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AN EDGE CENTRALITY MEASURE BASED ON THE KEMENY
CONSTANT*

DIEGO ALTAFINI\dagger , DARIO A. BINI\ddagger , VALERIO CUTINI\dagger , BEATRICE MEINI\ddagger , AND

FEDERICO POLONI\S 

Abstract. A new measure c(e) of the centrality of an edge e in an undirected graph G is
introduced. It is based on the variation of the Kemeny constant of the graph after removing the
edge e. The new measure is designed to satisfy certain monotonicity and positivity properties, and
hence using it one can avoid the Braess paradox , i.e., the phenomenon in which removing an edge
can increase the connectivity of a network rather than reduce it. A numerical method for computing
c(e) is introduced, and a regularization technique is designed in order to deal with cut-edges and
disconnected graphs. Numerical experiments performed both on artificial examples and on real road
networks show that this measure is particularly effective in revealing bottleneck roads whose removal
would greatly reduce the connectivity of the network.

Key words. network theory, centrality measure, Kemeny constant, Markov chain

MSC codes. 65F30, 05C82, 91D30

DOI. 10.1137/22M1486728

1. Introduction. In network analysis, several measures of the importance of
nodes of a graph have been introduced, each with different modelistic meanings and
mathematical formulations. For instance, in [2, 16] the communicability between
two nodes i, j of a graph G is defined as the (i, j) entry in the exponential of the
adjacency matrix ofG. The exponential of a matrix is also at the basis of the definition
of importance given in [15]. Other measures based on the computation of matrix
functions are introduced in [4], where a parameterized node centrality measure is
proposed, and in [3], where directed networks are analyzed.

Measures for the centrality of edges, rather than nodes, are less common but still
frequent in the literature. Edge betweenness, i.e., counting how many shortest paths
go through a certain edge, is suggested in [17]. Replacing shortest paths with random
walks gives a measure that can also be interpreted in terms of resistance of electrical
networks, called Edge current flow betweenness centrality [8]. More examples appear
in [11, 12, 26, 27, 30]. Notably, in [14], the authors suggest the idea of considering
the variation of the Kemeny constant when an edge is removed from a graph.

In this paper, following [14], we introduce a new definition of edge centrality
based on a modified variation of the Kemeny constant and perform a theoretical and
computational analysis.

Given a connected, weighted, undirected, finite graph G = (V,E) with n = | V | 
nodes, the random walk associated to it is a Markov chain with adjacency matrix
P = D - 1A, where A is the adjacency matrix of G, D = diag(d), d = A1. Here
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KEMENY-BASED CENTRALITY 649

1 = (1,1, . . . ,1)T is the vector of all ones, and diag(v) denotes the diagonal matrix
having the entries of the vector v on the diagonal.

Let \pi = (\pi k)k=1,...,n be the invariant measure of said Markov chain, so that
\pi TP = \pi T and \pi T1 = 1. The Kemeny constant K(G) is defined as the expected
first-passage time of the Markov chain from a predetermined state i \in V to a state
j \in V drawn randomly according to the probability distribution \pi . It is a surprising
but well-studied fact that this definition does not depend on i [23].

The Kemeny constant gives a global measure of the nonconnectivity of a network
[5, 14, 28]. Indeed, if G is not connected, then the Kemeny constant cannot be defined,
or, in different words, it takes the value infinity.

Following the idea of [14], we may define the Kemeny-based centrality measure of
the edge e\in E as

\widetilde c(e) :=K((V,E \setminus \{ e\} )) - K((V,E)),

i.e., the change of the connectivity of the graph measured by the Kemeny constant,
when the edge e is removed from the graph.

In matrix form, the value of \widetilde c(e) can be given in terms of the eigenvalues of the
Laplacian matrix D  - A and of a suitable rank 2 correction. For the symmetry of
the Laplacian, the value of \widetilde c(e) can be also expressed in terms of the eigenvalues of
the symmetric matrix Y =D - 1

2AD - 1
2 and of the eigenvalues of Y +C, where C is a

symmetric correction of rank 2.
A surprising feature of this definition of centrality measure is that there exist

graphs where \widetilde c(e) is negative for some e; an elementary example is shown in section
6.1. Hence one arrives at the paradoxical conclusion that removing an edge increases
the connectivity of a network rather than reduces it. In the literature, this fact is
known as the Braess paradox [7], [14], and it has been observed for several connectivity
measures and metrics on road networks. Nevertheless, this phenomenon makes it more
difficult to give interpretations of the measure in terms of ranking and comparing
edges.

Hence, we propose a modified centrality measure c(e), which is always nonnegative
for any graph and for any edge e. The underlying idea consists in replacing the
correction C with a positive semidefinite matrix of rank 1. From the model point of
view, the new correction consists in replacing the edge e= \{ i, j\} with two loops \{ i, i\} 
and \{ j, j\} with the same weight. The new definition not only ensures the desirable
nonnegativity property c(e) \geq 0 but is also faster to compute, since it is based on a
rank 1 modification of the adjacency matrix rather than a rank 2 one.

These definitions cannot be applied in the case where e is a cut-edge, i.e., (V,E \setminus 
\{ e\} ) is not connected; in fact, in this case, the definition would yield \widetilde c(e) = c(e) =
\infty . To overcome this drawback, we introduce the concept of a regularized centrality
measure cr(e), depending on a regularization parameter r > 0. The idea is to replace
the Laplacian matrix D  - A with the regularized Laplacian matrix (1 + r)D  - A
in the formulas that give the Kemeny constant. The regularization parameter can
be interpreted in terms of the teleportation probability in the PageRank model. If
e is not a cut-edge, then limr\rightarrow 0 cr(e) = c(e); otherwise, if e is a cut-edge, then
limr\rightarrow 0 cr(e) = \infty . Moreover, we show that, if e is a cut-edge, then the quantity
r - 1  - cr(e) is nonnegative and has a finite limit for r\rightarrow 0; this suggests the following
definition of a filtered Kemeny-based centrality measure:

cFr (e) :=

\biggl\{ 
cr(e) if e is not a cut-edge,
r - 1  - cr(e) if e is a cut-edge.
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650 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

The modified measure defined in this way is still nonnegative and seems particularly
effective in highlighting bottlenecks in road networks, or so-called weak ties [20] that
bridge different clusters. Identifying weak ties has potential applications in other
fields such as the analysis of social, economical, and biological networks where this
measure has the potential to reveal key connections that may go unnoticed under other
metrics [20]. In particular, in road-circulation networks, configurational metrics based
on closeness and betweenness centralities have a long-standing tradition in addressing
the potential movement patterns. Nevertheless, these metrics are limited in their
explanation of the relative importance of the road-network elements within a system,
an aspect that has received meager attention [1]. The proposed measure aims to
highlight the relative importance of road-elements that have a crucial bridge function
(the weak ties) and their role in connecting clusters of road elements (the strong ties).
Moreover, it demonstrates the overall characteristics of redundancy within a system,
identifying the roads that, if interrupted, may cause certain parts of the network to
collapse. These uses open concrete perspectives into urban and regional planning
applications related to fragility analysis such as: emergency routing, disaster risk
prevention, and risk mitigation.

We provide efficient algorithms implementing the computation of the measure
either of a single edge or of all the edges of a graph. The main tools in the algorithm
design are the Sherman--Woodbury--Morrison formula and the Cholesky factorization
of the regularized Laplacian matrix (1 + r)D - A.

