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Abstract. We present fast numerical methods for computing the Hessenberg reduction of a
unitary plus low-rank matrix A = G + UV H , where G ∈ Cn×n is a unitary matrix represented in
some compressed format using O(nk) parameters and U and V are n × k matrices with k < n. At
the core of these methods is a certain structured decomposition, referred to as a LFR decomposition,
of A as product of three possibly perturbed unitary k Hessenberg matrices of size n. It is shown that
in most interesting cases an initial LFR decomposition of A can be computed very cheaply. Then
we prove structural properties of LFR decompositions by giving conditions under which the LFR
decomposition of A implies its Hessenberg shape. Finally, we describe a bulge chasing scheme for
converting the initial LFR decomposition of A into the LFR decomposition of a Hessenberg matrix
by means of unitary transformations. The reduction can be performed at the overall computational
cost of O(n2k) arithmetic operations using O(nk) storage. The computed LFR decomposition of the
Hessenberg reduction of A can be processed by the fast QR algorithm presented in [9] in order to
compute the eigenvalues of A within the same costs.
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1. Introduction. Eigenvalue computations for small rank modifications of uni-
tary matrices represented in some compressed format is a classical topic in structured
numerical linear algebra. Matrices of the form A = D + UV H where D is a unitary
n× n block diagonal matrix and U, V ∈ Cn×k, k < n, arise commonly in the numeri-
cal treatment of structured (generalized) eigenvalue problems [1,2]. In particular any
unitary plus low-rank matrix can be reduced in this form by a similarity (unitary)
transformation and additionally matrices of this form can be directly generated by
linearization techniques based on interpolation schemes applied for the solution of
nonlinear eigenvalue problems [6–8, 10, 19]. The class of unitary block upper Hessen-
berg matrices perturbed in the first block row or in the last block column includes
block companion linearizations of matrix polynomials. These matrices are also re-
lated with computational problems involving orthogonal matrix polynomials on the
unit circle [22, 23]. Constructing the sequence of orthogonal polynomials w.r.t a dif-
ferent basis modifies the compressed format of the unitary part by replacing the block
Hessenberg shape with the block CMV shape [12, 20, 21]. Semiinfinite block upper
Hessenberg and CMV unitary matrices are commonly used to represent unitary op-
erators on a separable Hilbert space [3, 13]. Finite truncations of these matrices are
unitary block Hessenberg/CMV matrices modified in the last row or column.

In most numerical methods Hessenberg reduction by unitary similarity transfor-
mations is the first step towards eigenvalue computation. Recently a fast reduction
algorithm specifically tailored for block companion matrices has been presented in [5]
whereas some efficient algorithms for dealing with block unitary diagonal plus small
rank matrices have been developed in [18]. In particular, these latter algorithms are
two-phase: in the first phase the matrix A is reduced in a banded form A1 employing
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a block CMV-like format to represent the unitary part. The second phase amounts to
incrementally annihilate the lower subdiagonals of A1 by means of Givens rotations
which are gathered in order to construct a data-sparse compressed representation of
the final Hessenberg matrix A2. The representation involves O(nk) data storage con-
sisting of O(n) vectors of length k and O(nk) Givens rotations. This compression is
usually known as a Givens-Vector representation [25], and it can also be explicitly
resolved to produce a generators-based representation [16]. However, a major weak-
ness of this approach is that both these two compressed formats, to the best of our
knowledge, are not directly suited to be exploited in the design of fast specialized
eigensolvers for unitary plus low rank matrices using O(n2k) flops only.

In this paper we describe a novel O(n2k) backward stable algorithm for computing
the Hessenberg reduction of general matrices A ∈ Cn×n of the form A = G + UV H ,
where G is unitary block diagonal or unitary block upper Hessenberg or block CMV
with block size k < n and, in the case G is unitary block upper Hessenberg or block
CMV, we have the additional requirement that U = [Ik, 0 . . . , 0]

T
. These families

include most of the important cases arising in applications such as the Frobenius
companion linearizations (with G unitary (block) Hessenberg), the linearization of
matrix polynomials in the Lagrange basis [1] (with G unitary (block) diagonal). The
(block) CMV case arises when dealing with orthogonal polynomials [20,22,23].

This algorithm circumvents the drawback of the method proposed in [18] by in-
troducing a different data-sparse compressed representation of the final Hessenberg
matrix which is effectively usable in fast eigenvalue schemes. In particular, the repre-
sentation is suited for the fast eigensolver for unitary plus low rank matrices developed
in [9]. Our derivation is based on three key ingredients or building blocks:

1. A condensed representation of the matrix A (or of a matrix unitary similar
to A) which can be specified as A = L(I + (e1 ⊗ Ik)ZH)R = LFR, where L
is the product of k unitary lower Hessenberg matrices, R is the product of
k unitary upper Hessenberg matrices and the middle factor F is the identity
matrix perturbed in the first k rows.
In the case matrix G is block upper Hessenberg or block diagonal we can ob-
tain the LFR representation in a simple way that we clarify in subsection 2.2
and subsection 2.3. In the case G is unitary block CMV matrix we provide a
suitable extension of the well known factorization of CMV matrices as product
of two block diagonal unitary matrices that are both the direct sum of 2× 2
or 1× 1 unitary blocks (compare with [21] and the references given therein).
Specifically, block CMV matrices with blocks of size k are 2k-banded uni-
tary matrices allowing a ’staircase-shaped’ profile. It is shown that a block
CMV matrix with blocks of size k admits a factorization as product of two
unitary block diagonal matrices with k × k diagonal blocks. It follows that
the block CMV matrix can be decomposed as the product of a unitary lower
k-Hessenberg matrix multiplied by a unitary upper k-Hessenberg matrix.

2. An embedding technique which for a given triple (L,F,R) associated with A

makes it possible to construct a larger matrix Â ∈ C(n+k)×(n+k) which is still
unitary plus rank-k and it can be factored as Â = L̂ · F̂ · R̂, where L̂ is the
product of k unitary lower Hessenberg matrices, R̂ is the product of k unitary
upper Hessenberg matrices and the middle factor F̂ is unitary block diagonal
plus rank-k with some additional properties.

3. A theoretical result which provides conditions under which a matrix specified
in the form Â = L̂ · F̂ · R̂ turns out to be Hessenberg.
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Combining together these ingredients allows the design of a specific bulge-chasing
strategy for converting the LFR factored representation of Â into the LFR decom-
position of an upper Hessenberg matrix Ã unitarily similar to Â. The final represen-
tation of Ã thus involves O(nk) data storage consisting of O(k) vectors of length n
and O(nk) Givens rotations. The reduction to Hessenberg form turns out to have the
same asymptotic complexity as eigensolvers for unitary plus low rank matrices and
furthermore, this representation is suited to be used directly by the fast eigensolver
for unitary plus low rank matrices developed in [9].

