. But, the generalizability of neuron reconstruction
algorithms is even lower when dealing with images from densely
packed neurons.Moreover, the outcomes of suchalgorithms and tools
are compared with a manually segmented ground truth reconstruc-
tion, which is time consuming, difficult to achieve and prone to
human bias.

In the light of these challenges, we have designed a framework for
extracting faithfulmorphological information frombrain tissues at the
neuronal and sub-neuronal level via imaging and image processing
tools. Specifically, we developed a method for processing and
acquiring brain tissue which returns large volume datasets represent-
ing neurons with an improved image quality. Then, we present a data-
driven approach—SENPAI (SEgmentation of Neurons using PArtial
derivative Information)—for neuron segmentation from 3D optical
images. SENPAI benefits from image topological information and
K-means clustering to provide faithful descriptions of isolated neuro-
nal morphologies at multiple levels of detail which does not rely on
constructing models of image signal and/or noise. Decision-making
routines select classes representing neuronal structures in the image.
K-means based segmentation is complemented by a parcellation step
exploiting topographic distances. We employ morphological recon-
struction and the watershed transform to ensure the correct separa-
tion of neurons when they are closely packed. The same strategy is
used for the grouping and assignment of small spines to the body of a
specific dendritic tree in high-resolution datasets without
detectable necks.

Herewe demonstrate the performance of the proposed approach
using images from both confocal and super-resolution STED micro-
scopy. As a proof of concept, we focused on the L7GFP mouse line
which expresses cytosolic GFP in cerebellar Purkinje cells. As these
cells are particularly densely packed, we cleared the samples to
improve imaging depth. Thanks to deep super-resolution 3D STED
imaging we were able to resolve dendritic spines over wide dendritic
trunks. The algorithm was tested against state-of-the-art software and
manual segmentation. Specifically, we compared the complexity of the
resulting segmentations and assessed their performance in the
detection and correct assignation of dendritic spines to neurons.
Furthermore, we provide an original validation paradigm for evaluat-
ing the quality of segmentation, in which morphometrics extracted
from the segmented neurons are compared with reliable quantitative
indices of Purkinje cell morphology available in the literature47. To
evaluate the generalizability of the segmentation algorithm to other
neuron types and imagingmodalities, we tested SENPAI’s performance
using open datasets comprising both cultured and ex-vivo neurons.
This study represents a significant advancement in the state-of-the-art
for the comparison of segmented neurons, particularly when a reliable
manually segmented ground-truth is not available and/or achievable.

Results
Labeling and super-resolution STED imaging of thick samples
Purkinje cells are characterized by a dendritic tree studded with
numerous dendritic spines, receiving roughly 200,000 synapses48. To
unravel their morphology, we cleared thick slices of L7GFP mouse
brain samples29,30 and processed them for long-term immunochem-
istry. The pre-processing steps and the labeling strategy are shown in
Fig. 1A–C (see Methods for details).

To access several scale levels of information (from tissue slices
with populations of cells, to the cell environment, a single dendritic
tree, and local spine density) we set up the acquisition of correlative
imaging using both low magnification for tissue scanning (20x) and
high-resolution imaging (93x) of dendritic spine with either confocal
or 3D STED microscopy. Reconstitution of wide mosaic brain area
requires the use of tile imaging acquisitions that are very sensitive to
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Fig. 1 | Labeling strategy for thick imaging in 3D super-resolution STED
microscopy. A Embedding the tissue in hydrogel and cutting 6 slices (0.5–1mm
thick) using a vibratome. B Passive clearing via incubation in clarity solution.
C Labeling protocol using primary and secondary fluorescent dedicated STED
antibodies. D–G Floating slices mounted on a slide in the center of a homemade
PVC spacer.H, I Spacer hole filled with prolong goldmounting media and covered
with super-resolution 0.17mm glass coverslip. Depending on slice thickness, sev-
eral spacers can be stacked to keep coverslip parallel to the slide. J, K Spacers and

coverslip sealed to the slidewith silicone.LConfocal tile imaging of the cerebellum.
M Confocal zoom in over Purkinje cells with 20x objective. N Conventional 3D
confocal imaging over the Purkinje cell layer with dedicated Zoom in (O) around
the cell body.PSingle sliceof 3DSTEDmicroscopy, revealing dendritic spine (white
arrows) decorating the entire dendritic tree. Q 3D rendering of multiple 3D STED
stacked slices showing the high density of dendritic spines within depth. Scale bar:
10microns.
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stage and sample flatness. Thus, to optimize sample flatness and
working distance objective, we carefully designed custom-made
spacers of calibrated thickness (300microns thick PVC sheets) allow-
ing light penetration directly into the sampleswithout passing through
thick mounting media layers. Using this device, glass coverslips were
sealed parallel to the slice surface, allowing deep imaging using 93x 3D
STED objective with 300microns working distance (Fig. 1 D–J). Wide
areas couldbe imagedover the cerebellumusing tile 3D imagingwith a
20x glycerol objective (Fig. 1L, M) that could be correlated to confocal
(Fig. 1N, O) and 3D STED imaging (Fig. 1P, Q) at higher magnification
(93x). As shown in Fig. 1, Purkinje cells are exquisitely packed in
undulating layers, and dendritic trees can be inferred from conven-
tional confocalmicroscopy. However, dendritic spines can be resolved
more efficiently using 3D STED microscopy (Fig. 1P, Q and Supple-
mentary Movie 1). Because cell and spine densities are high, manual
segmentation would be quite time consuming and prone to human
bias. Automatic segmentation using conventional thresholding
method is not really efficient, since local intensity within Purkinje cells
is quite different (Fig. 1P): dendritic trunk intensity is very high (yel-
low), whereas spine heads have moderate intensity (pink) and spine
necks are pretty dark (deep purple). We thus designed the SENPAI
pipeline to meet these biological and technical challenges.

General workflow of SENPAI: step 1—segmentation
SENPAI is developed as a two-step automated workflow for recon-
structing neuron morphology starting from 3D optical images (Fig. 2).

As intensity variations are very high in Purkinje cells, we choose to
use model-independent topological information. The segmentation
strategy in SENPAI consists of a K-means clustering of the image
dataset in a 4-dimensional feature space defined by the intensity and
the three second derivatives of the image intensity computed along
the three main spatial axes (Fig. 2B). Six clusters, or classes of voxels
are thus automatically identified and sorted by assigning numeric
labels based on the average image intensity within each class, starting
from the lowest (class 1) (Fig. 2C). The clusters are then automatically
labeled as neuronal structure or background, based on their feature
values. The way the image space is subdivided highlights inner and
outer borders along the three main directions (Fig. 2D). Neuronal
shape correlates with highest average image intensity classes that
present negative values for the averages of the three second deriva-
tives (Fig. 2B, C). However, thanks to the use of spatial derivatives, all
classes span large intensity ranges: neuronal classes, despite showing
high intensity values on average, are thus able to include low-intensity
image regions; similarly, non-neuronal classes, despite showing low
average intensity, also include high-intensity background regions (see
Supplementary Fig. 1). This subdivision was observed to be stable
across tests performed on different images (see Supplementary Fig. 1).
3D Gaussian image smoothing with user-defined size can be applied to
modulate the values of the second-order derivatives. As the clustering
can be focused on different levels of detail, it allows highlighting
structures at different scales. This guarantees SENPAI’s scalability and
versatility since a final multiscale result can be obtained by merging
two segmentations after applying different levels of smoothing to the
original image (Fig. 2D).