Our algorithms have been tested both on artificial examples and on graphs rep-
resenting real road networks; in particular, we have considered the maps of Pisa and
of the entire Italian region Tuscany. Our study has been motivated by an application
in which it is important to identify weak ties in a road network; hence the measure is
particularly useful in this context.

From our numerical experiments, reported in the paper, it turned out that this
measure is robust, effective, and realistic from the model point of view. Moreover, its
computation is sufficiently fast even for large road networks. Comparisons with other
centrality measures from [16] have been performed. It turns out that our model, unlike
the ones based on PageRank and Betweenness of the dual graph, succeeds in detecting
bridges on the river Arno and overpasses over the railroad line as important bottleneck
roads, or weak ties, in the Pisa road map. Edge betweenness and Edge current-flow
betweenness are the only two measures (among those considered) that succeed in the
same task, even though they succeed only partially and at a much higher CPU time.
The time required by the other betweenness-based measures on planar networks of
roads is comparable with that required by the Kemeny-based measure. More details
concerning applications of the Kemeny-based centrality measure to road networks can
be found in [1].

The paper is organized as follows. In section 2 we recall some properties of the
Kemeny constant. In section 3 the Kemeny-based centrality measure is introduced
and a matrix analysis is performed, while in section 4 a modified definition is pro-
posed in order to always return non-negative results. The regularized and filtered
centrality measures are proposed in section 5. Section 6 contains further theoretical
developments concerning the above centrality measures. Section 7 is devoted to com-
putational aspects and numerical experiments. Conclusions are drawn in section 8.

2. The Kemeny constant. Let P be the n\times n transition matrix of an irreduc-
ible finite Markov chain, and let \pi be its steady state vector. Denote by K(P ) the
Kemeny constant of P ; more formally,

© 2023 D. Altafini, D. A. Bini, V. Cutini, B. Meini, and F. Poloni
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KEMENY-BASED CENTRALITY 651

K(P ) =
\sum 
j

mij\pi j ,

where mij is the expected first-passage time from node i to node j, and \pi is the
invariant measure of P . We recall some properties which allow us to express the
Kemeny constant in terms of the trace of a suitable matrix. Such expressions will be
useful in the analysis performed in the next sections.

Lemma 2.1 ([25, section 3]). Let g,h \in \BbbR n be column vectors with hT g = 1,
hT1 \not = 0, \pi T g \not = 0. Then, the inverse Z := (I  - P + ghT ) - 1 exists, and

K(P ) = trace(Z) - \pi TZ1,

independently of g,h.

By setting g= 1, one gets the following corollary.

Corollary 2.2. Let h be a column vector with hT1 = 1; then, Z = (I  - P +
1hT ) - 1 exists, and

(2.1) K(P ) = trace(Z) - 1.

Proof. Setting g = 1, we have Z - 11 = (I  - P )1+ 1(hT1) = 0 + 1 = 1; hence we
can simplify the second part of the formula.

Since P is an irreducible stochastic matrix, it has a simple eigenvalue equal to 1.
The Kemeny constant can be expressed by means of the eigenvalues different from 1,
according to the following result.

Corollary 2.3. Let \lambda 1 = 1, \lambda 2, . . . , \lambda n be the spectrum of P . Then,

(2.2) K(P ) =

n\sum 
\ell =2

1

1 - \lambda \ell 
.

Proof. Take a Jordan form P =WJW - 1 withW:,1 = 1, W - 1
1,: = \pi T , and diag(J) =

(1, \lambda 2, \lambda 3, . . . , \lambda n) (reordering \lambda 2, . . . , \lambda n if necessary). Then, one has

I  - P + 1\pi T =W (I  - J + e1e
T
1 )W

 - 1 =WTW - 1,

where T is upper triangular with diag(T ) = (1,1 - \lambda 2,1 - \lambda 3, . . . ,1 - \lambda n). Plugging
this expression into (2.1), we get

K(P ) = trace(Z) - 1 = trace(WT - 1W - 1) - 1 = trace(T - 1) - 1 =

n\sum 
\ell =2

1

1 - \lambda \ell 
.

3. A centrality measure based on the Kemeny constant. We open this
section by defining some standard terminology in graph theory, following for instance
[22, Chapter 39]. An (undirected) graph (sometimes also called network) is a pair
G = (V,E), where V is a finite set of nodes of cardinality | V | = n, and E is a set of
edges, i.e., pairs \{ i, j\} \subset V , of cardinality | E| = m. A path (from i0 \in V to i\ell \in V
of length \ell ) is a sequence of distinct nodes i0, i1, i2, . . . , i\ell connected by edges, i.e.,
\{ ik - 1, ik\} \in E for each k = 1,2, . . . , \ell . A graph is called connected if for every pair of
nodes i, j \in V , i \not = j, there is a path from i to j. A graph is called weighted if it is
equipped with a function a : E \rightarrow \BbbR + that associates a nonnegative weight to each
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652 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

edge. An edge e \in E is called a cut-edge if G = (V,E) is connected, but the graph\widehat G= (V,E \setminus \{ e\} ) obtained by removing said edge is disconnected.
We assume that we start from a weighted, connected, undirected graph G= (V,E)

containing no loops, i.e., edges \{ i, j\} with i = j. Some of the procedures that we
describe in the following, however, will introduce modifications to this graph that
create loops or lose connectedness.

The adjacency matrix of a graph is the n\times n symmetric matrix A= (aij) such that
aij is equal to the weight of edge \{ i, j\} , if said edge exists in E, or zero otherwise. To
a graph we can associate the Markov chain with transition matrix P =D - 1A, where
D = diag(d), d = A1. We can then define its Kemeny constant K(G) :=K(P ). The
Kemeny constant gives a global measure of the connectivity of a network: small values
of the constant correspond to highly connected networks, and large values correspond
to a low connectivity.

To obtain a relative measure that takes into account the importance of each edge
e= \{ i, j\} \in E, we can define the Kemeny-based centrality measure as

(3.1) \widetilde c(e) :=K((V,E \setminus \{ e\} )) - K((V,E)),

i.e., the change in K obtained by removing the edge e. This quantity is well defined
assuming that e is not a cut-edge.

Removing one edge e= \{ i, j\} corresponds to zeroing out the entries ai,j and aj,i.
This leads to the new adjacency matrix

(3.2) \widehat A=A - ai,jU

\biggl[ 
0 1
1 0

\biggr] 
UT , U =

\bigl[ 
ei ej

\bigr] 
\in \BbbR n\times 2,

where ei and ej are the ith and the jth columns of the identity matrix I, respectively.

This removal changes the transition matrix P into the matrix \widehat P = \widehat D - 1 \widehat A, where\widehat D=diag( \^d), \^d= \widehat A1, which differs from P only in rows i and j since \^d= d - ai,j(ei+ej).
Hence we have

(3.3) \widehat P = P +UV T ,

where

(3.4) V T =

\biggl[ 
si 0
0 sj

\biggr] 
UTA - ai,j

\biggl[ 
0 (di  - ai,j)

 - 1

(dj  - ai,j)
 - 1 0

\biggr] 
UT ,

with si =
ai,j

di(di - ai,j)
, sj =

ai,j

dj(dj - ai,j)
.

