SIGNATURES, HEEGAARD FLOER CORRECTION TERMS AND QUASI–ALTERNATING LINKS

PAOLO LISCA AND BRENDAN OWENS

ABSTRACT. Turaev showed that there is a well-defined map assigning to an oriented link L in the three–sphere a Spin structure t_0 on $\Sigma(L)$, the two–fold cover of S^3 branched along L. We prove, generalizing results of Manolescu–Owens and Donald–Owens, that for an oriented quasi–alternating link L the signature of L equals minus four times the Heegaard Floer correction term of $(\Sigma(L), \mathbf{t}_0)$.

1. INTRODUCTION

Vladimir Turaev [\[21,](#page-5-0) § 2.2] proved that there is a surjective map which associates to a link $L \subset S^3$ decorated with an orientation *o* a Spin structure $\mathbf{t}_{(L,o)}$ on $\Sigma(L)$, the double cover of S^3 branched along L. Moreover, he showed that the only other orientation on L which maps to $\mathbf{t}_{(L,o)}$ is $-o$, the overall reversed orientation. In other words, Turaev described a bijection between the set of quasi–orientations on L (i.e. orientations up to overall reversal) and the set $\text{Spin}(\Sigma(L))$ of Spin structures on $\Sigma(L)$. Each element $\mathbf{t} \in \text{Spin}(\Sigma(L))$ can be viewed as a Spin^c structure on $\Sigma(L)$, so if $\Sigma(L)$ is a rational homology sphere it makes sense to consider the rational number $d(\Sigma(L), t)$, where d is the correction term invariant defined by Ozsváth and Szabó [\[13\]](#page-5-1). Under the assumption that L is nonsplit alternating it was proved — in [\[10\]](#page-5-2) when L is a knot and in [\[3\]](#page-5-3) for any number of components of L — that

(*)
$$
\sigma(L, o) = -4d(\Sigma(L), \mathbf{t}_{(L, o)}) \text{ for every orientation } o \text{ on } L,
$$

where $\sigma(L, o)$ is the link signature. For an alternating link associated to a plumbing graph with no bad vertices, this follows from a combination of earlier results of Saveliev [\[19\]](#page-5-4) and Stipsicz [\[20\]](#page-5-5), each of whom showed that one of the quantities in $(*)$ is equal to the Neumann-Siebenmann $\overline{\mu}$ -invariant of the plumbing tree. The main purpose of this paper is to prove Property ([∗](#page-0-0)) for the family of *quasi–alternating links* introduced in [\[14\]](#page-5-6):

Definition 1. The *quasi-alternating* links are the links in $S³$ with nonzero determinant defined recursively as follows:

- (1) the unknot is quasi–alternating;
- (2) if L_0, L_1 are quasi-alternating, $L \subset S^3$ is a link such that $\det L = \det L_0 + \det L_1$ and L, L_0 , L_1 differ only inside a 3-ball as illustrated in Figure [1,](#page-0-1) then L is quasi-alternating.

FIGURE 1. L and its resolutions L_0 and L_1 .

The present work is part of the first author's activities within CAST, a Research Network Program of the European Science Foundation, and the PRIN–MIUR research project 2010–2011 "Varietà reali e complesse: geometria, topologia e analisi armonica". The second author was supported in part by EPSRC grant EP/I033754/1.

Quasi–alternating links have recently been the object of considerable attention [\[1,](#page-5-7) [2,](#page-5-8) [4,](#page-5-9) [5,](#page-5-10) [6,](#page-5-11) [11,](#page-5-12) [16,](#page-5-13) [17,](#page-5-14) [22,](#page-5-15) [23\]](#page-5-16). Alternating links are quasi–alternating [\[14,](#page-5-6) Lemma 3.2], but (as shown in e.g. [\[1\]](#page-5-7)) there exist infinitely many quasi–alternating, non–alternating links. Our main result is the following:

Theorem 1. *Let* (L, o) *be an oriented link. If* L *is quasi–alternating then*

(1)
$$
\sigma(L, o) = -4d(\Sigma(L), \mathbf{t}_{(L, o)}).
$$

The contents of the paper are as follows. In Section [2](#page-1-0) we first recall some basic facts on Spin structures and the existence of two natural 4–dimensional cobordisms, one from $\Sigma(L_1)$ to $\Sigma(L)$, the other from $\Sigma(L)$ to $\Sigma(L_0)$. Then, in Proposition [1](#page-2-0) we show that for an orientation o on L for which the crossing in Figure [1](#page-0-1) is positive, the Spin structure $t_{(L,o)}$ extends to the first cobordism but not to the second one. In Section [3](#page-3-0) we use this information together with the Heegaard Floer surgery exact triangle to prove Proposition [2,](#page-3-1) which relates the value of the correction term $d(\Sigma(L), \mathbf{t}_{(L,o)})$ with the value of an analogous correction term for $\Sigma(L_1)$. In Section [4](#page-4-0) we restate and prove our main result, Theorem [1.](#page-1-1) The proof consists of an inductive argument based on Proposition [2](#page-3-1) and the known relationship between the signatures of L and L_1 . The use of Proposition [2](#page-3-1) is made possible by the fact that up to mirroring L one may always assume the crossing of Figure [1](#page-0-1) to be positive. We close Section [4](#page-4-0) with Corollary [3,](#page-4-1) which uses results of Rustamov and Mullins to relate Turaev's torsion function for the two–fold branched cover of a quasi–alternating link L with the Jones polynomial of L.

Acknowledgements. The authors would like to thank the anonymous referee for suggestions which helped to improve the exposition.

2. Triads and Spin structures

A Spin structure on an *n*-manifold $Mⁿ$ is a double cover of the oriented frame bundle of M with the added condition that if $n > 1$, it restricts to the nontrivial double cover on fibres. A Spin structure on a manifold restricts to give a Spin structure on a codimension–one submanifold, or on a framed submanifold of codimension higher than one. As mentioned in the introduction, an orientation *o* on a link L in S^3 induces a Spin structure $\mathbf{t}_{(L,o)}$ on the double–branched cover $\Sigma(L)$, as in [\[21\]](#page-5-0). Recall also that there are two Spin structures on $S^1 = \partial D^2$: the nontrivial or *bounding* Spin structure, which is the restriction of the unique Spin structure on D^2 , and the trivial or *Lie* Spin structure, which does not extend over the disk. The restriction map from Spin structures on a solid torus to Spin structures on its boundary is injective; thus if two Spin structures on a closed 3–manifold agree outside a solid torus then they are the same. For more details on Spin structures see for example [\[7\]](#page-5-17).

If Y is a 3-manifold with a Spin structure **t** and K is a knot in Y with framing λ , we may attach a 2–handle to K giving a surgery cobordism W from Y to $Y_\lambda(K)$. There is a unique Spin structure on $D^2 \times D^2$, which restricts to the bounding Spin structure on each framed circle $\partial D^2 \times \{\text{point}\}\$ in $\partial D^2 \times D^2$. Thus the Spin structure on Y extends over W if and only if its restriction to K, viewed as a framed submanifold via the framing λ , is the bounding Spin structure. Note that this is equivalent, symmetrically, to the restriction of t to the submanifold λ framed by K being the bounding Spin structure. Moreover, the extension over W is unique if it exists.

Let L, L_0 , L_1 be three links in S^3 differing only in a 3-ball B as in Figure [1.](#page-0-1) The double cover of B branched along the pair of arcs $B \cap L$ is a solid torus \tilde{B} with core C. The boundary of a properly embedded disk in B which separates the two branching arcs lifts to a disjoint pair of meridians of B. The preimage in $\Sigma(L)$ of the curve λ_0 shown in Figure [2](#page-2-1) is a pair of parallel framings for C; denote one of these by $\tilde{\lambda}_0$. Similarly, let $\tilde{\lambda}_1$ denote one of the components of the preimage in $\Sigma(L)$ of λ_1 . Since λ_0 is homotopic in $B - L$ to the boundary of a disk separating the two components of $L_0 \cap B$, we see that $\Sigma(L_0)$ is obtained from $\Sigma(L)$ by $\tilde{\lambda}_0$ -framed surgery on C. Similarly, λ_1 is homotopic in $B - L$ to the boundary of a disk separating the two components of $L_1 \cap B$, and $\Sigma(L_1)$ is obtained from $\Sigma(L)$ by $\tilde{\lambda}_1$ -framed surgery on C.