The paper is organized as follows. In section 2 we introduce the LFR represen-
tations of unitary plus rank-k matrices by devising fast algorithms for transforming a
matrix A into its LFR format provided that A belongs to some special classes. In sec-
tion 3 we investigate the properties of LFR representations of unitary plus rank-k
Hessenberg matrices and we describe a suitable technique to embed the matrix A into
a larger matrix Â by mantaining its structural properties. In section 4 we present our
algorithm which modifies the LFR representation of Â by computing the correspond-
ing LFR representation of a unitarily similar Hessenberg matrix. Finally, numerical
experiments are discussed in section 5 whereas conclusions and future work are drawn
in section 6.

2. The LFR Format of Unitary plus Rank-k Matrices. In this section we
introduce a suitable compressed representation of unitary plus rank-k matrices which
can be exploited for the design of fast Hessenberg reduction algorithms. We need
some preliminary definitions.

A key role is played by generalized Hessenberg factors.

Definition 2.1. A matrix H ∈ Cm×m is called k-upper Hessenberg if hij = 0
when i > j + k. Similarly, H is called k-lower Hessenberg if hij = 0 when j > i+ k.
In addition, when H is k-upper Hessenberg (k-lower Hessenberg) and the outermost
entries are non-zero, that is, hj+k,j 6= 0 (hj,j+k 6= 0), 1 ≤ j ≤ m− k, then the matrix
is called proper. A matrix which is simultaneously k-lower and k-upper Hessenberg is
caller k-banded.

Note that for k = 1 a Hessenberg matrix H is proper if and only if it is unreduced.
Also, a k-upper Hessenberg matrix H ∈ Cm×m is proper if and only if det(H(k + 1 :
m, 1 : m− k)) 6= 0. Similarly a k-lower Hessenberg matrix H is proper if and only if
det(H(1 : m− k, k + 1 : m)) 6= 0.

Note that k-lower (upper) Hessenberg matrices can be obtained as the product
of k matrices with the lower (upper) Hessenberg structure, and that unitary block
Hessenberg matrices with blocks of size k are (non-proper) k-Hessenberg matrices.

Definition 2.2. A unitary plus rank-k matrix A ∈ Cn×n can be represented in
the LFR format if there is a triple (L,F,R) of matrices such that:

1. A = LFR;
2. L ∈ Cn×n is a unitary k-lower Hessenberg matrix;
3. R ∈ Cn×n is a unitary k-upper Hessenberg matrix;
4. F = Q + [Ik, 0]TZH ∈ Cn×n is a unitary plus rank-k matrix, where Q is a

block diagonal unitary matrix of the form Q =

[
Ik

Q̂

]
, with Q̂ unitary

Hessenberg and Z ∈ Cn×k.

CMV matrices [20] are pentadiagonal unitary matrices with a particular staircase
structure of the nonzero elements. A block analogue of the CMV form of unitary
matrices has been introduced in [3, 18].
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Definition 2.3 (Block CMV). A unitary matrix G ∈ Cn×n is said to be CMV
structured with block size k if there exist k × k non-singular matrices Ri and Li,
respectively upper and lower triangular, such that

(2.1) G =



× × L3

R1 × ×
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .


or

G =



× L2

× × × L4

R1 × × ×
× × × L6

R3 × × ×
. . .

. . .
. . .


where the symbol × has been used to identify (possibly) nonzero k × k blocks.

Block CMV matrices are associated with matrix orthogonal polynomials on the
unit circle and the structure of the matrix depends on the choice of the starting
basis of the set of matrix polynomials to be orthogonalized. In particular, G fits the
block structure shown in Definition 2.3 if

{
Ik, zIk, z

−1Ik, . . .
}

or
{
Ik, z

−1Ik, zIk, . . .
}

are considered. In what follows for the sake of simplicity we always assume that G
satisfies the block structure (2.1). Furthermore, in order to simplify the notation we
often assume that n is a multiple of 2k, so the above structures fit “exactly” in the
matrix. However, this is not restrictive and the theory presented here continues to
hold in greater generality. In practice, one can deal with the more general case by
allowing the blocks in the bottom-right corner of the matrix to be smaller.

In the sequel of this section we present some fast algorithms for computing the
LFR format of a unitary plus rank-k matrix A ∈ Cn×n specified as follows:

• A = G+ [Ik, 0]TZH , Z ∈ Cn×k, and G is unitary block CMV with block size
k < n;

• A = H + [Ik, 0]TZH , Z ∈ Cn×k, and H is unitary block upper Hessenberg
with block size k < n;

• A = D+UV H , U, V ∈ Cn×k, and D is unitary block diagonal with block size
k < n.

As pointed out in the introduction, these three cases cover the most interesting struc-
tures of low-rank perturbation of unitary matrices. In the general case of unitary
matrices, where it is not known the spectral factorization of the unitary part or the
unitary matrix cannot be represented in terms of a linear number of parameters, the
retrieval of the eigenvalues – even only of the unitary part – requires O(n3) flops.

In the following sections we investigates into the above three cases.

2.1. Small Rank Modifications of Unitary Block CMV Matrices. Notice
that a matrix in CMV form with blocks of size k is, in particular, 2k-banded, i.e. is
simultaneously 2k-lower Hessenberg and 2k-upper Hessenberg, with a total of 4k + 1
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possibly nonzeros diagonals. The CMV structure with blocks of size 1 has been pro-
posed as a generalization of what the tridiagonal structure is for Hermitian matrices
in [12] and [20]. A further analogy between the scalar and the block case is derived
from the Nullity Theorem [17] that is here applied to unitary matrices.

Lemma 2.4 (Nullity Theorem). Let U be a unitary matrix of size n. Then

rank(U(α, β)) = rank(U(J\α, J\β)) + |α|+ |β| − n

where J = {1, 2, . . . , n} and α and β are subsets of J . If α = {1, . . . , h} an β = J\α
we have

rank(U(1 : h, h+ 1 : n)) = rank(U(h+ 1 : n, 1 : h)), for all h = 1, . . . , n− 1.