General workflow of SENPAI: step 2—parcellation
On datasets representing entire neuronal populations, branches
belonging to different cells are close to one another (Fig. 1N–Q) and
thus not discernible. As a result, segmentation algorithms may fail in
isolating single neurons, or may succeed, but at the cost of providing
more conservative (i.e., poor) segmentations. Similarly, in higher-
resolution datasets, when the goal is to study spine shape and density,
the difficulty of segmenting spine necks impairs the assignation of the
spine to the corresponding dendrite. To overcome these issues, we
included a second parcellation step in SENPAI based on the use of

morphological reconstruction and on the application of thewatershed
transform.

Morphological reconstruction is an iterative image transforma-
tion technique used to smooth out some less relevant local maxima or
minima49, while the watershed transform is employed to subdivide the
image space into regions assigned to objects having outstanding
intensitywith respect to the background50. For each neuronal core, i.e.,
the most discernable portion of an imaged neuron, we define a single
well (via morphological reconstruction) and an associated catchment
basin employing a watershed transform. A different label is associated
with each catchment basin to compose the parcellation process. When
applied to isolate single neurons, i.e., to separate merged structures,
neuronal cores can be easily defined by marking the soma or the
thickest arbor observable for each neuron. On the other hand, when
applied to merge unconnected structures, such as spines and their
corresponding dendrite, the neuronal core consists of the dendrite
branch (Fig. 2E).

Comparison with other segmentation or tracing algorithms
Confocal images of cleared mouse brain tissue samples (see Methods
and Figs. 1–2) were used to compare the segmentation of neurons
obtained using SENPAI with those performed with four state-of-the-art
algorithms, namely, the automatic HK-Means segmentation plugin51

included in the software Icy52 (hereinafter HK-Icy), the semi-automatic
tracing software NeuroGPS35, the semi-automatic segmentation soft-
ware Ilastik53 and the semi-automatic tracing software NeuTube54.
When single neuron identification failed with a specific algorithm, we
parcellated its outcome using the step 2 of the SENPAI workflow to
provide a reconstruction comparable with the others. The example in
Fig. 3 shows howneuron segmentations performed by SENPAI andHK-
Icy result in a notably denser and more intricate outcomes than those
from NeuTube and NeuroGPS, while Ilastik provides richer segmen-
tations whose complexity lies in between.We also report the 27 single-
neuron reconstructions obtained with SENPAI and the state-of-the-art
tools and used to test and validate SENPAI in Supplementary Figs.
2, 3 and 4.

We also compared the segmentation performance of SENPAI, HK-
Icy, Ilastik, NeuroGPS and NeuTube in terms of the area under the
curve (AUC) obtained through Sholl analysis, a method used to
quantify dendritic structure55 (see Fig. 4A). SENPAI, HK-Icy and Ilastik
show significantly higher values with respect to Neutube and Neu-
roGPS (Friedman test, p < 10−16, and post-hoc comparisons with
Tukey’s honest significant difference criterion, p < 10−2, Fig. 4B, right)
indicating a higher sensitivity to complex dendritic arbor detection.
Additionally, we compared the area-to-volume ratio of the segmenta-
tions provided by SENPAI, HK-icy and Ilastik (Fig. 4B, left). It should be
noted that this index cannot be extracted for NeuroGPS and NeuTube,
since they do not provide volumetric information. While HK-Icy and
Ilastik show similar values, SENPAI provides significantly higher area-
over-volume ratios (Friedman test, p < 10−8, and post-hoc comparisons
with Tukey’s honest significant difference criterion, p < 10−5).

Comparison against documented information on Purkinje cell
morphometrics
Purkinje neurons branch extensively and almost completely fill spaces
with little overlap56. They have been reconstructed using tools such as
NeuroMorpho.org57 from public repositories of single injected
neurons58,59 and several parameters have been used in the literature to
describe their morphology. The availability of summary statistics
describing the topology and morphology of neuronal populations
allows for the validationof new reconstructionswhen the ground truth
for the specific sample is lacking or the manual gold standard cannot
be obtained due to high density neuronal packing. Vormberg and co-
authors47 described the topological and morphological properties of
six types of neurons (including Purkinje cells) by means of the
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centripetal Horton-Strahler ordering (SO, see Fig. 5A). This is a well-
known index of branching complexity, which accounts for nine dif-
ferent parameters. These include: (i) Strahler Number (SN), i.e., the
maximal SO assigned to a segment in the neuronal tree. A further four
topological parameters are defined: (ii) Normalized Number of

Segments per SO, (iii) Normalized Number of Branches per SO, (iv)
Branch Bifurcation Ratio, (v) Normalized Topological Subtree Size per
SO. The final four metric parameters are: (vi) Normalized Branch Dia-
meter per SO, (vii) Total Normalized Dendritic Length per SO, (viii)
Normalized Average Segment Length per SO, and (ix) Normalized

Fig. 2 | The SENPAI algorithm. A Test datasets: 40x confocal (left) and 93x STED
(right). SENPAI was tested on cleared samples using confocal 40x (27 neurons) and
93x STED (5 neuron branches) datasets. B The SENPAI rationale, based on the
selection of classes displaying negative values of the second derivative along the
three main axes. C Rationale for the estimation of the K parameter of the K-means
clustering: the selected K is the one for which the histograms of second-order
derivatives show three different classes achieving maximal average value: here,
from the histogram of D2x (second derivative along the x axis), class 3 (cyan)
encodes outer borders along the xdirection, as it is the only classwith values clearly
above 0; similarly, class 4 encodes outer borders along the y direction (D2y histo-
gram); class 2 along the z direction (D2z histogram); class 1 encodes both low-and
high-intensity homogeneous image portions, and is labeled as background along
with classes 2, 3 and 4.D SENPAI workflow—Step 1: K-means clustering, performed
on the unsmoothed image (top) and optionally, in parallel, on the image smoothed

with a 3D Gaussian filter (below). Class selection is performed independently on
K-means classes (color-coded as in (C) for each clustering level). Resulting binar-
ized images (green for clustering level 1, pink for clustering level 2, white for the
overlap) aremerged by logicOR. E SENPAI workflow—Step 2 for neuron separation:
the segmented image is parcellated using morphological reconstruction and 3D
watershed transform computed on the morphologically reconstructed grayscale
image and applied to the binary segmentation. Left: raw image; Right: isolation of
connected structures belonging to the same neuron; somamarkers (yellow, placed
by user) define wells for the catchment basins (edges in gray). F SENPAI workflow—
Step 2 applied to spine assignation. Left: raw image; Middle: 3D rendering; Left: 2D
rendering of the parcellation with the connection of a neuronal portion (e.g., a
dendrite branch) to smaller clusters (i.e., dendritic spines). Groups of neuronal
clusters assigned to a single neuronal entity are displayed in different colors in their
relative catchment basin (gray).
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Average Branch Length per SO. While topological parameters are
universal to binary tree-like structures, metric parameters can be used
to differentiate cell types. For example, total dendritic length reveals
the dimensionality of dendritic trees, with shallow slopes for planar
trees, e.g., as in Purkinje cells, and pronounced slopes for 3D trees.