The two framings $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$ differ by a meridian of C. In the terminology from [\[14\]](#page-5-6), the manifolds $\Sigma(L)$, $\Sigma(L_0)$ and $\Sigma(L_1)$ form a *triad* and there are surgery cobordisms

(2)
$$
V: \Sigma(L_1) \to \Sigma(L)
$$
, and $W: \Sigma(L) \to \Sigma(L_0)$.

The surgery cobordism W is built by attaching a 2–handle to $\Sigma(L)$ along the knot C with framing $\tilde{\lambda}_0$. The cobordism V is built by attaching a 2-handle to $\Sigma(L_1)$. Dualising this handle structure, V is obtained by attaching a 2-handle to $\Sigma(L)$ along the knot C with framing $\tilde{\lambda}_1$ (and reversing orientation).

FIGURE 2. The loops λ_0 and λ_1 .

Proposition 1. *For any orientation* o *on* L *such that the crossing shown in Figure [1](#page-0-1) is positive, the Spin structure* $\mathbf{t}_{(L,o)}$ *extends to a unique Spin structure* \mathbf{s}_o *on the cobordism* V *and does not admit an extension over* W. The restriction of s_o to $\Sigma(L_1)$ is the Spin structure $\mathbf{t}_{(L_1,o_1)}$, where o_1 *is the orientation on* L_1 *induced by* o *.*

Proof. Let $\pi : \Sigma(L) \to S^3$ be the branched covering map. The Spin structure $\mathbf{t}_{(L,o)}$ is the lift $\tilde{\mathbf{s}}$ of the Spin structure restricted from S^3 to $S^3 - L$, twisted by $h \in H^1(\Sigma(L) - \pi^{-1}(L); \mathbb{Z}/2\mathbb{Z})$, where the value of h on a curve γ is the parity of half the sum of the linking numbers of $\pi \circ \gamma$ about the components of L (following Turaev [\[21,](#page-5-0) $\S 2.2$]). Suppose that the crossing in Figure [1](#page-0-1) is positive as, for example, illustrated in Figure [3,](#page-2-2) so that the orientation o induces an orientation o_1 on L_1 .

FIGURE 3. The oriented link (L, o) together with the oriented resolution (L_1, o_1) and the unoriented resolution L_0 .

Then, we can compute from Figure [2](#page-2-1) that $h(\tilde{\lambda}_1) = 0$ and $h(\tilde{\lambda}_0) = 1$. The Spin structure on S^3 restricts to the bounding structure on each of λ_0 and λ_1 using the 0–framing. The map π restricts to a diffeomorphism on neighbourhoods of $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$. Therefore, the restriction of \tilde{s} to each of $\tilde{\lambda}_0$ and $\tilde{\lambda}_1$ using the pullback of the 0-framing is also the bounding structure. Also note that the preimage under π of a disk bounded by λ_i is an annulus with core C , so the framing of $\tilde{\lambda}_i$ given by C is the same as the pullback of the 0–framing.

The spin structure $\mathbf{t}_{(L,o)}$ is equal to $\tilde{\mathbf{s}}$ twisted by h. Since $\tilde{\mathbf{s}}$ restricts to the bounding spin structure on $\tilde{\lambda}_1$, and $h(\tilde{\lambda}_1) = 0$, we see that $\mathbf{t}_{(L,o)}$ restricts to the bounding Spin structure on $\tilde{\lambda}_1$ using the framing given by C. On the other hand since $h(\tilde{\lambda}_0) = 1$, $\mathbf{t}_{(L,o)}$ restricts to the Lie Spin structure

on $\tilde{\lambda}_0$, again using the framing given by C. It follows that $\mathbf{t}_{(L,o)}$ admits a unique extension \mathbf{s}_o over the 2–handle giving the cobordism V , and does not extend over the cobordism W .

The restriction of s_o to $\Sigma(L_1)$ coincides with $\mathbf{t}_{(L_1,o_1)}$ outside of the solid torus B, and therefore also on the closed manifold $\Sigma(L_1)$.