�

From Lemma 2.4 applied to a block CMV structured matrix G of block size k we
find that for p > 0:

0 = rank (G(1 : 2pk, (2p+ 1)k + 1 : n)) = rank (G(2pk + 1 : n, 1 : (2p+ 1)k))− k

which gives

rank (G(2pk + 1 : 2(p+ 1)k, (2p− 1)k + 1 : (2p+ 1)k)) = k.

Pictorially we are observing rank constraints on the following blocks

G =



× × L3

R1 × ×
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .


and by similar arguments on the corresponding blocks in the upper triangular portion.

In the scalar case with k = 1 these conditions make it possible to find a factor-
ization of the CMV matrix as product of two block diagonal matrices usually referred
to as the classical Schur parametrization [11]. Similarly, here we introduce a block
counterpart of the Schur parametrization which gives a useful tool to encompass the
structural properties of block CMV representations.

Lemma 2.5 (CMV factorization). Let G be a unitary CMV structured matrix
with blocks of size k as defined in Definition 2.3, equation (2.1). Then G can be
factored in two block diagonal unitary matrices G = G1G2 of the form:

G1 = diag(G1,1, . . . , G1,s), G2 = diag(Ik, G2,2, . . . , G2,s+1)

such that G2,s+1 has k rows and columns and all the other blocks Gi,j have 2k rows
and columns and bandwidth k with both Gi,j(k+1 : 2k, 1 : k) and Gi,j(1 : k, k+1 : 2k)
triangular matrices of full rank. Moreover, each matrix G admitting such a factored
form is in turn CMV.
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Proof. The proof of this result is constructive, and can be obtained by performing
a block QR decomposition. We notice that if we compute a QR decomposition of the
top-left 2k × k block of G we have

Q1,1 Q1,2

R2,1 Q2,2

I

H



× × L3

R1 × ×
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .


=



×̃
×̃ ×̃
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .



where ×̃ identifies the blocks that have been altered by the transformation and the
block in position (1, 1) can be assumed to be the identity matrix. Notice that in the
first row the blocks in the second and third columns have to be zero due to G being
unitary, and that the R2,1 block is nonsingular upper triangular since it inherits the
properties of R1.

We can continue this process by computing the QR factorization of
[ ×
R2

]
. Notice

that, from the application of the Nullity Theorem 2.4 the block identified by
[ × ×
R2 ×

]
in the picture has rank at most k. This also holds for all the other blocks for the
same kind. In particular, computing the QR factorization of the first k columns and
left-multiplying by QH will put to zero also the block on the right of R2. We will
then get the following factorization:


Q1,1 Q1,2

R2,1 Q2,2

Q3,3 Q3,4

R4,3 Q4,4

I


H



× × L3

R1 × ×
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .


=



×̃
×̃ ×̃
×̃ ×̃

×̃ ×̃
× ×

R4 ×
. . .

. . .
. . .



where we notice that, as before, the block R4,3 is nonsingular upper triangular and
that some blocks in the upper part have been set to zero thanks to the unitary
property. The process can then be continued until the end of the matrix, providing
a factorization of G as product of two unitary block diagonal matrices, that is G =
Ĝ1Ĝ2. This factorization can further be simplified by means of a block diagonal scaling
G = (Ĝ1D)(DHĜ2) = G1G2 with D = diag(D1, . . . , D2s), D2j−1 = Ik and D2j k × k
unitary matrices determined so that the blocks Gi,j are of bandwidth k, that is the
outermost blocks in G1 and G2 are triangular. For the sake of illustration consider
j = 1 and let QH

1,2 = QR be a QR decomposition of QH
1,2. By setting D2 = Q we

obtain that Q1,2D2 = RH and, moreover, from L3 = Q1,2D2(G2)2,3 = RH(G2)2,3 it
follows that the block of G2 in position (2, 3) also exhibits a lower triangular structure.
The construction of the remaining blocks D2j , j > 1, proceeds in a similar way.
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Pictorially, the above result gives the following structure of G1 and G2:

G1 =




, G2 =




Now, let us assume that a matrix A ∈ Cn×n is such that A = GT + [Ik, 0]TZH ,

Z ∈ Cn×k, and G is unitary block CMV with block size k < n. By replacing G with
its block diagonal factorization we obtain that A = GT

2 (In + [Ik, 0]TZHḠ1)GT
1 . Since

the left-hand and the right-hand side matrices are unitary k-banded it follows that
they are both unitary k-Hessenberg matrices. Hence, we have the following.

Theorem 2.6. Let A ∈ Cn×n be such that A = GT + [Ik, 0]TZH , Z ∈ Cn×k,
and G is unitary block CMV with the block structure shown in (2.1). Then A can be

represented in the LFR format as A = GT
2 (In + [Ik, 0]T ẐH)GT

1 where L = GT
2 , R =

GT
1 , G = G1G2 is the decomposition provided in Lemma 2.5 and F = In +[Ik, 0]T Z̃H ,

Z̃H = ZHḠ1.

The overall cost of computing this condensed LFR representation of the unitary
plus rank-k matrix A is O(nk2) flops using O(nk) memory storage.

2.2. Small Rank Modifications of Unitary Block Hessenberg Matrices.
The class of perturbed unitary block Hessenberg matrices includes the celebrated block
companion forms which are the basic tool in the construction of matrix linearizations
of matrix polynomials. To be specific let A ∈ Cn×n be a matrix such that A = H +
[Ik, 0]TZH , Z ∈ Cn×k, and H is unitary block upper Hessenberg with block size k < n.
A compressed LFR format of a matrix unitarily similar to A can be computed as
follows. First of all we can suppose that all the subdiagonal blocksHi+1,i, 1 ≤ i ≤ n/k,
are upper triangular. If not we consider the unitary block diagonal matrix P defined
by P = blkdiag

[
P1, P2, . . . , Pn/k

]
where Pi ∈ Ck×k, P1 = Ik and Hi+1,iPi = Pi+1Ri

is a QR decomposition of the matrix Hi+1,iPi, 1 ≤ i ≤ n/k − 1. Then the matrix

Ã = PHAP is such that Ã = H̃+[Ik, 0]T Z̃H and H̃ is unitary block upper Hessenberg

with block size k < n and H̃i+1,i = Ri, 1 ≤ i ≤ n/k − 1. Hence, the matrix H̃ is

k-upper Hessenberg and therefore the factorization Ã = In(In + [Ik, 0]T ẐH)H̃ gives

a suitable LFR representations of Ã. Summing up we have the following.