Theorem 3.1. Let G be a connected weighted graph, and suppose edge e is not
a cut-edge. Then, for the centrality measure defined in (3.1) we have

(3.5) \widetilde c(e) = trace((I  - V TZU) - 1V TZ2U),

where U =
\bigl[ 
ei ej

\bigr] 
, V T is defined in (3.4), and Z = (I - P+1hT ) - 1 is as in Corollary

2.2.

Proof. We have

\^Z := (I  - \^P + 1hT ) - 1

= (I  - P + 1hT  - UV T ) - 1

=Z +ZU(I  - V TZU) - 1V TZ,
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KEMENY-BASED CENTRALITY 653

1

2

3 4

1

2

3 4

Fig. 4.1. The graph on the right is obtained from that on the left by removing the edge \{ 1,2\} .
The two graphs have Kemeny constants 61

24
\approx 2.54 and 2.5, respectively.

where we have used (3.3) and in the last step the Sherman--Woodbury--Morrison
matrix identity [19, section 2.1.4]. We now use (2.1) and write

\widetilde c(e) =K( \^P ) - K(P ) = trace( \^Z) - trace(Z) = trace( \^Z  - Z)

= trace(ZU(I  - V TZU) - 1V TZ)

= trace((I  - V TZU) - 1V TZ2U),

using the identity trace(MN) = trace(NM) [22, section 69.2, Fact 2].

Theorem 3.1 allows us to compute the centrality measure of one edge at essentially
the cost of applying the matrix Z to four vectors.

4. A nonnegative Kemeny-based centrality measure. Intuitively, one ex-
pects that the connectivity of a graph should not increase if an edge is removed from
the graph. Therefore, if the Kemeny constant properly describes the nonconnectivity
of a graph, then it should not decrease if an edge is removed. In terms of definition of
centrality measure given in (3.1), we expect that \widetilde c(e)\geq 0. Unfortunately, it is not so.

In fact, there are cases where the Kemeny constant of a graph can decrease if an
edge is removed, like in the graph with edges E = \{ \{ 1,2\} ,\{ 1,3\} ,\{ 2,3\} ,\{ 3,4\} \} , shown
in Figure 4.1, on the left. Its Kemeny constant is 61

24 \approx 2.54. Removing the edge
\{ 1,2\} , we get the graph on the right, which has a smaller Kemeny constant, i.e., 2.5.
That is, the centrality measure of the edge \{ 1,2\} in this graph is negative. This fact
is known in the literature as the Braess paradox [14, 7].

In order to overcome this odd behavior of the model, where the measure \widetilde c(e)
can take negative values, we propose a simple modification which also makes the
computation of the centrality measure a less expensive task.

Observe that removing the edge \{ i, j\} from the graph consists in performing a
correction to the adjacency matrix A of rank 2 in order to obtain the new matrix \widehat A;
compare with (3.2). This correction is such that the vector d = A1 differs from the
vector \^d= \widehat A1 in the components i and j. On the other hand, defining \widehat A in a different
way, by means of the expression

(4.1) \widehat A=A+ ai,jvv
T , v= ei  - ej ,

has the effect of zeroing the entries ai,j and aj,i in A, and of adding ai,j to the
diagonal entries in positions (i, i) and (j, j). In terms of graph, this correction consists
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654 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

in removing the edge \{ i, j\} and adding the two loops \{ i, i\} and \{ j, j\} with the same
weight ai,j . More formally, we define

(4.2) c(e) =K( \widehat Ge) - K(G),

where

\widehat Ge = (V,E \setminus \{ e\} \cup \{ \{ i, i\} ,\{ j, j\} \} ), with e= \{ i, j\} ,

and the new weights in the adjacency matrix \widehat A are \widehat aii = \widehat ajj = aij .

4.1. A symmetrized formulation. In this section, we slightly modify the for-
mulas for the Kemeny constant so that they involve symmetric matrices, borrowing
from the idea of normalized Laplacian D - 1/2(D - A)D - 1/2 = I - D - 1/2AD - 1/2 which
is ubiquitous in graph theory. Note that the symmetrized Laplacian has been used to
compute Kemeny constants, for instance, in [10].

Observe that D
1
2PD - 1

2 = D - 1
2AD - 1

2 is a symmetric matrix having the same
spectrum of P . Therefore, we may rewrite the expression in Corollary 2.2 to

K(P ) = trace(W ) - 1, W =D1/2ZD - 1/2 = (I  - D - 1
2AD - 1

2 +D
1
21hTD - 1

2 ) - 1.

We choose h= 1\sum n
i=1 di

d, so that the last summand D
1
21hTD - 1

2 is symmetric with an

eigenvalue 1, and obtain

(4.3) K(P ) = trace(W ) - 1, W =

\biggl( 
I  - D - 1

2AD - 1
2 +

1

\| d\| 1
D

1
211TD

1
2

\biggr)  - 1

.

In the above expression, the matrix W is real symmetric.
In the same manner, for the modified network after the removal of an edge e we

have

(4.4) K( \widehat P ) = trace(\widehat W ) - 1, \widehat W =

\Biggl( 
I  - \widehat D - 1

2 \widehat A \widehat D - 1
2 +

1

\| \widehat d\| 1 \widehat D 1
211T \widehat D 1

2

\Biggr)  - 1

.

Thus, we may write c(e) = trace(\widehat W  - W ), where \widehat W  - W is a low rank symmetric
matrix. This fact enables us to exploit results on the eigenvalues of symmetric matri-
ces like the Courant--Fischer theorem [6, Chapter III] to prove certain monotonicity
properties of the new measure.

Lemma 4.1. Let A1,A2,A3 be real symmetric n \times n matrices such that A3 =
A1+A2, and let \mu 

(1)
i , \mu 

(2)
i , \mu 

(3)
i , i= 1, . . . , n, be their eigenvalues, respectively, ordered

in nondecreasing order. Then \mu 
(1)
i + \mu 

(2)
1 \leq \mu 

(3)
i \leq \mu 

(1)
i + \mu 

(2)
n for i= 1, . . . , n.

We are ready to prove the following result.

Theorem 4.2. Let A be the n \times n adjacency matrix of an undirected weighted
connected graph, let i, j \in \{ 1, . . . , n\} be such that the edge e= \{ i, j\} is not a cut-edge,
and let \widehat A be the adjacency matrix defined in (4.1). Then for the centrality measure
defined as c(e) = K( \widehat P )  - K(P ), we have c(e) \geq 0, where P = D - 1A, \widehat P = \widehat D - 1 \widehat A,
D= \widehat D=diag(d), d=A1= \widehat A1.

Proof. Write c(e) in terms of the symmetrized formulation according to (4.3) and
(4.4), and get

(4.5) c(e) =

n\sum 
\ell =2

1

1 - \^\lambda \ell 

 - 
n\sum 

\ell =2

1

1 - \lambda \ell 
,
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KEMENY-BASED CENTRALITY 655

where \^\lambda \ell and \lambda \ell , \ell = 1, . . . , n, are the eigenvalues, sorted in nonincreasing order, of
the symmetric matrices

\widehat H := \widehat D - 1
2 \widehat A \widehat D - 1

2  - 1

\| \widehat d\| 1 \widehat D 1
211T \widehat D 1

2 and H :=D - 1
2AD - 1

2  - 1

\| d\| 1
D

1
211TD

1
2 ,

respectively. On the other hand, since d = \^d and D = \widehat D, we have \widehat H = H +
ai,jD

 - 1
2 vvTD - 1

2 . The matrix ai,jD
 - 1

2 vvTD - 1
2 has n  - 1 eigenvalues equal to 0

and one eigenvalue equal to ai,jv
TD - 1v= ai,j(d

 - 1
i +d - 1

j ). Applying Lemma 4.1 with

A1 =H and A2 = ai,jD
 - 1

2 vvTD - 1
2 yields the inequality \lambda \ell \leq \^\lambda \ell \leq \lambda \ell +ai,j(d

 - 1
i +d - 1

j ).
This implies that c(e)\geq 0 in view of (4.5).