Using an ad hoc script developed in Matlab (see Methods)
(Fig. 5B), we extracted the SO for skeletonized neurons obtained from

SENPAI, HK-Icy, NeuroGPS, NeuTube and Ilastik. The SOs were com-
pared with those obtained by Vormberg et al. for Purkinje cells. The
results are shown in Fig. 5C and detailed in the Supplementary Infor-
mation (Supplementary Table 2).

SENPAI and HK-Icy achieved segmentations with the same SN
mode as that identified by Vormberg et al. for Purkinje cells, with
SENPAI scoring more hits. All measures reported in Fig. 5C show that

Fig. 3 | 3D visualization of the original confocal dataset and comparison of the
performance of the algorithms tested against SENPAI. Dataset acquired with a
confocalmicroscope equippedwith a 40xobjective (details inMethods).All images
are producedwith the IcyGUI. Tracings are converted to volumetric segmentations

with the SWC2IMG ImageJ plugin87. The same 10 neighboring neurons and one
exemplary single neuron are depicted using the same color code for all tools. A
further example is depicted within a 3D rendering of the original image in Sup-
plementary Movie 2.
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the segmentations obtained with HK-Icy and SENPAI have similar
metrics to those described in Vormberg et al., while the results
obtained with NeuTube and NeuroGPS differ. Ilastik achieved a lower
SNmode (5), although results are close to those of HK-Icy and SENPAI.
In addition, SENPAI outperforms the other algorithms matching the
steepest decay for the normalized number of segments (slope = −1.23)
found for Purkinje cells in the reference work and presenting smaller
deviations in the curves of subtree size and total dendritic length.

Comparison with other algorithms in the segmentation of
super-resolution datasets
In addition to the confocal 40x datasets, we also applied SENPAI to
L7GFP clearedmouse cerebellum slices imagedwith a LEICA SP8 STED
3DX equipped with a 93x objective (seeMethods), again comparing its
performance with state-of-the-art tools (HK-Icy and the automatic
segmentation algorithm Ilastik53) and ground-truth manual segmen-
tation (obtained via the ManSegTool60). The resulting segmentations
of five dendritic branches in the STED dataset are reported in Fig. 6.

Further analyses were performed to compare the branch areas
and volumes obtained from the automatic tools with those obtained
with the manual segmentation. We observed consistent differences
between SENPAI and HK-Icy and Ilastik. Specifically, while Ilastik
delivers volumes (Fig. 6B, left) that are significantly larger than those
from the manual segmentations (volume normalized with respect to
the ground-truth, median ±median absolute deviation (MAD) 1.91 ±
1.08) along with consistently larger area estimates, (area normalized
with respect to the ground-truth, median±MAD 1.45 ± 0.42), SENPAI
and HK-Icy’s outcomes are very close to ManSegTool’s (SENPAI area
median±MAD 0.88 ± 0.30, SENPAI volumemedian±MAD 0.86 ± 0.49,
HK-Icy area median±MAD 0.83 ± 1.00, HK-Icy volume median±MAD
0.75 ± 1.13). Particularly relevant is the analysis based on the Dice
coefficient61 (Fig. 6C), which quantifies the similarity between shapes
(ideal = 1). Considering the whole dendritic branches, SENPAI
achieves the highest Dice values for all the five of them, while Ilastik
performs worst for all dendritic branches but one (SENPAI Dice
median±MAD 0.81 ± 0.02, HK-Icy Dice median±MAD 0.78 ± 0.11,

Fig. 4 | Quantitative comparison of the segmentations on 40x images.
A Schematization of the rationale behind 3D Sholl Analysis: we compute the Area
Under theCurve (AUC) for the numberof crossings of eachneuronal structure for a
sphere with increasing radius centered on the root node (i.e., the soma centroid);
BQuantitative comparison for segmentations from 27 neurons on 40x images; left:
Area-Volume ratio for SENPAI (magenta), HK-Icy (blue) and Ilastik (green) (two-
sided Friedman test, p = 1.02 * 10−9, horizontal bars mark significant differences as

determined with post-hoc comparison using Tukey’s honest significant criterion,
p < 10−5); right: AUC of the Sholl analysis across segmentations obtained with
SENPAI (magenta), HK-Icy (blue), Ilastik (green), NeuroGPS (red) and NeuTube
(gray), (two-sided Friedman test, p = 6.81 * 10−17, horizontal bars mark significant
differences as determined with post-hoc comparison using Tukey’s honest sig-
nificant criterion, p < 10−2). Source data are provided as a Source Data file.
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Ilastik Dice median±MAD 0.68 ± 0.05). We performed the same ana-
lysis with a focus on spines, excluding those voxels that were labeled
as belonging to the dendrite by manual segmentation. To avoid
bias introduced by oversegmentation of the dendrite, we repeated

the analysis recursively dilating the dendrite mask. All points are
reported in Fig. 6C (bottom). SENPAI performs best again and is
matched only for dendrite Ne by HK-Icy (for the first iteration, SEN-
PAI Dice median±MAD 0.64 ± 0.07, HK-Icy Dice median±MAD

Fig. 5 | Comparison against documented information on Purkinje cell mor-
phometrics, based on Strahler Ordering. A Schematization of SO and of the
meaning of some of the extracted features; B Schematization of the validation
pipeline; C Graphical comparison of the SO of Purkinje cells found in the literature
and measured on the neurons segmented with SENPAI and the state-of-the-art
tools. The parameters based on the SO reported by Vormberg et al. on six types of

neuronal cells (left, edited from Vormberg et al.) and computed on 27 Purkinje
neurons segmented with SENPAI (magenta), HK-Icy (blue), Ilastik (green), Neu-
roGPS (red) and NeuTube (gray) from 40x images (right). It should be noted that
the parameters, with the exception of the BranchBifurcation Ratio,were computed
only for neurons whose SN was equal to their mode, in line with Vormberg et al.
Source data are provided as a Source Data file.
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0.50 ± 0.14, Ilastik Dice median±MAD 0.43 ± 0.10). Merging the
information in Fig. 6C, Ilastik clearly oversegments while HK-Icy
undersegments.