Theorem 2.7. Let A ∈ Cn×n be such that A = H + [Ik, 0]TZH , Z ∈ Cn×k, and
H is unitary block upper Hessenberg with block size k < n. Then there exists a unitary
block diagonal matrix P = blkdiag

[
P1, P2, . . . , Pn/k

]
, Pi ∈ Ck×k, P1 = Ik such that

Ã = PHAP can be represented in the LFR format as Ã = In(In+[Ik, 0]T ẐH)H̃ where

L = In, R = G̃ = PHGP and F = In + [Ik, 0]T ẐH , ẐH = ZHH̃H .

The overall cost of computing this condensed LFR representation of the unitary
plus rank-k matrix A is O(nk2) flops using O(nk) memory storage.

2.3. Small Rank Modifications of Unitary Block Diagonal Matrices.
The unitary block diagonal matrix reduces to a unitary diagonal matrix up to a
similarity transformation which can be performed within O(nk2) operations. The
interest toward the properties of block CMV matrices is renewed in [18] where a
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general scheme is proposed to transform a unitary diagonal plus a rank-k matrix into
a block CMV structured matrix plus a rank-k perturbation located in the first k rows
only. More specifically we have the following [18].

Theorem 2.8. Let D ∈ Cn×n be a unitary diagonal matrix and U ∈ Cn×k of
full rank k. Then, there exists a unitary matrix P such that G = PDPH is CMV
structured with block size k and the block structure shown in Definition 2.3 and PU =
(e1 ⊗ Ik)U1 for some U1 ∈ Ck×k. The matrices P,G and U1 can be computed with
O(n2k) operations. �

By applying Theorem 2.8 to the matrix pair (DH , U) we find that there exists a
unitary matrix P such that G = PDHPH is CMV structured with block size k and
PU = (e1 ⊗ Ik)U1. In view of Lemma 2.5 this yields

P (D + UV H)PH = GH + (e1 ⊗ Ik)U1(PV )H =
GH

2 (I + (e1 ⊗ Ik)ZH)GH
1 ,

where Z = GH
1 PV U

H
1 ∈ Cn×k. Since the left-hand and the right-hand side matrices

are unitary k-banded they are also unitary k-lower and upper Hessenberg matrices.
In this way we obtain the next result.

Theorem 2.9. Let A ∈ Cn×n be such that A = D + UV H with U, V ∈ Cn×k,
and D unitary diagonal. Then there exists a unitary matrix P ∈ Cn×n such that G =
PDPH has the block CMV structure shown in Definition 2.3 and PU = (e1 ⊗ Ik)U1

for some U1 ∈ Ck×k. Moreover, Ã = PAPH can be represented in the LFR format as
Ã = GH

2 (In + [Ik, 0]TZH)G̃H
1 where L = GH

2 , R = GH
1 , PDPH = G = G1G2 is the

factorization of G provided in Lemma 2.5 and F = In + [Ik, 0]TZH , ZH = U1(PV )H .

The overall cost of computing this condensed LFR representation of the unitary
plus rank-k matrix A is O(n2k) flops using O(nk) memory storage.

In the next sections we investigate the properties of the Hessenberg reduction of
a matrix given in the LFR format.

3. Factored Representations of Hessenberg Matrices. In this section we
investigate suitable conditions under which a factored representation A = LFR ∈
Cm×m, where L is the a unitary k-lower Hessenberg matrices, R is a unitary k-upper
Hessenberg matrices and the middle factor F is unitary plus rank-k, specifies a matrix
in Hessenberg form. In section 4 we will discuss the chasing algorithm for reducing,
by unitary similarity, a matrix of the form L(I + (e1 ⊗ Ik)ZH)R to Hessenberg form
maintaining the factorization and enforcing the properness of the factor L to avoid
breakdown of the subsequent QR iterations.

An important property of any unitary upper Hessenberg matrix H ∈ Cm×m

is that it can be represented as product of elementary transformations, i.e., H =

G1G2 · · · Gm−1Dm where G` = I`−1⊕G`⊕Im−`−1 with G` =

[
α` β`
−β` ᾱ`

]
, |α`|2+β2

` =

1, α`,∈ C, β` ∈ R, β` ≥ 0, are unitary Givens rotations and Dm = Im−1 ⊕ θm
with |θm| = 1. In this way the matrix H is stored by two vectors of length m
formed by the elements α`, β`, 1 ≤ ` ≤ m− 1 and θm. The same representation also
extends to unitary k-upper Hessenberg matrices since any matrix of this kind can be
specified as the product of k unitary upper Hessenberg matrices multiplied on the
right by a unitary diagonal matrix which is the identity matrix modified in the last
diagonal entry. Lower unitary Hessenberg matrices can be parametrized similarly as
H = Gm−1Gm−2 · · · G1Dm.
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Another basic property of unitary plus rank-k matrices is the existence of suitable
embeddings which maintain their structural properties. The embedding turns out to
be crucial to ensure the properness of the factor L and guarantee the safe application
of implicit QR iterations. In fact, only working with an enlarged matrix we have
the guarantee that if F is in Hessenberg form also A has the same structure as will
be clarified by Theorem 3.2. The embedding is also important for the bulge chasing
algorithm as we explain in the next section. The following result is first proved in [9]
and here specialized to a matrix of the form determined in Theorem 2.6, Theorem 2.7
and Theorem 2.9.

Theorem 3.1. Let A ∈ Cn×n be such that A = L(I + (e1 ⊗ Ik)ZH)R = LFR,
where L and R are unitary and Z ∈ Cn×k. Let Z = QG, G ∈ Ck×k, be the economic
QR factorization of Z. Let Û ∈ Cm×m, m = n+ k, be defined as

Û = Im −
[

Q
−Ik

] [
Q
−Ik

]H
.

Then it holds
1. Û is unitary;
2. the matrix Â ∈ Cm×m given by

Â =

[
L

Ik

](
Û +

([
GH

0

]
+

[
Q
−Ik

])[
Q
0

]H)[
R

Ik

]
satisfies

Â =

[
A B
0 0

]
, B ∈ Cn×k.

Proof. Property 1 follows by direct calculations from[
Q
−Ik

]H [
Q
−Ik

]
= 2Ik.

For Property 2 we find that

Û +

([
GH

0

]
+

[
Q
−Ik

])[
Q
0

]H
=

[
In Q

0k

]
+

[
Ik
0

] [
Z
0

]H
.

The unitary matrices L and R given in Theorem 2.6, Theorem 2.7 and Theo-
rem 2.9 are k-Hessenberg matrices. The same clearly holds for the larger matrices
diag(L, Ik) and diag(R, Ik) occurring in the factorization of Â. The next result is
the main contribution of this section and it provides conditions under which a ma-
trix specified as a product L · F̃ ·R, where L is a unitary k-lower Hessenberg matrix
R is a unitary k-upper Hessenberg matrix and F̃ is a unitary matrix plus a rank-k
correction, is in Hessenberg form.