Computing the value of c(e) defined in (4.2) is cheaper than computing the quan-
tity defined in (3.1). To this regard, we have the following result.

Theorem 4.3. Under the assumptions of Theorem 4.2 we have

c(e) = ai,jv
TD - 1

2W\widehat WD - 1
2 v,

where W - 1 = I  - D - 1
2AD - 1

2 + 1
\| d\| 1

D
1
211TD

1
2 , \widehat W - 1 = W - 1  - ai,jD

 - 1
2 vvTD - 1

2 .

Moreover, \widehat W =W  - \tau ai,jWD - 1
2 vvTD - 1

2W for \tau = - 1/(1 - ai,jv
TD - 1

2WD - 1
2 v).

Proof. By using symmetrization, we have c(e) = trace(\widehat W - W ) = trace(\widehat W (W - 1 - \widehat W - 1)W ). On the other hand, W - 1  - \widehat W - 1 = ai,jD
 - 1

2 vvTD - 1
2 , so that c(e) =

trace(ai,j\widehat WD - 1
2 vvTD - 1

2W ) = ai,jv
TD - 1

2W\widehat WD - 1
2 v. The expression for \widehat W follows

from the Sherman--Woodbury--Morrison identity.

The above result can be used to obtain an effective expression for computing c(e).
To this end, rewrite W as

W =D
1
2S - 1D

1
2 , S =D - A+

1

\| d\| 1
ddT

so that

\widehat W =D
1
2 \widehat S - 1D

1
2 , \widehat S =D - \widehat A+

1

\| d\| 1
ddT = S  - ai,jvv

T .

Moreover, from the Sherman--Woodbury--Morrison formula we have

\widehat S - 1 = S - 1 +
ai,j

1 - ai,jvTS - 1v
S - 1vvTS - 1.

Whence in view of Theorem 4.3 we obtain

c(e) = ai,jv
TS - 1D \widehat S - 1v= ai,jv

TS - 1DS - 1v+
a2i,jv

TS - 1v

1 - ai,jvTS - 1v
vTS - 1DS - 1v.

From the above result we obtain the following representation of c(e):

(4.6)
c(e) =

\beta 

1 - \alpha 
, \alpha = ai,jv

Tx= ai,j(xi  - xj), \beta = ai,jx
TDx,

x= S - 1v, S =D - A+
1

\| d\| 1
ddT .

Observe that \alpha and \beta in (4.6) can be rewritten as

(4.7)
\alpha = ai,j(ei  - ej)

TF (ei  - ej), \beta = ai,j(ei  - ej)
TQ(ei  - ej),

F = S - 1, Q= FDF.
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656 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

Another observation is that the matrix S is positive definite since it is invertible and is
the sum of two semidefinite matrices. Therefore, it admits the Cholesky factorization
S =LLT .

The major computational effort in computing c(e) by means of (4.6) consists in
solving the system Sx = v. If one has to compute the centrality measure of a single
edge \{ i, j\} , then two strategies can be designed for this task. A first possibility consists
in computing the Cholesky factorization of S and solving the two triangular systems.
This approach costs O(n3) arithmetic operations, as the dominating cost is the one
of the Cholesky factorization. A second possibility consists in applying an iterative
method for solving the linear system with matrix S that exploits the low cost of
the matrix-vector product, say, Richardson iteration or the preconditioned conjugate
gradient method. This approach costs O(m+n) operations per iteration, where m is
the number of nonzero entries of the adjacency matrix. Thus, it is cheaper than the
former approach as long as the number of required iterations is less than n3/m.

A different conclusion holds in the case where the centrality measures ci,j of all
edges e = \{ i, j\} must be computed. In fact, in this case, the cost is O(n3 +m), by
relying on the following computation that is based on (4.7):

1. Compute F = S - 1 and Q= FDF ;
2. for all i < j such that ai,j \not = 0 compute:

(a) \alpha = ai,j(fi,i + fj,j  - 2fi,j),
(b) \beta = ai,j(qi,i + qj,j  - 2qi,j),
(c) ci,j = \beta /(1 - \alpha ).

The overall cost of the above approach is dominated by the cost of step 1, i.e.,
O(n3) arithmetic operations. The drawback of this approach is that all the n3 entries
of the matrices F and Q must be stored. This can be an issue if n takes very large
values.

Another issue is the potentially large condition number of the matrix S. The
matrix D - 1S = I  - P + 1hT has eigenvalues 1,1 - \lambda 2, . . . ,1 - \lambda n: they are equal to
those of I  - P , except that the correction 1hT has the effect of replacing the zero
eigenvalue by hT1 = 1. Hence we can expect ill-conditioning in S when \lambda 2 \approx 1, i.e.,
when the network is almost disconnected. When the network is disconnected, \lambda 2 = 1
and S becomes exactly singular. A way to overcome this difficulty consists in applying
a sort of regularization in the inversion of the matrix S. This regularization, which
is the subject of the next section, turns out to be helpful not only in cases when S is
ill-conditioned but also in dealing with the cut-edges of the network.

5. Regularized Kemeny-based centrality measure. Let r > 0 be a (typi-
cally small) regularization parameter and, with the notation of the previous sections,
define the regularized Kemeny constant as

Kr(G) = trace(((1 + r)I  - D - 1A+ 1hT ) - 1) - (1 + r) - 1

= trace

\Biggl( \biggl( 
(1 + r)I  - D - 1

2AD - 1
2 +

1

\| d\| 1
D

1
211TD

1
2

\biggr)  - 1
\Biggr) 
 - (1 + r) - 1,

where, for the second expression, we used the symmetrized version. Observe that,
with respect to the standard definition, we have increased the diagonal entries of the
matrix W - 1 = I  - D - 1A+ 1hT by the quantity r. On one hand, this modification
reduces the condition number of W ; on the other hand, it allows us to deal with
the situations where W is singular---for instance, in the case where the graph is not
connected.
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KEMENY-BASED CENTRALITY 657

Since the eigenvalues of W - 1 are 1,1 - \lambda 2,1 - \lambda 3, . . . ,1 - \lambda n, we have

Kr(G) = trace(rI +W - 1) - 1  - 1

1 + r
=

n\sum 
\ell =1

1

1 + r - \lambda \ell 
 - 1

1 + r
=

n\sum 
\ell =2

1

1 + r - \lambda \ell 
.