3. Relations between correction terms

By [\[14,](#page-5-6) Proposition 2.1] we have the following exact triangle:

where the maps F_V and F_W are induced by the surgery cobordisms of [\(2\)](#page-2-3). (All the Heegaard Floer groups are taken with $\mathbb{Z}/2\mathbb{Z}$ coefficients.)

By [\[14,](#page-5-6) Proposition 3.3] (and notation as in that paper), if $L \subset S^3$ is a quasi-alternating link and L_0 and L_1 are resolutions of L as in Definition [1](#page-0-2) then $\Sigma(L)$, $\Sigma(L_0)$ and $\Sigma(L_1)$ are L–spaces. Moreover, by assumption we have

(3)
$$
|H^{2}(\Sigma(L);\mathbb{Z})| = |H^{2}(\Sigma(L_{0});\mathbb{Z})| + |H^{2}(\Sigma(L_{1});\mathbb{Z})|.
$$

Since for every L-space Y we have $|H^2(Y;\mathbb{Z})| = \dim \widehat{HF}(Y)$, the Heegaard Floer surgery exact triangle reduces to a short exact sequence:

(4)
$$
0 \to \widehat{HF}(\Sigma(L_1)) \xrightarrow{F_V} \widehat{HF}(\Sigma(L)) \xrightarrow{F_W} \widehat{HF}(\Sigma(L_0)) \to 0.
$$

The type of argument employed in the proof of the following proposition goes back to [\[9\]](#page-5-18) and was also used in [\[20\]](#page-5-5).

Proposition 2. Let L be a quasi-alternating link and let L_0 , L_1 be resolutions of L as in Defini*tion [1.](#page-0-2) Let* o *be an orientation on* L *for which the crossing of Figure [1](#page-0-1) is positive, and let* o¹ *be the induced orientation on* L1*. Then, the following holds:*

$$
-4d(\Sigma(L), \mathbf{t}_{(L,o)}) = -4d(\Sigma(L_1), \mathbf{t}_{(L_1,o_1)}) - 1.
$$

Proof. Since $\Sigma(L)$, $\Sigma(L_1)$ and $\Sigma(L_0)$ are L-spaces, we may think of the Spin^c structures on these spaces as generators of their HF -groups, and we shall abuse our notation accordingly. Let V: $\Sigma(L_1) \to \Sigma(L)$ be the surgery cobordism of [\(2\)](#page-2-3), and let s_o be the unique Spin structure on V which extends $\mathbf{t}_{(L,o)}$ as in Proposition [1.](#page-2-0) Recall that, by definition, the map F_U associated to a cobordism $U: Y_1 \to Y_2$ is given by

$$
F_U = \sum_{\mathbf{s} \in \text{Spin}^c(U)} F_{U,\mathbf{s}},
$$

where $F_{U,\mathbf{s}}: HF(Y_1, \mathbf{t}_1) \to HF(Y_2, \mathbf{t}_2)$ and $\mathbf{t}_i = \mathbf{s}|_{Y_i}$ for $i = 1, 2$. We claim that (5) $F_{V,\mathbf{s}_o}(\mathbf{t}_{(L_1,o_1)}) = \mathbf{t}_{(L,o)}.$

The Heegaard Floer \widehat{HF} -groups admit a natural involution, usually denoted by \mathcal{J} . The maps induced by cobordisms are equivariant with respect to the $\mathbb{Z}/2\mathbb{Z}$ -actions associated to conjugation on Spin^c structures and the J-map on the Heegaard Floer groups, in the sense that, if $\bar{x} := \mathcal{J}(x)$ for an element x , we have

$$
F_{W,\overline{\mathbf{s}}}(\overline{x}) = F_{W,\mathbf{s}}(x)
$$

for each $s \in \text{Spin}^c(W)$. Since by Proposition [1](#page-2-0) there are no Spin structures on the surgery cobordism $W: \Sigma(L) \to \Sigma(L_0)$ of [\(2\)](#page-2-3) which restrict to $\mathbf{t}_{(L,o)}$, the element $F_W(\mathbf{t}_{(L,o)}) \in HF(\Sigma(L_0))$ has no Spin component. In fact, since $\mathbf{t}_{(L,o)}$ is fixed under conjugation and we are working over $\mathbb{Z}/2\mathbb{Z}$, [\(6\)](#page-3-2) implies