In fact, once we apply the embedding described by Theorem 3.1 to A = L(I +

(e1⊗Ik)ZH)R, the matrix obtained, Â, is no more in the LFR format since the middle

factor is not in the prescribed format required by Definition 2.2. Moreover L̂ = L⊕Ik
is not a proper matrix, making implicit QR iterations subject to breakdown.

Theorem 3.2. Let L,R ∈ Cm×m, m = n + k, be two unitary matrices, where L
is a proper unitary k-lower Hessenberg matrix and R is a unitary k-upper Hessenberg
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matrix. Let Q be a block diagonal unitary upper Hessenberg matrix of the form Q =[
Ik

Q̂

]
, with Q̂ n × n unitary upper Hessenberg. Let F = Q + [Ik, 0]TZH with

Z ∈ Cm×k. Suppose that the matrix Â = LFR satisfies the block structure

Â =

[
A ∗

0k,n 0k,k

]
.

Then Â is an upper Hessenberg matrix.

Proof. We have that since L is unitary LHÂ = FR. Note that M = FR is k+ 1-
upper Hessenberg since the rank-k correction is hidden in the first k rows and Q · R
is k + 1-upper Hessenberg. Because of the null blocks of Â we have

LH(k + 1 : m, 1 : n)A = M(k + 1 : m, 1 : n).

From the properness of L we get that LH(k + 1 : m, 1 : n) is non singular and upper
triangular, so A = (LH(k+ 1 : m, 1 : n))−1M(k+ 1 : m, 1 : n). The theorem is proven
observing that M(k = 1 : m, 1 : n) is an upper Hessenberg matrix.

4. The Bulge Chasing Algorithm. In this section we present a bulge-chasing
algorithm relying upon Theorem 3.2 to compute the Hessenberg reduction of the
matrix Â given as in Theorem 3.1, i.e., the embedding of A = L(I + (e1 ⊗ Ik)ZH)R.
We recall that Q and G are the factors of the economic QR factorization of Z.

Let us set

X =

[
Q
−Ik

]
, Y =

[
GH

0

]
+X, W =

[
Q
0

]
,

so that we have

(4.1) Â =

[
L

Ik

](
Û + YWH

)[ R
Ik

]
, Û = Im −XXH .

Observe that X(k + 1 : m, :) = Y (k + 1 : m, :) and, moreover, Y (n + 1 : m, :) = −Ik
which implies rank(Y ) = k. In the preprocessing phase we initialize

L0 :=

[
L

Ik

]
, R0 :=

[
R

Ik

]
, X0 := X, Y0 := Y, W0 := W.

Notice that L0 is a unitary k-lower Hessenberg matrix and R0 is a unitary k-upper
Hessenberg matrix and, therefore, they can both be represented by the product of
k Hessenberg matrices. This property will be maintained under the bulge chasing
process. In the cases considered in this paper, we rely on the additional structure of
L0 namely that L0 is also k-banded as we can observe from Theorem 2.6, Theorem 2.7
and Theorem 2.9.

In this section we make use of the following technical result.

Lemma 4.1. Let B ∈ Cn×n be a unitary k-lower (k-upper) Hessenberg matrix. Let
H ∈ Cn×n, be a unitary Hessenberg obtained as a sequence of ascending or descending
Givens transformations acting on two consecutive rows, i.e. H = Gn−1Gn−2, · · · G1 if
H is lower Hessenberg or H = G1G2 · · · Gn−1 if H is upper Hessenberg. Then, there
exist a unitary k-lower (or k-upper) Hessenberg matrix B̃ (with the same orientation
as B) and a unitary Hessenberg matrix H̃ such that HB = B̃H̃ where
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• H̃ =

[
Ik

Ĥ

]
if B is k-lower Hessenberg,

• H̃ =

[
Ĥ

Ik

]
if B is k-upper Hessenberg,

and Ĥ has the same orientation of H.

Proof. We prove the lemma only in the case H is lower Hessenberg and B is
k-upper Hessenberg. We need to move each of the n − 1 Givens rotations of H on
the right of B. The first k Givens rotations of H, namely G1, . . . ,Gk, when applied to
B do not destroy the k-lower Hessenberg structure of B, so that GkGk−1 · · · G1B = B̂
still k-lower Hessenberg. When we apply Gk+1 to B̂ a bulge is produced in position
(k + 2, 1), and we need to apply a rotation on the first two columns of Gk+1B̂ to
remove the bulge, i.e. Gk+1B̂ = B̂1G̃1, similarly we can remove each of the remaining
n − k − 1 Givens rotations. At step i we have Gk+iB̂i−1 = B̂iG̃i. The last Givens
Gn−1 produces a bulge in position (n, n−k−1) which can be removed by the rotation
G̃n−k−1 acting on the columns (n−k−1, n−k). We do not need to rotate the columns
with indices between n− k and n, so that

H̃ = G̃n−k−1 · · · G̃2G̃1 =

[
Ĥ

Ik

]
.

We can similarly prove the remaining three cases.

The reduction of Â = Â0 in Hessenberg form proceeds in three steps according
to Theorem 3.2. The first two steps amount to determine a different representation
of the same matrix Â0. In particular after these two steps the rank-correction inside
the brackets is confined to the first k-rows, while the L0 factor on the left of the
representation is substituted by a factor which is proper, and still with the lower
k-Hessenberg structure. The third step is a bulge-chasing scheme to complete the
Hessenberg reduction.

1. (Preliminary phase I ) We compute the full QR factorization of Y0 = Q0T0.
Since Y0 is full rank the matrix T̂0 = T0(1 : k, :) is invertible and, more-
over, the matrix Q0 can be taken as a k-lower Hessenberg proper matrix (see
Lemma 2.4 of [9]). We can write

Â0 = (L0Q0) · (QH
0 Û + T0W

H
0 ) ·R0.

Then the matrix Â1 : = LH
0 Â0L0 is such that

Â1 = Q0 · (QH
0 ÛR0 + T0W

H
0 R0)L0.