Similarly, we may define the regularized Kemeny-based centrality measure of the
edge e= \{ i, j\} 

(5.1) cr(e) :=Kr(G \setminus \{ e\} ) - Kr(G),

so that we have

cr(e) =

n\sum 
\ell =2

\biggl( 
1

1 + r - \^\lambda \ell 

 - 1

1 + r - \lambda \ell 

\biggr) 
=

n\sum 
\ell =2

\^\lambda \ell  - \lambda \ell 

(1 + r - \^\lambda \ell )(1 + r - \lambda \ell )
,

where \^\lambda \ell , \ell = 1, . . . , n, are the eigenvalues of the matrix D - 1 \widehat A, ordered in nonincreas-
ing order, for \widehat A = A+ aijvv

T and v = ei  - ej . Since \^\lambda \ell \geq \lambda \ell (compare the proof of
Theorem 4.2), the above equation implies that cr(e)\geq 0.

5.1. Interpretation of the regularized Kemeny constant. We can give an
interpretation of the regularized Kemeny constant in terms of the random walk with
teleportation that appears in the celebrated PageRank model [24]. We summarize
briefly the model applied to the stochastic matrix P = D - 1A. Given a stochastic
vector w \in \BbbR n and a real number \theta \in (0,1), the matrix P (\theta ) = (1  - \theta )P + \theta 1wT

is the transition matrix of the following Markov process: at each time instant, with
probability 1 - \theta we move from a node i to a node j according to the transition prob-
abilities of the Markov chain associated to P , or with probability \theta (informally called
``teleportation probability"") we move to a node chosen randomly and independently
in the network according to the probability distribution given by the vector w.

If we set \theta = r
1+r , in view of the Brauer theorem [9], the eigenvalues of P (\theta ) are

1, 1
1+r\lambda 2,

1
1+r\lambda 3, . . . ,

1
1+r\lambda n, and thus

K(P ( r
1+r )) =

n\sum 
i=2

1

1 - 1
1+r\lambda i

= (1+ r)

n\sum 
i=2

1

1 + r - \lambda i
= (1+ r)Kr(P ).

Hence the regularized Kemeny constant of P is a constant multiple of the Kemeny
constant of the Markov chain associated with the PageRank random walk with tele-
portation probability r

1+r . In this sense, the regularization can be interpreted as
adding a small teleportation probability to the model.

5.2. Filtering procedure. If e is a cut-edge, then G is connected and \widehat G is
formed by two connected components; the matrix \widehat A is reducible and has two eigen-
values equal to 1 so that 1 = \^\lambda 1 = \^\lambda 2 > \^\lambda 3. Thus, we may write

(5.2) cr(e) = r - 1  - (1 + r - \lambda 2)
 - 1 +

n\sum 
\ell =3

((1 + r - \^\lambda \ell )
 - 1  - (1 + r - \lambda \ell )

 - 1).

In this case, we have limr\rightarrow 0 rcr(e) = 1 and it turns out that the regularized centrality
measure of a cut-edge grows as r - 1 when r\rightarrow 0. Observe also that the quantity cr(e)
in (5.2) cannot exceed the value r - 1. In fact, we have the following result.

Theorem 5.1. Let G be a connected weighted undirected graph and e be a cut-
edge of G. Then, for the regularized centrality measure of (5.1) we have cr(e)\leq r - 1.
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658 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

Proof. Since e is a cut-edge, we may apply (5.2), which yields c(e)  - r - 1 =\sum n
\ell =3[(1+r - \^\lambda \ell )

 - 1 - (1+r - \lambda \ell )
 - 1] - (1+r - \lambda 2)

 - 1, where \lambda \ell and \^\lambda \ell , \ell = 1, . . . , n, are the

eigenvalues of D - 1
2AD - 1

2 and of D - 1
2 \widehat AD - 1

2 , respectively, ordered in nonincreasing
order. Thus we get

(5.3) cr(e) - r - 1 =

n - 1\sum 
\ell =2

[(1 + r - \^\lambda \ell +1)
 - 1  - (1 + r - \lambda \ell )

 - 1] - 1/(1 + r - \lambda n).

Since D - 1
2 ( \widehat A - A)D - 1

2 is a positive semidefinite rank-one matrix, from the Cauchy
interlacing property [22, section 47.4, Fact 1] we have \^\lambda \ell \geq \lambda \ell \geq \^\lambda \ell +1 so that (1+ r - 
\^\lambda \ell +1)

 - 1  - (1 + r - \lambda \ell )
 - 1 \leq 0, which completes the proof in view of (5.3).

Whenever the regularization parameter r is small enough, the additive term r - 1 in
(5.2) dominates, and the centrality measures of the cut-edges dominate the measures
of the other edges. Moreover, cut-edges that connect two large components of a
graph have roughly the same value r - 1 of cut-edges that connect a single node to the
remaining part of the graph.

Hence cut-edges have a huge value of the measure cr(e) irrespective of the mass
of the graphs that they connect; a way to overcome this drawback can be obtained
by modifying definition (5.1) as follows:

(5.4) cFr (e) :=

\Biggl\{ 
r - 1  - cr(e) if e is a cut-edge,

cr(e) if e is not a cut-edge,

so that we still obtain nonnegative values in view of Theorem 5.1. We call cFr (e)
filtered Kemeny-based centrality . From (5.3) and (5.4), we deduce that limr\rightarrow 0 c

F
r (e)

is finite; moreover, if e is not a cut-edge, then limr\rightarrow 0 c
F
r (e) = c(e).

In order to figure out if e is a cut-edge, one may apply the available computational
techniques of [29], or, more simply, select those edges whose regularized score is of
the order of r - 1. This can be achieved by means of a heuristic strategy by computing
the unfiltered values cr(e) and selecting those edges e for which cr(e)>

1
2r

 - 1. Clearly
this strategy works in the limit r\rightarrow 0, since limr\rightarrow 0 cr(e) = c(e) is finite whenever e is
not a cut-edge, but it is not simple to determine a priori an explicit bound on r that
ensures the success of the heuristic.

In Figure 5.1 we report the centrality measures cr and cFr obtained by regulariza-
tion and by filtered regularization, respectively, where thick blue edges denote high
centrality values. This example shows the case where the removal of some edge splits
the graph into two components. If cr(e)>

1
2r

 - 1, then e is considered a cut-edge. On
the left, the centrality measure cr with regularization parameter r= 10 - 8 is computed.
With this choice, the regularization parameter is approximately the square root of the
machine precision. Observe that the regularized centrality values of cut-edges are of
the order of r - 1. On the right, the filtering procedure has been applied. We may see
that, in this case, only the edges that connect nonnegligible subgraphs have a higher
value of the measure, but not of the order of r - 1, while the remaining disconnecting
edges have an intermediate moderate value. At the moment, we have no theoreti-
cal explanation of this property that, on the other hand, appears clearly from the
numerical experiments performed both on artificial data and on real world problems.

We see that, after the filtering procedure, the values cFr (e) have comparable
magnitudes across both cut-edges and non-cut-edges, and that their ordering
matches remarkably well the intuitive notion of importance of an edge for the overall
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Unfiltered
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#10 7
Filtered
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9.99999962

9.99999964

9.99999966

9.99999968

9.9999997

9.99999972

9.99999974
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3.8

Fig. 5.1. Centrality measures of two graphs having some cut-edges: On the left is the measure
cr computed with r = 10 - 8; on the right is the filtered measure cFr . Blue and thick edges denote
a higher centrality. Note the compressed color scale in the bottom-left figure: Since all edges are
cut-edges, their unfiltered centrality measures are all very close to r - 1 = 108. (Color available
online.)

connectivity of the graph. At the moment, we do not have theoretical results that
relate cFr (e1) and cFr (e2) where e1 is a cut-edge and e2 is not.