Spine-by-spine reconstructions obtained with SENPAI, Ilastik and
HK-Icy with the manual segmentation were also compared and
reported in Fig. 6D. For each of the three algorithms we counted the
number of true positives, false positives and false negatives and esti-
mated specificity and precision in spine detection. Due to higher false
negatives, SENPAI gives slightly lower specificity with respect to Ilastik,
but performs best in terms of precision. On average, SENPAI is better
than HK-Icy on all topological and morphological metrics and per-
forms better than Ilastik in terms ofmorphological reconstruction and
number of false positives.

Generalization to other neuron types and imaging modalities
To support the generalizability of the SENPAI pipeline, we tested the
algorithm onmultiple neuron types from different species (rat, mouse
and human) and in different conditions (tissues and cultured cells, in
uncleared samples and acquired with different imaging modalities—
see Supplementary Information). The neuron types we segmented
include human pyramidal neurons, mouse and rat pyramidal neurons,
human cultured excitatory neurons, mouse cultured excitatory neu-
rons, and mouse retinal neurons. The imaging modalities, other than
confocal and confocal STED, include two-photon (2P) microscopy. We
report both quantitative and qualitative evaluations, that attest to the
generalizability of our reconstruction algorithm across different ima-
ging modalities and neuron types.

Fig. 6 | Segmentations of 5 dendritic branches—Na toNe—and their localization
within a 3Dmultistack 93x STEDdataset. A Left: the dendritic branches Na to Ne
contained within a single stack and employed here for the validation of SENPAI are
highlighted in red.Right:wecompare the segmentations obtainedwith the state-of-
the-art algorithms. The segmentations were performed with SENPAI, HK-Icy, Ilastik
and manual segmentation by ManSegTool. Algorithm segmentations of the whole
image are underlaid in gray, while the parcellation outcomes are highlighted in red.
B Quantitative comparison for the segmentations of the 5 dendritic branches;
volume and area obtained with SENPAI, Ilastik and HK-Icy. The values are normal-
ized with respect tomanual segmentations. HK-Icy and Ilastik were integrated with
the SENPAI parcellation step to, respectively, assign spines to the dendrite and
separate touching dendrites from each other (volume result showed significant
differences; Friedman p =0.015; post-hoc with Conover’s test highlighted Ilastik

difference to both SENPAI and HK-Icy, p <0.01, highlighted with gray bars).
C Quantitative comparison of the segmentations of the dendritic branches; the
Dice coefficient was used to compare the segmentations obtained with the algo-
rithms against the manual segmentation, considering the whole neuron (top) and
the only spines (bottom). An ideal algorithm would give a Dice coefficient of 1. The
analysis on the spines was conducted by masking out the manual segmentation of
the dendrite (both whole neuron and average spine Dice coefficients from SENPAI
were different to both Ilastik and HK-Icy; Friedman tests p =0.015; post-hoc with
Conover’s tests, p <0.01).D Table summarizing algorithm performance in terms of
spine detection. Spines were counted in themanual segmentation, thenwe defined
False Positives (FP) and False Negatives (FN), True Positives (TP), the Sensitivity
(S% =%ofTPover TP+ FN) and the Precision (P%=%ofTPover TP+ FP) for SENPAI,
HK-Icy and Ilastik. Source data are provided as a Source Data file.
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Among the tested datasets of native (uncleared) tissue testedwith
SENPAI, 34 belong to the BigNeuron GOLD166 dataset. On the
BigNeuron bench-testing platform44,62–65, among 35 of the most pop-
ular state-of-the-art algorithms, SENPAI scored in the top-three for five
metrics over eight, and in the top-eleven for the remaining three
metrics (see Supplementary Note 10 in the Supplementary Informa-
tion). An exemplary result is reported in Fig. 7, upper panels.

A further uncleared image tested is the Neuro-GPS test dataset
made available by the authors of Neuro-GPS (see Supplementary
Note 11 in the Supplementary Information). Additionally, at the
INSERM facilities, four more datasets were produced with rat hippo-
campal neurons: two datasets including a whole labeled neuron in the
field of view, and twohigher-resolution datasets fromconfocal and 3D-
STED imaging the same dendritic branch with its spines. The results
obtained from these four datasets are presented in Supplementary
Notes 12 and 13, and Supplementary Figs. 18 and 19 in the Supple-
mentary Information. Moreover, an exemplary result is reported in
Fig. 7, lower panels.

Discussion
Mapping the structural layout of the brain at different scales is a major
challenge in neuroscience66. At the cellular level, deciphering neuronal
structure and connectivity in situ is particularly difficult because of
limitations in imaging depth in vivo. Consequently, imaging thick tis-
sue samples containing densely packed cells requires considerable
manipulation both in vivo and ex vivo. Once images are acquired, a
further challenge is to analyse and quantify neuronal structure and
morphology with high fidelity and reproducibility. To address these
challenges, we have developed a framework for clearing and staining
thick brain slices which can be imaged using confocal, 2P or super-
resolution microscopy.

At the spine level, super-resolution STED combined with FRAP
allowed to assess spines morphogenesis both in mice live slices and
in vivo67–70. Single cell micro-injection and confocal microscopy
recently provided a useful tool for spine classification by allowing to
analyze a huge database of >7000 individually 3D reconstructed
dendritic spines from human pyramidal cells71,72. Here, we propose to

Fig. 7 | Exemplary results obtainedonnon-clarified samples. For both imageswe
report themaximumprojection on the left, the segmentationobtainedwith SENPAI
on the middle (depth color-coded, cold colors indicate deeper planes), and the
skeletonization of the segmentation on the right, as obtained using the NeuTube
software. Above Exemplary dataset (m16_cing_1_9_cropped_neurona.v3dpbd,

human pyramidal cell labeled with Lucifer Yellow and acquired through confocal
microscopy, resolution 0.24 µmx0.24 µmx0.42 µm) from Benavides-Piccione
et al.72 available from theBigNeurongold166 standard63.Below 3Dstackof cultured
rat hippocampal pyramidal cells (pixel size 91.41 nmx91.41 nmx 280nm). Further
tests on non-clarified samples are reported in the Supplementary Information.
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complete this panoramawith a pipeline that leaves single-cell injection
behind and enables the structural analysis of deep tissue images.

The pipeline is based on SENPAI, a two-step segmentation and
parcellation tool which returns morphologically faithful segmenta-
tions of neurons and their branches at micron and sub-micron scales,
preserving surface details as well as multi-scale structure complexity,
providing enhanced robustness to signal inhomogeneity even across
thick samples. It exploits image intensity and its second order deri-
vatives in space that were previously proposed for edge detection and
structure modeling73,74. This second order derivatives analysis allows
SENPAI to highlight surfaces enclosing higher signal regions, inde-
pendent of the cross-sectional or intra-slice signal changes. It also
optimizes data information usage by merging local segmentation with
image parcellation based on global image intensity distribution. As
such, the pipeline allows characterizing neuronal arborization, den-
dritic branch diameters or local spine density more accurately and
faithfully than current algorithms and image processing tools (see
Supplementary Figs. 2–4). Because it is model model-free and acqui-
sition method-independent, tissular level organization at low magni-
fication and structural nanoscale morphometry of dendritic spines
using super-resolution microscopy can be easily correlated without
the need for methods such as single cell injection66,73–75.