Notice that Û1 := QH
0 ÛR0 is a unitary 2k-upper Hessenberg matrix. Indeed,

we have that

Û1 = QH
0 ÛQ0Q

H
0 R0 = (Im − X̂X̂H)QH

0 R0,

where X̂ := QH
0 X. We have that T0 = QH

0 Y = QH
0 X + QH

0

[
GH

0

]
hence,

X̂ = T0 − QH
0

[
GH

0

]
. Therefore X̂(2k + 1 : m, :) = −QH

0 (2k + 1 : m, 1 :

k)GH = 0 since QH
0 (2k+ 1 : m, 1 : k) = 0. Hence, we have Û1 = ((I2k− X̂(1 :

2k, :)X̂H(:, 1 : 2k))⊕ Im−2k)QH
0 R0 which, for the block diagonal structure of

Im − X̂X̂H , turns out to be 2k-upper Hessenberg.
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2. (Preliminary phase II ) We can construct a unitary k-lower Hessenberg matrix
P such that

(4.2) Û1P =

[
Ik 0

0 Q̂

]
where Q̂ is a unitary k-upper Hessenberg matrix. The matrix P can be

constructed as follows, let P =

[
P11 P12

P21 P22

]
, we set

[
P11

P21

]
= ÛH

1 (:, 1 : k).

Imposing (4.2) we have that Û1(k + 1 : m, 1 : n) = Q̂PH
12 , so Q̂ and PH

12 can

be determined as the Q and R factors of a QR factorization of Û1(k + 1 :
m, 1 : n). Hence P12 can be taken lower triangular and the factor Q̂ can be

taken with the same lower profile as Û1(k + 1 : m, 1 : n), i.e. as a k-upper
Hessenberg matrix. Finally P22 is obtained from the orthogonality relations
as P22 = ÛH

1 (n+ 1 : m, 1 : n)Q̂.
We obtain that

Â1 = Q0 · (Û1P + T0W
H
0 R0P )PHL0,

so that we can get back to Â0 as

Â0 = L0Â1L
H
0 = (L0Q0) · (Û1P + T0W

H
0 R0P )PH .

As we observed at the beginning of section 4 the cases of interest for this paper
are those where the initial matrix L0 is simultaneously k-upper and k-lower
Hessenberg, i.e. is k-banded. Then, applying k times Lemma 4.1, considering
L0 as a k-upper Hessenberg matrix, we can factorize L0Q0 = Q1L1 where Q1

is a unitary k-lower Hessenberg matrix and L1 =

[
Ik

L̂1

]
where L̂1 is a

unitary k-upper Hessenberg matrix. It follows that

(4.3) Â0 = Q1 · (L1Û1P + T0W
H
0 R0P )PH = Q1(Û2 + (e1 ⊗ Ik)WH

1 )PH .

Where the matrix Û2 := L1Û1P satisfies Û2 =

[
Ik

Ũ2

]
where Ũ2 is a

unitary 2k-upper Hessenberg matrix, and W1 := PHRH
0 W0T̂

H
0 , where T̂0 =

T (1 : k, 1 : k). Observe that Q0(n + 1 : m, 1 : k) = Q1(n + 1 : m, 1 : k)
and, moreover Q0(n + 1 : m, 1 : k) is nonsingular, since Q0 is proper. From
Lemma 2.4 this implies the properness of Q1. This property is maintained
in the subsequent steps of the reduction process so that the final matrix is
guaranteed to be proper as prescribed by Theorem 3.2.
At the end of this step the enlarged matrix Â has been reduced to a product of
a proper k-lower Hessenberg matrix Q1 on the left, a unitary factor corrected
in the first k rows i.e., the term inside the brackets, and a k-upper Hessenberg
matrix, i.e., PH . Step 3 consists of the reduction of Û2 to Hessenberg form
so that the final matrix will be unitarly similar to Â and in the LFR format.

3. (Chasing Phase) We now need to work on the representation of Â0 in equa-

tion (4.3) to reduce the inner matrix Û2 in Hessenberg form by means of a
bulge-chasing procedure. Indeed Theorem 3.2 ensures that the matrix ob-
tained will be in the LFR format and in Hessenberg form. These transfor-
mations will not affect the properness of the k-lower Hessenberg term on the
left.
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For the sake of illustration let us consider the first step. Let us determine a
unitary upper Hessenberg matrix G1 ∈ C2k×2k such that

G1Ũ2(2 : 2k + 1, 1) = αe1.

Then setting G1 = (Ik+1 ⊕ G1 ⊕ In−2k−1), we have

Â0 = Q1G
H
1 (G1Û2 + (e1 ⊗ Ik)WH

1 )PH .

The application of GH
1 on the right of the matrix Q1 by computing Q1(:

, k + 2 : 3k + 1)GH1 creates a bulge formed by an additional segment above
the last nonzero superdiagonal of Q1. This segment can be annihilated by
a novel unitary upper Hessenberg matrix G2 whose active part G2 ∈ C2k×2k

works on the left of Q1(:, k + 2 : 3k + 1)GH1 by acting on the rows of indices
2 through 2k + 1. We can then apply a similarity transformation to remove
the bulge

G2Â0G
H
2 = Q2(G1Û2 + (e1 ⊗ Ik)WH

1 )PHGH
2 ,

where Q2 := G2Q1G
H
1 . The active part of GH

2 , the 2k × 2k matrix GH2 , acts
on the right of PH producing a bulge which can be zeroed by a unitary upper
Hessenberg matrix G3 ∈ C2k×2k working on rows from k + 2 to 3k + 1 of
PHGH

2 . Then, the matrix

Û2 ← G1Û2(Ik+1 ⊕ GH3 ⊕ In−2k−1)

has a bulge on the rows of indices 2k+ 2 through 4k+ 1 which can be chased
away by a sequence of O(n/k) transformations having the same structure as
above. Note that the rank correction of the unitary matrix inside the brackets
is never affected by these transformations so that, at the end of the process,
we have unitarily reduced A0 to the LFR format in Definition 2.2. Also the
zeros in the last k rows are preserved.

The cost analysis is rather standard for matrix algorithms based on chasing op-
erations [4].

1. The Preliminary phase I requires to compute the economic QR decomposition
of a matrix of size (n+ k)× k and to multiply a unitary k-Hessenberg matrix
specified as product of k unitary Hessenberg matrices by k vectors of size
n+ k. The total cost is O(nk2) flops.

2. The cost of the Preliminary phase II is asymptotically the same. The con-
struction of the factored representation of Q̂ as well as the computation of
L1 and Q1 can still be performed using O(nk2) flops.

3. The dominant cost is the execution of the chasing steps. The zeroing of the
sub-subdiagonal entries costs O(nn

k k
2) = O(n2k) flops.

In the next section we provide algorithmic details and discuss the results of numerical
experiments confirming the effectiveness and the robustness of the proposed approach.