6. Further theoretical results.

6.1. Extension to disconnected networks. If the graph G is disconnected,
according to our earlier definitions, say, definition (2.2), we would get K(G) = \infty ,
since in this case the matrix P has at least two eigenvalues equal to 1. Therefore,
one cannot apply the definition of the Kemeny-based centrality measure. However,
we may extend this definition to disconnected networks by means of a continuity
argument as follows.

Suppose that the graph G is disconnected; without loss of generality assume
P = diag(P1, P2, . . . , Pq), where P\ell , \ell = 1, . . . , q, are irreducible stochastic matrices.
Clearly, the matrix P has eigenvalues \lambda 1 = \cdot \cdot \cdot = \lambda q = 1, and \lambda \ell \not = 1 for \ell = q+1, . . . , n.
We consider the perturbed matrix P (\theta ) := (1 - \theta )P+\theta 1wT , again the random walk with
teleportation associated with PageRank introduced in section 5.1. If w has positive
entries, this matrix is stochastic and irreducible for any 0 < \theta \leq 1, so that P (\theta ) has
only one eigenvalue \lambda 1(\theta ) equal to 1. Moreover, in view of the Brauer theorem [9], the
remaining eigenvalues of P (\theta ) are given by \lambda \ell (\theta ) = (1 - \theta )\lambda \ell , \ell = 2, . . . , n. Therefore
we have

K(P (\theta )) =

n\sum 
\ell =2

1

1 - \lambda \ell (\theta )
=

q - 1

\theta 
+

n\sum 
\ell =q+1

1

1 - (1 - \theta )\lambda \ell 
.
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Now consider the matrix \widehat P (\theta ) = (1 - \theta ) \widehat P+\theta 1wT , where \widehat P is obtained by removing
the edge \{ i, j\} . Assume that this edge belongs to the block Ps for some 1\leq s\leq q and
that it is not a cut-edge. That is, the block \widehat Ps obtained after removing the edge is still
irreducible. Denote by \^\lambda \ell , \ell = 1, . . . , n, the eigenvalues of \widehat P so that \^\lambda 1 = \cdot \cdot \cdot = \^\lambda q = 1,
and \^\lambda \ell \not = 1 for \ell = q + 1, . . . , n. By applying once again the Brauer theorem we
find that \widehat P (\theta ) has only one eigenvalue \^\lambda 1(\theta ) = 1, and the remaining eigenvalues are
\^\lambda \ell (\theta ) = (1 - \theta )\^\lambda \ell for \ell = 2, . . . , n. Therefore we have

K( \widehat P (\theta )) =

n\sum 
\ell =2

1

1 - \^\lambda \ell (\theta )
=

q - 1

\theta 
+

n\sum 
\ell =q+1

1

1 - (1 - \theta )\^\lambda \ell 

,

so that

K( \widehat P (\theta )) - K(P (\theta )) =

n\sum 
\ell =q+1

\Biggl( 
1

1 - (1 - \theta )\^\lambda \ell 

 - 1

1 - (1 - \theta )\lambda \ell 

\Biggr) 
,

whence

lim
\theta \rightarrow 0

\Bigl( 
K( \widehat P (\theta )) - K(P (\theta ))

\Bigr) 
=

n\sum 
\ell =q+1

\biggl( 
1

1 - \^\lambda \ell 

 - 1

1 - \lambda \ell 

\biggr) 
.

Now recall that the removed entries pi,j and pj,i in \widehat P belong to the block Ps so that

the eigenvalues of \widehat P different from the eigenvalues of P are those of the block Ps,
except for the eigenvalue 1. Therefore we have

lim
\theta \rightarrow 0

\Bigl( 
K( \widehat P (\theta )) - K(P (\theta ))

\Bigr) 
=K( \widehat Ps) - K(Ps).

From the above arguments we deduce the following result.

Theorem 6.1. Let G be a weighted undirected graph. Assume that G is not
connected and that Gs is a connected component of G. Let e be an edge in Gs that is
not a cut-edge in Gs. Denoting by cr(e) the regularized centrality measure of e in G
and by c(e) the centrality measure of e in Gs, we have

lim
r\rightarrow 0

cr(e) = c(e).

Therefore, the concept of the regularized centrality measure allows us to deal with
disconnected graphs and avoids the search for connected components.

As an example of application, we consider the cases of two barbell-shaped graphs,
together with their disjoint union. The pictures in the first row of Figure 6.1 represent
the Kemeny-based centralities obtained by separately considering the two graphs,
while the centralities obtained by considering the disjoint union of the graphs, where
the adjacency matrix is reducible, are reported in the second row of Figure 6.1.

We can see from this representation that the centrality values of the disjoint union
do not differ much from the union of the centralities of the two graphs. Moreover,
observe that in the leftmost graph, where the barbell is formed by two loops, the
edges in the loops have a high centrality. In fact, removing one of these edges almost
disconnects the loop. Whereas, in the rightmost graph, where the loops are replaced
by highly connected set of nodes, these edges have a low centrality. Indeed, their
removal does not much alter the overall connectivity of the graph. On the other
hand, removing one of the two edges connecting the two groups of nodes strongly
reduces the connectivity between the two groups.
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Fig. 6.1. This figure shows the Kemeny-based regularized centrality measure applied separately
to each connected component of a disconnected graph (first row) and to the union of the two com-
ponents where the adjacency matrix is reducible (second row). Blue and thick edges denote higher
Kemeny-based centrality. The values of the centralities of the disconnected graph do not differ much
from those computed by separately applying the regularized measure to the two connected graph
components. (Color available online.)

6.2. Kemeny constant derivative. As above, let G be a connected weighted
undirected graph, let e = \{ i, j\} \in E be an edge, and set v = ei  - ej . It is natural
to consider the function f(t) = K(P (t)), where P (t) is the random walk transition
matrix built starting from A(t) =A+ tai,jvv

T for t\in [0,1]. This function interpolates
between the Kemeny constant of the original network K(P ) = f(0) and the one of
the modified network K( \widehat P ) = f(1). The centrality c(e) can be written as the finite
difference

c(e) =
f(1) - f(0)

1 - 0
.

The formula suggests studying the derivative f \prime (t) = lim\delta \rightarrow 0
f(t+\delta ) - f(t)

\delta , especially in
t= 0 and t= 1, to better understand c(e) and also possibly to replace it.

We have the following result.
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662 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

Theorem 6.2. Under the assumptions of Theorem 4.2, let f(t) = K(P (t)) for
P (t) =D - 1A(t), where A(t) = A+ tai,jvv

T , D = diag(d), d = A(t)1 = A1, t \in [0,1].
Let \lambda \ell , \ell = 1, . . . , n, be the eigenvalues of P (0), where \lambda 1 = 1. Then 0 \leq f \prime (0) \leq 
ai,j(d

 - 1
i + d - 1

j )
\sum n

\ell =2
1

(1 - \lambda \ell )2
.

Proof. Denote by \lambda i(t) the eigenvalues of C(t) := D - 1
2A(t)D - 1

2  - 1
\| d\| 1

ddT . We
have

1

t

\bigl( 
K(P (t)) - K(P (0))

\bigr) 
=

1

t

n\sum 
\ell =2

\biggl( 
1

1 - \lambda \ell (t)
 - 1

1 - \lambda \ell 

\biggr) 
=

n\sum 
\ell =2

(\lambda \ell (t) - \lambda \ell )/t

(1 - \lambda \ell (t))(1 - \lambda \ell )
.