SENPAI’s performance was compared with state-of-the-art tools,
and, when available, manual segmentation. Here we show that it
achieves excellent results on different imaging modalities, such as
standard confocal and STED. Moreover, SENPAI provides a finer
description of isolated neurons while minimizing user effort in tuning
the algorithm parameters: only the selection of the 3D Gaussian filter
size and the soma identification to run the parcellation step are
required.

Comparing performance with current tools and algorithms using
40x confocal microscope datasets, SENPAI outperforms NeuroGPS
and NeuTube as it returns isolated neurons with a significantly higher
arborization (Figs. 3–5). Indeed, the semi-automatic tracing with
NeuTube is strongly limited by user sensitivity to the thinnest low-
intensity branches. On the other hand, NeuroGPS could not achieve
dense tracings even when lowering the segmentation threshold to the
minimum. This is confirmed by the validation based on SO (Horton-
Strahler ordering), which highlights that the segmentations provided
by SENPAI and HK-Icy are clearly more consistent with quantitative
information on Purkinje neuron morphology available in literature
(Fig. 5). NeuroGPSprovided sparse tracingof dendritic branches,many
ofwhichwerenot connected to any soma. NeuTube captured the basic
morphology of a neuron in its native arrangement only for a small
subset of neurons and it achieved SNs >4. Although SENPAI andHK-Icy
showed similar performance, segmented structure density was
observed to have a strong z-direction dependency for HK-Icy, com-
pared to SENPAI. Undoubtedly, such a dependency is intimately linked
to non-homogeneous pixel intensity and image contrast across sec-
tions (see Supplementary Fig. 7) and it could be related to the fact that
segmentation in HK-Icy is based on intensity values and thus does not
exploit any topological information.

For the 93x datasets obtained with STED, the results—in terms of
assigned spines to the correct dendritic branch—were compared with
manual segmentations performed with ManSegTool. All the approa-
ches tested accurately reconstruct the dendritic branch of interest
(Fig. 6A). Ilastik clearly results in over-segmentationwith respect to the
manual ground truth, with false positive assignments (Fig. 6A and D)
and over-estimated areas and volumes both at thewhole branch and at
the spine level (Fig. 6B), while SENPAI correctly segments and assigns
the spines in 5 out of 6 of the cases investigated (Fig. 6A, C) and
provides estimates for area and volume in linewith themanual ground-
truth (Fig. 6B).

As far as neuronal tree reconstruction is concerned, most of the
state-of-the-art tools for revealing neuronal arborization or dendritic

spines require a further step for reliably comparing their outcomes
with the ones obtained with SENPAI. For instance, HK-Icy deals with a
considerable number of parameters to be tuned for reaching a rea-
sonable segmentation, but even tuning the parameters formaximizing
the segmentation density without losing structural complexity (details
on the parametric optimization reported in Supplementary Fig. 7), the
algorithm returns a unique object including all the neurons that should
be separated. This is also true for spine detection on 93x datasets,
indeed, neither HK-Icy nor Ilastik provide any assignation criteria for
the spines disconnected to the neuron body. Therefore, we observed
that a parcellation step is needed to overcome the limitations of these
state-of-the-art tools. This proves the need, particularly in the specific
context of densepacked scenarios, typical ofmammalian brain tissues,
for a built-in codified criterion for the assignment and separation of
objects of interest at different scales, be they branches or spines. We
provide this versatile feature in SENPAI.

Although SENPAI was shown to be robust in the segmentation of
single-cell scenarios, with different cell morphologies and imaging
modalities, its unique contribution to the scientific community is the
ability to deal with dense scenarios from cleared samples, a context
that is particularly challenging for existing algorithms. Moreover, the
SENPAI pipeline allows for reconstructing large groups of neurons
down to the single spine level with a single, unified approach across
different scenarios. This result is achieved thanks to the upgrade of the
K-means clustering approach using the topological information at
different scales, along with proper class selection criteria for neuronal
structure identification. Another relevant feature is the development
and integrationwith a parcellation step, basedonwatershed transform
of the intensity image. This allows successfully isolating single neurons
indifferent scenarios aswell as performing an automatic assignmentof
spines to the relevant dendrite. Indeed, increasing magnification is
often unfeasible, and it comes at the cost of shrinking the field of view.
In these cases, spine neck segmentation is impaired by resolution
limits. Using the watershed transform on the intensity image, we
provide an efficient parcellation step for the automatic assignment of
spines. Spine assignment is a crucial step preliminary to neck recon-
struction. The latter can be achieved either using model-based75–77 or
data-driven78,79 approaches.

Our results are also promising in the context of the segmentation
of confocal imaging from brain samples. We report here the complex
arborizations of Purkinje cells in their native arrangement such as
those in Fig. 1. This scenario was chosen as a proof of concept since
Purkinje cells are known to be highly densely arranged within the
murine cerebellum. These reconstructions are unique since they pro-
vide fine segmentation of several neighboring cells with a very dense
arborization. SENPAI provides a faithful panorama of the whole forest,
whereother solutions usually only provide segmentation of single cells
isolated by fluorescent reporter injection. Thanks to its capability of
imaging and segmenting complex dendritic arbors, the pipeline here
proposed is a powerful tool that can be directly applied to transgenic
reportermouse lines. Indeed, in contrast to sparse injections for single
cell imagingwhich are applied to thin live slices, SENPAI can be directly
used on live or fixed thick blocks of tissue to quickly segment
genetically-labeled neighboring cells.

Furthermore, wedemonstrate the ability of the SENPAI pipeline to
reconcile low magnification topographical maps from various brain
regions (using either confocal or lightsheet) with super-resolution data
giving access to the nanoscale level of the synapse. We also emphasize
the relevance of the quality assessment of segmentations from ex vivo
samples by using accurate morphological descriptors presented in
literature. This validation paradigm might overcome the limitation of
manual segmentations on dense images as gold standard for neuron
segmentation. In fact, our results suggest that manual approaches
cannot always be considered the ground truth since theymay result in
poor segmentations especially in large volume acquisitions whose
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resolution is comparable to the size of crucial details of the image (e.g.,
thin neuronal branches). To this end, we propose an alternative
method for evaluating automated segmentation algorithms through
comparison with available knowledge on cell morphometrics (e.g.,
ramification density of Purkinje cells).