5. Algorithmic Details and Numerical Results. The structured Hessenberg
reduction scheme described in the previous section has been implemented using MAT-
LAB for numerical testing. The resulting algorithm basically amounts to manipulate
products of unitary Hessenberg matrices.

In the Preliminary phase I of the structured Hessenberg reduction scheme we first
compute the full QR factorization of the matrix Y0 ∈ Cm×k. The matrix QH

0 turns
out to be the product of k unitary upper Hessenberg matrices, each one representable
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as a descending sequence of m − 1 Givens transformations. Then we have to incor-
porate the unitary matrix S := I2k − X̂(1 : 2k, :)X̂H(:, 1 : 2k) on the right into the
factored representations of QH

0 and R0. The unitary 2k× 2k matrix S can always be
represented as the product of at most k(2k − 1) elementary unitary transformations
of size 2 × 2. Once this factorization is computed , we have to add each of these
single transformations, one by one, on the right to the factored representations of QH

0

and R0. This is accomplished by a sequence of turnover and fusion operations acting
on the chains of elementary transformations in QH

0 and R0 (see [24] for the detailed
description of these operations on elementary transformations).

At the beginning of the preliminary Phase II the matrix Û1 is a 2k-upper Hes-
senberg matrix, and is essentially determined by the product of two unitary k-upper
Hessenberg matrices that here we rename as Û1 = P̂ Q̂. To reshape this factoriza-
tion in the desired form we can apply k times a reasoning similar to the one done
in Lemma 4.1 to move each elementary transformation of Q̂ on the left. In this way

we find P̂ Q̂ = Q̃P̃ where Q̃ =

[
Ik

Q̂

]
is the matrix appearing in (4.2). Since Q̂ is

formed by O(nk) elementary transformations the reshaping costs O(nk2) flops. With
a similar reasoning we can compute the representations of Q1 and L1, where Q1 is

k-lower Hessenberg and L1 =

[
Ik

L̂1

]
, with L̂1 unitary k-upper Hessenberg.

The chasing phase of the structured Hessenberg reduction scheme basically amounts

to reduce the matrix Û2 = L1Q̃ into a matrix of the form

[
Ik

Ũ2

]
, with Ũ2 n× n

unitary Hessenberg. To be specific assume that L1 = L1,1 · · ·L1,k and Q̃ = Q̃1 · · · Q̃k,

where L1,j and Q̃j are unitary upper Hessenberg matrices with the leading principal
submatrix of order k equal to the identity matrix. The overall reduction process splits
into n intermediate steps. At each step the first active elementary transformations
of Q̃k, . . . , Q̃1, L1,k, . . . , L1,1 are annihilated (in this order). Each transformation is
moved on the left by finally creating a bulge in the leftmost factor L1,1. This bulge
is removed by applying a similarity transformation.

Let us consider in detail this first step. Let L1,i = G(i)k+1 · · · G
(i)
m−1D

(i)
m denote the

Schur parametrization of L1,i and similarly let Q̃i = H(i)
k+1 · · ·H

(i)
m−1E

(i)
m that of Q̃i.

At this step we move left the first elementary transformations of each factor of the

product L1Q̃, for example when moving the rotation H(k)
k+1 in front of L1 the resulting

transformation acts on rows 3k and 3k + 1 while some of the rotations in L1 and Q̃
have changed. The final situation is as follows1

L1Q̃ = (G(1)k+1 · · · Ĝ
(1)
m−1) · · · (G(k)k+1 · · · Ĝ

(k)
m−1)(H(1)

k+1 · · · Ĥ
(1)
m−1) · · · (H(k)

k+1 · · · Ĥ
(k)
m−1)D =

= (H̃(k)
3k H̃

(k−1)
3k−1 · · · H̃

(1)
2k+1G̃

(k)
2k · · · G̃

(2k)
k+2 )︸ ︷︷ ︸

B

G̃(1)k+1L̃1,1 · · · L̃1,kQ̂1 · · · Q̂kD︸ ︷︷ ︸
Û2

,

where

L̃1,j = G̃(j)k+2 · · · G̃
(j)
m−1 and Q̂j = H̃(j)

k+2 · · · H̃
(j)
m−1.

At this point we bring the bulge B on the left of Q1 obtaining Q1B = B̂Q̆1. Substi-

1As observed, we can use only a unitary diagonal matrix to keep track of all the diagonal contri-
butions.
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tuting in equation (4.3) we obtain

Â0 = B̂Q̆1(Û2 + T0W
H
0 R0P )PH ,

where B̂ = Γ2k · · ·Γ2 is the product of a sequence of elementary transformations in
ascending order acting on rows 2 : 2k. The bulge B̂ is removed by chasing an elemen-
tary transformation at a time. For example to remove Γ2k we apply the similarity
transformation ΓH

2kB̂Q̆1(Û2 +T0W
H
0 R0P )PH Γ2k that will shift down the bulge of 2k

positions. So O(n/k) chasing step will be necessary to get rid of that first transforma-
tion. In this way the overall process is completed using O(nk ·k ·n/k) = O(n2k) flops.
Note that the whole similarity transformation acts only on the first n rows leaving
untouched the null rows at the bottom of Â in equation (4.1).

Numerical experiments have been performed to confirm the computational prop-
erties of the proposed method. Among the three cases considered in section 2 the last
one, when the unitary part is block diagonal, is the most challenging since computing
the starting LFR format costs O(n2k) vs the O(nk2) flops sufficient for the first two
cases. The CMV reduction of the input unitary diagonal plus rank-k matrix D+UV H

is computed using the algorithm presented in [18] which is fast and backward stable.
Our tests focus on the numerical performance of the Hessenberg reduction scheme
provided in the previous section given the factors L,R and Z satisfying Theorem 2.9.
In the next tables we show the backward errors εP , εB and εH generated by our
procedure. These errors are defined as follows:

1. εP is the error computed at the end of the Preliminary phase I and II. Given
the matrix A of size n represented as in Theorem 3.1 we find the matrix Â
of size m = n + k obtained at the end of step 2. Denoting by fl(Â) the
computed matrix, the error is

εP :=
‖A− fl(Â(1 : n, 1: n))‖2

‖A‖2
.

2. εB is the classical backward error generated in the final step given by

εB :=
‖H −Qfl(Â)QH‖2

‖A‖2
,

where H is the matrix computed by multiplying all the factors obtained at
the end of the third step, and Q is the product of the unitary transformations
acting by similarity on the left and on the right of the matrix fl(Â) in the
Hessenberg chasing phase.