Since \lambda \ell \leq \lambda \ell (t) \leq \lambda \ell + tai,j(d
 - 1
i + d - 1

j ) (compare with the proof of Theorem 4.2),
taking the limit for t\rightarrow 0 yields

f \prime (0)\leq ai,j(d
 - 1
i + d - 1

j )

n\sum 
\ell =2

1

(1 - \lambda \ell )2
.

A similar inequality can be proved for f \prime (1):

f \prime (1)\leq ai,j(d
 - 1
i + d - 1

j )

n\sum 
\ell =2

1

(1 - \widehat \lambda \ell )2
.

Observe that the upper bound to f \prime (0) given in the above theorem coincides with the
value ai,j(d

 - 1
i + d - 1

j ) up to within a constant factor independent of i and j. This
value depends on the degree of node i and of node j independently of the topology of
the graph. The result suggests that in order to obtain a large change in the Kemeny
constant one should focus on edges that not only have a large weight but also connect
nodes with small degrees. Hence this argument supports the observation that the
centrality measure c(e) is effective in identifying weak ties in a network.

It is interesting to point out that in the paper [5] an expression of the derivative
of the Kemeny constant is considered, to design a decomposition algorithm for the
states of a Markov chain.

7. Computational aspects. In order to compute the regularized centrality
cr(e) of an edge e, we may repeat the arguments of section 4 used to provide simple
formulas for computing c(e). In particular, the expression of c(e) given in Theorem

4.3 still holds with W - 1 and \widehat W - 1 replaced by W - 1
r = (1 + r)I  - D - 1/2AD - 1/2 and\widehat W - 1

r = W - 1
r  - ai,jD

 - 1/2vvTD - 1/2, respectively. This way, equations (4.6) are still
valid with S replaced by the positive definite matrix S + rD. That is, instead of
inverting S directly, we may compute Fr = (S + rD) - 1 for a small positive value
of the regularization parameter r. As pointed out in section 6.1, this regularization
approach allows us to also treat the cases where the network is disconnected, so that
the matrix S is singular, and the case where the removal of an edge disconnects the
network. In that case, the corresponding \theta in (4.6) coincides with 1.

The computation of the centrality measure of all the edges, with the regularization
technique, is reported in Algorithm 7.1.

In this approach the amount of available RAM must be of the order of n2 in order
to store all the entries of S - 1. Indeed, large networks require a huge storage capacity.

A possible way to overcome the storage issues encountered in the case of large
networks consists in exploiting the sparsity of the matrix A. In fact, since T =
(1 + r)D  - A is positive definite, there exists its Cholesky factorization T = LLT .
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KEMENY-BASED CENTRALITY 663

Algorithm 7.1 Regularized Kemeny-based centrality of all the edges, where the
number n of nodes is small enough so that n2 entries can be stored in the RAM.

Input: The adjacency matrix A and a regularizing parameter r > 0
Output: The value cr(e) for any edge e= \{ i, j\} 

1: Compute d=A1 and \gamma = dT1;
2: Set D=diag(d) and S = (1+ r)D - A+ 1

\gamma dd
T ;

3: Compute F = S - 1, Q= FTDF ;
4: for all edges e= \{ i, j\} do
5: compute \alpha = aij(fii + fjj  - 2fij), \beta = aij(qii + qjj  - 2qij), and cr(e) = \beta /(1 - \alpha ).
6: end for

Fig. 7.1. Plots (obtained with Matlab's spy) of the sparsity patterns of the adjacency matrix of
the Pisa road network (left) and of its Cholesky factor (right). The number nz of nonzero entries is
displayed as well.

Moreover, the sparsity of T induces a sparsity structure in L so that the matrix L
can be stored with a low memory space and the triangular systems having matrices
L and LT can be solved at a low cost. An example is given in Figure 7.1, where the
structures of T and of L are displayed.

By applying the Sherman--Woodbury--Morrison identity to S = T + 1
\| d\| 1

ddT we
may write

S - 1 = T - 1  - 1

\| d\| 1 + dT z
zzT , z = T - 1d

so that for the vector x in (4.6) we have

x=w - zT d

\| d\| 1 + dT z
z, w= T - 1v.

Moreover, from the Cholesky factorization T =LLT we get

LLT z = d, LLTw= v.

The above expressions can be used together with the first equation in (4.6) in order
to compute cr(e).

Observe that from the computational point of view, one has to compute the
Cholesky factorization once for all; this is cheaper than inverting a matrix. Moreover,
two sparse triangular systems with matrix L and LT must be solved once for all for
computing z. Finally, for any edge \{ i, j\} , two sparse triangular systems must be solved
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Algorithm 7.2 Regularized and filtered Kemeny-based centrality of all the edges,
relying on the Cholesky factorization.

Input: The adjacency matrix A and a regularizing parameter r > 0
Output: The value cFr (e) for any edge e= \{ i, j\} 

1: Compute d=A1;
2: Set D=diag(d) and T = (1+ r)D - A;
3: Compute the Cholesky factorization T =LLT ;
4: Solve the linear systems Ly= d and LT z = y;
5: Compute \gamma = dT z + dT1;
6: for all edges e= \{ i, j\} do
7: set v= ei  - ej
8: solve the systems Ly= v and LTw= y
9: set \delta = dTw and x=w - \delta 

\gamma z

10: compute \alpha = aij(xi  - xj), \beta = aij
\sum n

\ell =1 x
2
\ell d\ell , and cr(e) = \beta /(1 - \alpha );

11: if cr(e)>
1
2r

 - 1 then
12: cFr (e) = r - 1  - cr(e)
13: else
14: cFr (e) = cr(e)
15: end if
16: end for

for computing w and O(n) additional operations must be performed. Indeed, in this
approach the cost is higher but this allows one to deal with large networks even if
the amount of RAM storage is not sufficiently large. Algorithm 7.2 implements this
approach, including regularization.

Note that after the precomputation steps the computation of the centrality of each
edge is independent of the others; hence the main loop can be performed in parallel.

Besides the artificial tests shown in Figures 5.1 and 6.1, we have considered a
real network composed of the roads in the city center of Pisa. To each edge \{ i, j\} ,
corresponding to a road connecting i and j, we have assigned a connection strength
aij = exp( - \scrL (i, j)/\scrL max) \in (0,1], where \scrL (i, j) is the length of the edge, i.e., the
Euclidean distance between points i and j, and \scrL max is the maximum edge length in
the network. We chose this formula for the weights to have a simple decreasing func-
tion of the length of the road to use in our tests. This is different from the approach
taken in [14], where the authors work on the dual graph and use weights based on pre-
existing data on the real-world traffic to measure the connection strength. Here, we
do not have traffic data to rely on, so we have to take a different automated approach.

This network is a planar undirected graph with 1794 nodes and 3240 edges; it
includes many dead ends that are cut-edges, and various roads that, while not being
cut-edges, are important bottlenecks for connectivity; among them are bridges on the
Arno river and overpasses over the railroad line.