SENPAI was successfully tested on samples prepared using dif-
ferent methods (non-cleared tissue, cells in culture) acquired with
multiple acquisitionmodalities, such as confocal, 3D STED and 2P, and
different neuron types. It should be noted that several other imaging
and labeling modalities that are specific to some parts of the neuron,
e.g., membright for the membranes25 or phalloidin for spine heads80

are used by researchers. In all the cases where local inhomogeneities
characterize neuronal structures, e.g., for non-uniform distribution of
staining across the cell, SENPAI might show a suboptimal behavior.
Specifically, the use of spatial derivatives, that are sensitive to image
intensity changes, might lead to hollow 3D segmentations or poorly
connected reconstruction of the dendrites. In some cases, such as
those presented in the Supplementary Information, the 3D spatial
smoothing preprocessing step resulted in increased neuronal struc-
ture homogeneity and consequently accentuated the behavior of
second order derivatives. Further preprocessing steps might thus be
needed to improve the generalizability of SENPAI to specific staining
and imaging modalities.

It is worth noting that deep learning is now emerging as a potential
solution to the complex problem of neuronal reconstruction from
microscopy images. Yet, the time needed for training deep-learning
models, as well as the fact that they heavily dependon the heterogeneity
of training data, still limits their application to a variety of problems,
such as single neuron segmentation. In addition, algorithms available in
the state-of-the-art still struggle when dealing with separating multiple
neurons within an image block37. Moreover, they do not easily allow
performing semi-supervised tasks to provide control over under- and
over-segmentation. As far as we know, no deep learning solution is yet
able to segmentmicroscopy images acquired using differentmodalities.
Nonetheless, several groups are working on this (e.g., ebrains.eu) and
likely future efforts will combine automatic algorithms like SENPAI and
deep learning analysis to improve 3D neuronal segmentation.

Other future developments will include the application of SENPAI
to cleared samples from other brain regions, to fully evaluate the
potential of the proposed framework. We will also explore the possi-
bility of estimating the path of spines necks evenwhen the algorithm is
not able to connect the spine with the main neuronal body and to
provide the userwith the possibility of characterizing spine population
in terms of density and morphology.

In conclusion,we report a two-step segmentation andparcellation
method –SENPAI- which can be combined with brain tissue prepara-
tion and labeling to isolate neurons from densely packed neighbor-
hoods and return morphologically faithful segmentations of the cells
and their branches at micron and sub-micron scales. The pipeline
preserves surface details as well as multi-scale structural complexity,
providing enhanced robustness to signal inhomogeneity even across
thick samples. We show that SENPAI is superior in performance and
robustness with respect to other segmentation algorithms and can be
used across scales for different imagingmodalities and different types
of neuron or brain tissue samples. SENPAI can be exploited as a stan-
dalone, open-source pipeline to support the development of con-
nectomemaps and improveour understanding of the brain’s structure
and consequently its functional behavior.

Methods
Labeling and imaging of brain slices
We used the L7GFP mouse line, expressing cytosolic EGFP within
dendrites, axons and soma of Purkinje cells under the L7 promoter.
Mice were housed in rooms maintained at 22 ± 2 C, 65% humidity, and
artificial light between 08:00 a.m. and 08:00 p.m. Male 3month-old

mice were anesthetized (7% chloral hydrate) and intracardiacally per-
fusedwith 20mLof ice-cold PhosphateBuffered Saline (PBS 1X, Sigma-
Aldrich, Milan, Italy) followed by 20mL of ice-cold hydrogel solution
(4% acrylamide, 0.05% bis-acrylamide (Biorad Lab Inc., California,
USA)), 4% formaldehyde (PFA, Sigma-Aldrich) and 0.25% VA-044
thermally triggered initiator (Wako Chemicals, Neuss, Germany).
Brains were extracted and immersed in hydrogel solution for 3 days in
the dark at 4 °C. Samples were placed under a vacuum for 10min for
bubble removal and to facilitate acrylamide polymerization and incu-
bated at 37 °C overnight. The cerebella were then cut in slices of
0.5–1mmusing aLeicaVT1200Svibratome. Sliceswere then incubated
in two sequential baths of clarity solution (200mM Boric Acid
(Farmitalia Carlo Erba spa, Italy) and 4% Sodium Dodecyl Sulfate (SDS,
Sigma-Aldrich) pH 8.5) at 37 °C for 3 and 5 days respectively. After
clarification, the slices were washed in PBS, incubated in blocking
solution in an Eppendorf tube on a wheel at room temperature (PBS
0.2% triton 0.25% cold water fish gelatin 3% donkey serum) for 1 h and
then incubated in primary antibody solution for at least 2weeks on a
wheel at 4 degrees.Antibody solutionwas composedofwashingbuffer
(PBS supplemented with 0.2 % triton—0.12% cold water fish gelatin
(SIGMA G7765)—0.5% donkey serum (Jackson ImmunoResearch) and
chicken anti GFP from Aves labs diluted to 1/1000). After 3 washes in
washingbuffer (1 h each) atRT, sliceswere incubated for at least 1 week
at 4 °C under gentle agitation in washing solution supplemented with
Donkey anti Chicken antibody coupled to Alexa 594 diluted at 1/500
(Thermofisher). Slices were then washed 3 times and mounted on a
glass slide. To build horizontal calibrated spacers, PVC cover binders
(300microns thick from Fellowes) were punched with a hammer drill
so that they remained very flat and horizontal and could surround the
cleared slices. Several spacers could be stacked depending on slice
thickness to adjust the height of the mounting. The spacer well was
then filled with prolong gold and covered with a 0.17mm (super-
resolution #1.5) Menzel Gläser glass coverslip. Spacers and coverslip
were sealed to the slide using Twinsil Picodent bi-component silicone.

Confocal and STED images were acquired with a confocal
laser scanning microscope LEICA SP8 STED 3DX equipped with a
20 x /0,75NA and 93 × /1.3 NA glycerol immersion objective or a 40x
NA1.3 oil objective and with 3 hybrid detectors (HyDs). The specimens
were excitedwith apulsedwhite-light laser (598 nm)anddepletedwith
a pulsed 775 nm depletion laser to acquire nanoscale imaging (fluor-
escence beyond 600nm was detected using SMD HyD detector,
dedicated bandwidths are indicated in the metadata on Zenodo; refer
to the Data Availability section). Depletion laser power balance
(between 2D and 3D) was adapted depending on transparency sample
laser to optimize resolution and preserve signal in depth. Confocal
images of rat hippocampal pyramidal cells in culture were taken with
40x NA 1.3 Leica oil objective with a pixel size of 91.41 nmx 91.41 nm
x 280nm, bandwidth 603–644 nm.

3D-STED was used with a 93x NA1.3 glycerol objective. Images
were averaged 16 times in line and acquiredwith amagnification zoom
>3. Excitation laser was adjusted to avoid any saturated pixels. Rat
hippocampal pyramidal cells in culture were acquired with voxel size
of 40 x 40 x 130 nm within a Z stack of 21 slices (bandwidth
598–631 nm). Cerebellum Purkinje cells were acquired with voxel size
of 62 x 62 x 60 nm (bandwidth 605–777 nm) within a Z stack of 319
(Fig. 1) or 35 slices (Fig. 2).