3. εH is used to measure the Hessenberg structure of the matrix H. It is

εH :=
‖tril(H,−2)‖2

‖A‖2
,

where tril(X,K) is the matrix formed by the elements on and below the
K-th diagonal of X.

Next tables report these errors for different values of n, k and ‖A‖2.
The results of Table 1,Table 2,Table 3 and Table 4 show that the proposed algo-

rithm is numerically backward stable, and that the backward error εB might depend
mildly on n as confirmed in the plot of Figure 1 where a comparison in terms of
backward stability εB of our method with the algorithm proposed in [18] is shown.
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n k ‖A‖2 εP εB εH

32 2 7.10e+ 01 5.70e− 16 7.70e− 16 7.72e− 17
64 2 1.39e+ 02 7.15e− 16 1.05e− 15 4.57e− 17
128 2 2.64e+ 02 1.07e− 15 1.48e− 15 2.96e− 17
256 2 5.40e+ 02 1.77e− 15 2.25e− 15 4.68e− 17
512 2 1.06e+ 03 2.92e− 15 3.21e− 15 5.13e− 17
1024 2 2.10e+ 03 5.05e− 15 5.43e− 15 4.47e− 17

Table 1
Backward errors for random matrices with k = 2. The results are the average over 10 random

tests.

n k ‖A‖2 εP εB εH

32 2 3.34e+ 06 5.82e− 16 8.15e− 16 2.58e− 21
64 2 1.01e+ 08 8.20e− 16 1.11e− 15 3.57e− 22
128 2 3.14e+ 09 1.18e− 15 1.48e− 15 8.33e− 24
256 2 1.01e+ 11 1.67e− 15 2.05e− 15 3.08e− 25
512 2 3.17e+ 12 3.09e− 15 3.33e− 15 9.89e− 25
1024 2 1.02e+ 14 5.01e− 15 5.77e− 15 1.51e− 27

Table 2
Backward errors for random matrices of large norm with k = 2. The results are the average

over 10 random tests.

In particular, for k = 2 and n ranging from 32 to 1024, we report the backward error
obtained by the two methods, together with the reference values

√
n ε, where ε is the

machine precision. We note that the two algorithms behave similarly with a slightly
better performance of the method here proposed.

In the literature there are a few other papers dealing with the reduction of a
rank-structured matrix into Hessenberg form. For example in [14] is proposed an
algorithm of cost O(n2k2) flops which can be lowered to O(n2k) in the case of unitary
plus low rank matrices performing the required approximation phase only after O(k)
steps. However the algorithm makes use of the Givens-weight representation and at
the moment no fast QR algorithm working with this representation is known. The
algorithm proposed in [15] involves on the other hand O(n2k3) flops, and so it is not
competitive when k is large.

For this reason we limited our comparison with the method proposed by Gemignani
and Robol in [18] which requires O(n2k) flops and is specialized to the unitary diag-
onal plus low rank matrices. However also the Hessenberg matrix obtained with that
algorithm, which is based on the Givens-vector representation of the low rank part,
is not directly exploitable by available fast eigensolvers.

In order to confirm the cost analysis of the algorithm of section 4 we have also
performed experiments increasing the value of k and keeping n fixed, and increasing
n and keeping k fixed. Denoting by TP (n, k) the time spent on the preliminary
phases for a unitary diagonal matrices of size n corrected with a rank k matrix and
by TC(N, k) the time required by the chasing steps on the matrix obtained after the
preliminary phases, we consider the ratios RP (k) = TP (n, 2k)/TP (n, k) and RC(k) =
TC(n, 2k)/TC(n, k). Since TP (n, k) = O(nk2) we have that RP (k) should approach 4,
and similarly TC(n, k) = O(n2k) means that RC(k) should approach 2. In Figure 2
we record the ratios RP (k) and RC(k) for a matrix of size 512 and k ranging from 2
to 32 confirming the quadratic growth of the cost of the preliminary phases TP (n, k),
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Figure 1. Comparison on the relative backward stability of the algorithm proposed in this paper,
referred to as “LFR method”, and the one proposed in [18] on randomly generated diagonal plus
rank-k matrices. We report the results for k = 2. The third line is for reference showing that the
backward error behaves as

√
n ε, ε being the machine precision.
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Figure 2. Dependence on k of the elapsed time. For random matrices of size 512 and k ranging
from 1 to 32 we plot the ratio between elapsed times of the preliminary phases and of the chasing
phase. We see that as k increases RP (k) approaches 4, while RC(k) tends to 2.
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n k ‖A‖2 εP εB εH

32 4 8.09e+ 01 7.55e− 16 1.07e− 15 4.54e− 16
64 4 1.58e+ 02 9.69e− 16 1.31e− 15 1.01e− 15
128 4 2.96e+ 02 1.26e− 15 1.82e− 15 6.55e− 16
256 4 5.65e+ 02 2.18e− 15 2.68e− 15 2.06e− 15
512 4 1.10e+ 03 3.74e− 15 4.04e− 15 9.33e− 16
1024 4 2.14e+ 03 6.11e− 15 6.55e− 15 1.32e− 15

Table 3
Backward errors for random matrices with k = 4. The results are the average over 10 random

tests.

n k ‖A‖2 εP εB εH

32 4 6.08e+ 07 8.18e− 16 1.02e− 15 1.85e− 15
64 4 1.11e+ 08 1.08e− 15 1.38e− 15 4.43e− 15
128 4 3.49e+ 09 1.28e− 15 1.79e− 15 7.40e− 16
256 4 1.08e+ 11 1.94e− 15 2.68e− 15 1.86e− 15
512 4 3.37e+ 12 3.34e− 15 4.02e− 15 1.08e− 15
1024 4 1.05e+ 14 5.94e− 15 6.56e− 15 5.88e− 16

Table 4
Backward errors for random matrices of large norm with k = 4. The results are the average

over 10 random tests.

and the linear cost with respect to k of the chasing steps TC(n, k).
In Figure 3 we report a loglog plot of the time required by the algorithm, together

with a reference line with slop proportional to 2, showing that the cost of the algorithm
is indeed quadratic in n.

6. Conclusions and Future Work. In this paper we have presented a novel
algorithm for the reduction in Hessenberg form of a unitary diagonal plus rank-k
matrix. By exploiting the rank structure of the input matrix this algorithm achieves
computational efficiency both with respect to the size of the matrix and the size of
the perturbation as well as numerical accuracy. The algorithm complemented with
the structured QR iteration described in [9] yields a fast and accurate eigensolver for
unitary plus low rank matrices.
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