In our experiments, we have computed filtered and unfiltered Kemeny-based cen-
tralities with regularization of all the roads. We have compared these values to the
following corresponding measures:

\bullet The Road-taking probability in the PageRank model (with \theta = 0.85) is defined
for an edge \{ i, j\} as rt(\{ i, j\} ) = \pi iRij+\pi jRji, where \pi is the PageRank vector
and R= \theta P+(1 - \theta ) 1n11

T is the stochastic transition matrix of the PageRank
model; this quantity corresponds to the long-term probability that a random
surfer goes through that edge (in any direction).
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Kemeny-based centrality r=1e-8, filtered
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Fig. 7.2. Comparison of several centrality measures on a map of the Pisa city center; part I.

\bullet PageRank and Betweenness on the dual graph are defined using the so-called
dual graph, or line graph, of the network, i.e., a graph in which each road
is a node, and two nodes are joined by an edge if the corresponding roads
meet. This allows us to compute edge centrality measures with these two
algorithms, which were designed to compute node importance.

\bullet Edge betweenness (with \scrL (i, j) as the distance), Edge current-flow between-
ness [8] (with resistances aij), and Edge load centrality .

The PageRank based measures in the first two items are computed with the MATLAB
graph/centrality command, while the Edge measures in the last item are computed
using Python's NetworkX library [21]. Note that we have included in the comparison
all edge centrality measures available in NetworkX, for completeness. We refer the
reader to the book [16] and to the documentation of NetworkX for more details on
these measures.

In Figure 7.2 we report the Pisa center road map (top left) and the results
obtained by computing the regularized Kemeny-based centrality (filtered on top
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Pagerank on the (unweighted) dual graph
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Fig. 7.3. Comparison of several centrality measures on a map of the Pisa city center; part II.

right; unfiltered on bottom left) and the Road-taking probability in the PageRank
model.

We can see that the filtered version of the Kemeny-based centrality cFr (e) (here
computed with regularization parameter r= 10 - 8) does an excellent job at highlight-
ing important bottlenecks for connectivity (weak ties), such as bridges on the Arno
river and overpasses over the railroad line. Moreover, dead ends that are cut-edges are
not enhanced as important roads. In the unfiltered version of the measure, instead,
cut-edges take a very high value and are essentially the only ones to be displayed in
blue. This confirms that the filtering procedure is necessary to obtain sensible results.
The Road-taking probability measure is not able to identify the important roads for
connectivity.

In Figure 7.3 we display the results obtained with the other centrality measures.
More specifically, PageRank on the unweighted dual graph (top right), Betweenness
on the unweighted dual graph (top right), Edge betweenness (bottom left), and Edge
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Table 7.1
CPU times for the various edge centrality algorithms on an Intel Core i5-1135G7 @ 2.40GHz

laptop.

Algorithm MATLAB
MATLAB R2021a
with BGL [18]

Python 3.9.7 with
NetworkX 2.4
[21]

Kemeny-based centrality 0.40 s
Pagerank s91.0s100.0

Pagerank dual s1.0s100.0
Betweenness dual 0.04 s 0.64 s 6.21 s
Edge betweenness 0.42 s 6.51 s

Edge current-flow betweenness 7.3 s
Edge load centrality 6.8 s

current flow betweenness (bottom right). The results of Edge load centrality of [21]
are not reported since they almost coincide with the ones of Betweenness on the
unweighted dual graph and produce to an image that is indistinguishable to the eye.

From Figure 7.3, it turns out that PageRank and Betweenness, as well as Edge
load centrality, fail to detect bottlenecks. Edge betweenness (with \scrL (i, j) as the dis-
tance) and Edge current-flow betweenness partially succeed in highlighting bottleneck
edges even though they do so at a much larger execution CPU time (see Table 7.1) if
performed with Python's NetworkX library [21].

A detailed comparison in terms of CPU time is difficult due to the very nonuniform
state of the codebases for the algorithms that we have used and the different overheads
in the two (interpreted) languages that we have used; nevertheless, we report the
observed timings in Table 7.1.

From Table 7.1, one can see that among the measures that better detect the
bottlenecks, the filtered Kemeny-based centrality is the one that takes the smallest
CPU time. Compared with the Python library NetworkX of [21], this measure is 12
times faster.

In theoretical terms, the time complexity of the Kemeny-based centrality is com-
parable with the cost of one matrix inversion, or the solution of n linear systems,
which is O(nm) when the Cholesky factor has O(m) entries, as is the case for our
road network examples. The complexity of Edge current-flow betweenness is similar,
as it is also based on the pseudoinverse of the Laplacian, while Edge betweenness can
be computed in O(nm) as well for all networks. Measures computed using the dual
graph have a similar cost because m=O(n) for our road networks. PageRank-based
measures are significantly cheaper, as they require the solution of only one linear
system instead of n.

Another interesting observation is that, with the initial version of the measure\widetilde c(e), 10.4\% of the non-cut-edges in the Pisa map are Braess edges with \widetilde c(e)< 0. This
shows that the Braess paradox has practical relevance and cannot be ignored as just
an uncommon occurrence.

Finally, we describe the results of an experiment at a much larger scale. We have
used the same methodology to compute the Kemeny-based centrality of a road network
of the Tuscany region in Italy, a very large graph with 1.22M nodes and 1.56M edges.
Despite the large size of the network, the Cholesky factor L is quite sparse, with only
3.36M nonzero entries, and it is computed in less than one second using MATLAB.
A much more challenging computation is the computation of the centralities of each
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668 ALTAFINI, BINI, CUTINI, MEINI, AND POLONI

edge, each one of which requires solving two triangular linear systems with L and LT .
We have run this computation in parallel (using the MATLAB function parfor) on
a machine with 12 physical cores with 3.4GHz speed each (Intel Xeon CPU E5-2643)
and MATLAB R2017a. The computation took 18 hours.

8. Conclusions. We have introduced a centrality measure for the edges of an
undirected weighted graph based on the variation of the Kemeny constant. This
measure has been modified in order to produce nonnegative results and avoid the
presence of the Braess paradox, which would make the measure interpretation and
its practical usage in applications more difficult. A regularization technique has been
introduced for its computation; the technique allows one to detect cut-edges and to
manage disconnected graphs. A technique of filtering has been introduced together
with the filtered Kemeny-based centrality. From numerical experiments performed
with artificial networks and with real road networks, it turned out that the filtered
measure allows us to highlight weak ties, i.e., edges that connect large communities.
All the versions of the Kemeny-based centrality measures can be expressed by means
of the trace of suitable matrices, and their computation is ultimately reduced to the
Cholesky factorization of a positive definite matrix, which is generally sparse. If the
number of edges is huge, other techniques to estimate the trace of a matrix might be
more appropriate, like the one proposed in [13] based on randomization. This is a
subject of further research.

Our main interest here was to identify weak ties in road networks. But identifying
weak ties has potential applications also in other fields. The seminal paper by Gra-
novetter [20] considered social networks, for instance; and in the analysis of economical
and biological networks this measure has the potential to reveal key connections that
may go unnoticed under other metrics.

Code availability. MATLAB code to compute the centrality measure proposed
in this paper, as well as MATLAB and Python code to reproduce the figures of this
paper, is available at https://github.com/numpi/kemeny-based-centrality.

Acknowledgment. The authors wish to thank the reviewers for their careful
reading and for many suggestions and remarks that substantially contributed to im-
proving the presentation of the paper.
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