SENPAI
SENPAI is an automated tool implemented inMatlab (TheMathWorks-
Inc., United States) and released as a freely available toolbox at: https://
github.com/cauzzo-s5/SENPAI. It can be used to reconstruct neuronal
morphology, from spine detection and morphometry up to whole
neuron arborization, starting from 3D optical images from any type of
microscope including confocal,multiphoton, STED, etc. It implements
two fundamental steps: a segmentation step and a parcellation step.
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Segmentation step. The first step to obtain faithful three-dimensional
neuron reconstructions is to isolate neurons from the background.
SENPAI tackles this step through its core segmentation algorithm, a
topology-informedK-means clustering. Briefly, theK-means portions n
observations (X1, …, Xn) defined on a d-dimensional space into K
clusters, by minimizing the within-cluster variances81. In SENPAI, the
space is made of d = 4 features of interest, comprising the pixel
intensity of the image and second order spatial derivatives computed
along the three main cartesian axes, while the n observations are
represented by the total number of pixels entering the K-means. Since
K-means convergencemay be affected by initial conditions, additional
hyperparameters, such as the number of replicates and the maximum
number of iterations to reach convergence are included (in SENPAI,
replicates are set to 10, and for each replicate, a maximum of 1000
iterations is allowed). To reduce the computational load for the K-
means, a subset of background pixels is excluded from the clustering.
This is tackled by simple thresholding, although more sophisticated
methods couldbeused82. Preprocessing stepsmight include pointwise
transformations (e.g., logarithmic), to adjust the image dynamics.
Moreover, since theK-meansmay be computationally expensive, it can
also be run on smaller user-defined cropped datasets to limit memory
usage. Each 3D structure defined by a high-intensity cluster on a low-
intensity background is characterized by intensity gradients at the
boundaries, coded in the second derivative by a positive peak at the
external boundary and a negative peak at the internal one. A key fea-
ture of SENPAI’s K-means clustering is the choice of the number of
classes K, and the means by which such classes are interpreted and
used for segmentation. The algorithm iteratively searches for the
smallest K that allows to have (i) a class encoding positive values of the
second order derivatives for each direction in the 3D space (repre-
senting the outer borders of the neuron structures), (ii) each direction
(x, y, z) is encoded in a different class. Then, for a given number of
classes K, SENPAI identifies neurons by sorting and selecting the
clusters obtained. Sorting is based on average pixel intensity values of
each cluster, from the lowest to the highest. Then, the clusters asso-
ciatedwith theneuronal structures are givenby all the clusterswith the
highest average pixel intensity values and with all the second order
derivates whose values are negative (these clusters represent signal
from the neuron body see Fig. 2B, C). The union of the selected classes
gives the final segmentation.

An optional parameter is the size of the pre-filtering kernel, which
represents one of the salient features of SENPAI and allows focusing on
multiple levels of detail of the image. First, thedataset isfilteredusing a
3D Gaussian filter and derivatives are computed. After the pre-filter
step, the K-means clustering is performed on the pixel intensity of the
unsmoothed dataset, and second order spatial derivatives computed
on the smoothed image. This pre-filtering step can also be performed
twice in a row by using two smoothing levels. This option allows cap-
turing structures at different scales, since it eliminates spurious and
unwanted boundaries, e.g., those within thick branches or big somata.
When multiple levels of smoothing are used, the resulting segmenta-
tions are merged to compose the final segmentation (Fig. 2D).

However, since inhomogeneities in pixel intensity within big
neuronal structures (e.g., the soma) cannot all be smoothed and may
be identified as boundaries—leading to false negatives-, a function for
filling such holes is implemented within the segmentation. Similarly,
spurious small clusters (<7 voxels, the smallest 3D symmetrical struc-
ture) detected from inhomogeneities in the background are
eliminated.

Parcellation step. The second step of the algorithm aims at isolating
single neurons from the foreground identified via the K-means clus-
tering. To this end, SENPAI performs a parcellation procedure based
on the watershed transform. This defines a catchment basin for each
structure, which allows marking the regions/pixels that belong to a

particular structure and those that do not pertain to it. The parcella-
tion serves two purposes: when dealing with single neuron recon-
struction: first it splits neurons that may have been merged in a single
structure, while when dealing with spine segmentation, it groups
together disconnected structures. Thus, the parcellation is performed
through two different functions.

The catchment basins are produced for each marked core. The
cores are defined automatically in the super-resolution case, by
imposing a threshold on the size of the clusters composing the seg-
mented image. While big clusters are labeled as cores, smaller clusters
are labeled as spines to be assigned to such cores. On the other hand,
for standard microscopy, cores correspond to somata. These can be
marked by the user thanks to a GUI implemented in SENPAI.

Once the cores are defined, the original grayscale dataset is fil-
tered with a 3-by-3-by-3 median filter, and its complement is obtained.
A morphological reconstruction is applied on this latter, so that the
regional intensity minima outside the cores are eliminated. A water-
shed transform produces one catchment basin for each remaining
regional minimum.

The parcellation can be modified a posteriori, thanks to a routine
to visually assess the quality of the segmentation neuron-by-neuron,
and to set additional markers on spuriously assigned branches.
Incorrect assignments are usually caused by the presence of branches
of neurons whose soma lies outside the acquired dataset. Oper-
ationally, this is done thanks to a function within the SENPAI toolkit,
implemented to correct the parcellation by adding to the mask of the
somata someadditional clusters. These allow thedefinition of separate
catchment basins for wrongly assigned branches.

Testing datasets
The algorithm was tested on datasets acquired with a Nikon A1 con-
focal microscope (40x objective, excitation length 457 nm, bandwidth
500–550nm), and a LEICA SP8 STED 3DX (93x objective, pulsedwhite-
light laser 598 nm, pulsed 775 nm depletion laser, bandwidth
605–777 nm). All image stacks were from Purkinje cells within murine
cerebella, cleared as in Magliaro et al.30. We evaluated SENPAI’s per-
formance in distinguishing both cellular (i.e., neurons) and subcellular
(i.e., spines) structures.

The first 40x confocal image is a 512-by-512-by-143 image con-
taining 114 somas (Fig. 2A), while the second one is a 512-by-512-by-139
image containing 103 somas. SENPAI was used on these datasets with a
single clustering instance, without Gaussian smoothing. Then, post-
processing routines including parcellation and pruningwere exploited
for isolating single cells.

The 93x STED dataset is a 1024-by-1024-by-35 image in which
several sections of neurons can be observed (Fig. 2A). The segmenta-
tion with SENPAI was obtained merging two clustering instances with
different levels of smoothness (i.e., setting the standard deviations of
the 3D Gaussian filter to 0 and 3). Finally, we assigned the dendritic
spines to their parent branch.

Performance assessment
In the following, we report the methodology used to compare the
performance of SENPAI with that of HK-Icy, NeuTube, NeuroGPS,
Ilastik and manual segmentation. This section of the methodology is
not part of the SENPAI pipeline as it wasonly intended tobeused for its
validation. First, we describe how the competing toolboxes were
employed, then we provide details on how we extracted morpho-
metrics and statistics to be used for benchmarking.

40x confocal. The comparisons on the single neuron segmentations
obtained with SENPAI, HK-Icy and Ilastik, as well as the tracings
obtained with NeuroGPS and NeuTube, were performed on 27 cells.

We provide here the key parameters that had to be set for seg-
menting those neurons on HK-Icy, and NeuroGPS. For the HK-Means
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plugin, the optimal segmentationwas achieved by setting the intensity
classes to 6 for the confocal datasets Theminimum object size was set
to 9000pixels while themaximumobject sizewas set to 7800000 and
4600000 pixels respectively for the two confocal datasets. The mini-
mum object intensity was set to 0. Further details on the methods and
rationale are reported in the Supplementary Information (see Sup-
plementary Fig. 7). The segmentation with Ilastik was obtained using
two classes, corresponding to the background and the neurons, and
employing the maximum number of features for classification. For
NeuroGPS, we set the intensity threshold to the minimum to achieve a
dense segmentation. Since NeuTube is a semi-automatic tracing tool,
there are no parameters to be set.

40x confocal: morphometric evaluations and statistical analyses.
The volumes and areas of the segmented neuronswere computedwith
an ad hoc script in Matlab. Sholl Analysis was performed via
Neuroanatomy83, a Fiji84 plugin, whereas the corresponding area under
the curve (AUC) was obtained in Matlab.

To evaluate any significant differences of area-to-volume ratio
among SENPAI, HK-Icy and Ilastik segmentations, we employed the two-
tailed Friedman non-parametric test for paired data. Data obtained from
NeuroGPS and NeuTube are not included in the analysis, since they
produce tracings with insufficient details on neuronmorphology. A two-
tailed Friedman non-parametric test for paired data followed by a post-
hoc analysis (alpha =0.05) was used to compare AUCs.

40x confocal: Skeletonization and Strahler analysis. SENPAI is a
segmentation algorithmwhich provides volumetric reconstructions of
neurons in the form of binary 3D volumes. Since the validationmetrics
for neuron reconstruction, such as Strahler analysis, are usually
designed for assessing the goodness of neuron tracings, i.e., recon-
structions in the form of tree-like graphs, we provide a routine for the
skeletonization of our segmentations.

Starting from the raw 3D image stack, the binary segmentation of
one neuron and the markers of the somata are exploited to produce
the skeletonization, in the shape of a Matlab tree structure and of a
SWC-like matrix, which is the format usually used to describe a graph
or tree as a list of nodes, with their coordinates, diameter, and parent
node. After the reduction of the neuron volumetric segmentation to
1-pixel wide curved lines, an ad hoc function converts it into a graph
object. For each node the function automatically attributes an identi-
fication index. Node diameters are defined based on the intensity of
the original image at the node coordinates. The graph is converted to a
tree object: cycles are identified and then removed by cutting them
where the image intensity is lowest. Finally, the SWCmatrix is built by
storing each node’s identification index, coordinates in space, dia-
meter and the identification index of its parent node.

Starting from the binary segmentation of one neuron and the
relative SWC matrix, a function was also implemented to produce the
Strahler ordering. Specifically, the functions’ output is amatrix storing
the statistics computed on: numSegSO (number of segments per SO),
numSegSOnorm (number of segments per SO, normalized by the total
number of segments), segLAve (average segment length per SO),
PSnum (coefficients of the linear fit for the normalized number of
segments per SO), segDAve (average segment diameter per SO), TOTL
(total length of segments), TopoSubLAve (topological subtree size per
SO), numBrSO (number of branches per SO), numBrSOnorm (number
of branches per SO, normalized by the total number of branches),
brDAve (average branch diameter per SO), brLAve (average branch
length per SO), PBnum (coefficients of the linear fit for the normalized
number of branches per SO), normTotL (total dendritic length per SO).
The definition of the Strahler order of the segments constituting the
whole arborized structure is based on the idea of assigning auxiliary
weights to the tree edges, in a way that theminimumpath length from
each node to the root node, rounded to the floor, will correspond to

the node’s SO. The SOof a segment is computed as themode of the SO
of its nodes. The code used to compute the Strahler metrics is also
available in the same public repository (https://github.com/cauzzo-s5/
SENPAI).

93x STED. With HK-Icy, the 93x image was not pre-processed and the
number of classes parameter was set to 7. The minimum and the
maximum object size, in terms of pixels, were set to 50 and 50000
respectively, while the minimum object intensity was set to 0. The
segmentation with Ilastik was obtained using two classes, corre-
sponding to background and neuron, and employing the maximum
number of features for classification.

Dendritic spines were manually mapped using the AFNI85 GUI,
which allowsmarking the centers of each spine detected in the original
image with a sphere. For each tool (SENPAI, HK-Icy and Ilastik), the
map is used to assess (1) the percentage of spines correctly identified;
(2) the percentage of spines correctly identified within the catchment
basin defined by the SENPAI parcellation step; (3) the percentage of
spines correctly identified and univocally assigned by the algorithm to
its parent dendritic branch. For HK-Icy and Ilastik, we consider a spine
as assigned by the algorithm if (1) it belongs to the same 3D connected
cluster of thedendritic branch, or (2) it ismarkedwith the same label of
the dendritic branch after the 3D parcellation.

We compared the area-to-volume ratios (normalized with respect
to the ratio computed on manual segmentations) of the objects seg-
mented with three different algorithms (i.e., SENPAI, HK-Icy and Ilas-
tik), by means of a two-tailed Friedman non-parametric test for paired
data, followed by a post-hoc multiple comparison analysis.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The
number of neurons from clarified samples for which we reported
results and statistics is in linewith other similarworks in literature (e.g.,
13 Purkinje neurons in Vormberg et al.35,47, a maximum of 36 neurons
segmentedby any algorithm formouse/humanneurons in theGold166
dataset). The experiments were not randomized, and the investigators
were not blinded to allocation during experiments because only
wildtype genotypes were analyzed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawmicroscopy images aremade available on zenodowebsite https://
zenodo.org/uploads/10805555, the DataSet86 Digital Object Identifier
being 10.5281/zenodo.10805555. The human/mouse subset from
BigNeuron GOLD166 dataset63 can be downloaded at http://web.bii.a-
star.edu.sg/bigneuron/gold166.zip. NeuroGPS dataset was down-
loaded at https://sourceforge.net/projects/neurogps-tree/files/, as
reported in the Code Availability Statement in Quan et al.35. Source
data are providedwith this paper. The data generated in this study and
shown in Figs. 4–6 are provided in the Source Data file. The data
generated in this study and shown in Supplementary Information
Figs. 9–16 are provided in the Source Data file. Source data are pro-
vided with this paper.

Code availability
Matlab code for the SENPAI algorithm is freely available at the fol-
lowing repository: https://github.com/cauzzo-s5/SENPAI.
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