that the contribution of each non-Spin $s \in \text{Spin}^c(W)$ to a Spin component of $F_W(\mathbf{t}_{(L,o)})$ is cancelled by the contribution of \overline{s} to the same component. Therefore we may write

$$
F_W(\mathbf{t}_{(L,o)}) = x + \overline{x}
$$

for some $x \in \widehat{HF}(\Sigma(L_0))$. By the surjectivity of F_W there is some $y \in \widehat{HF}(\Sigma(L))$ with $F_W(y) = x$, therefore $F_W(\mathbf{t}_{(L,o)} + y + \overline{y}) = 0$, and by the exactness of [\(4\)](#page-3-3) we have $\mathbf{t}_{(L,o)} + y + \overline{y} = F_V(z)$ for some $z \in \widehat{HF}(\Sigma(L_0))$. Since $F_V(\overline{z}) = \overline{F_V(z)} = F_V(z)$, the injectivity of F_V implies $z = \overline{z}$. Moreover, z. must have some nonzero Spin component, otherwise we could write $z = u + \overline{u}$ and

$$
F_V(u + \overline{u}) = \overline{F_V(u)} + \overline{F_V(\overline{u})} = \overline{F_V(u)} + F_V(u)
$$

could not have the Spin component $\mathbf{t}_{(L,o)}$. This shows that there is a Spin structure $\mathbf{t} \in HF(\Sigma(L_1))$ such that $F_V(\mathbf{t}) = \mathbf{t}_{(L,o)}$. But, as we argued before for $F_W(\mathbf{t}_{(L,o)})$, in order for $F_V(\mathbf{t})$ to have a Spin component it must be the case that there is some Spin structure s on V such that $F_{V,s}(\mathbf{t}) = \mathbf{t}_{(L,o)}$. Applying Proposition [1](#page-2-0) we conclude $\mathbf{s} = \mathbf{s}_o$ and therefore $\mathbf{t} = \mathbf{t}_{(L_1,o_1)}$. This establishes Claim [\(5\)](#page-3-4).

Using Equation [\(3\)](#page-3-5) and the fact that $\det(L_1) > 0$ it is easy to check that V is negative definite. The statement follows immediately from Equation [\(5\)](#page-3-4) and the degree–shift formula in Heegaard Floer theory [\[15,](#page-5-19) Theorem 7.1] using the fact that $c_1(\mathbf{s}_o) = 0$, $\sigma(V) = -1$ and $\chi(V) = 1$.

4. The main result and a corollary

Theorem 1. *Let* (L, o) *be an oriented link. If* L *is quasi–alternating then*

(1)
$$
\sigma(L, o) = -4d(\Sigma(L), \mathbf{t}_{(L, o)}).
$$

Proof. The statement trivially holds for the unknot, because the unknot has zero signature and the two–fold cover of S^3 branched along the unknot is S^3 , whose only correction term vanishes. If L is not the unknot and L is quasi-alternating, there are quasi-alternating links L_0 and L_1 such that $\det(L) = \det(L_0) + \det(L_1)$ and L, L_0 and L_1 are related as in Figure [1.](#page-0-1) To prove the theorem it suffices to show that if the statement holds for L_0 and L_1 then it holds for L as well.

Denote by L^m the mirror image of L, and by o^m the orientation on L^m naturally induced by an orientation o on L. The orientation–reversing diffeomorphism from S^3 to itself taking L to L^m lifts to one from $\Sigma(L)$ to $\Sigma(L^m)$ sending $\mathbf{t}_{(L,o)}$ to $\mathbf{t}_{(L^m,o^m)}$. Thus by [\[8,](#page-5-20) Theorem 8.10] and [\[13,](#page-5-1) Proposition 4.2] we have

$$
\sigma(L^m, o^m) = -\sigma(L, o) \quad \text{and} \quad 4d(\Sigma(L^m), \mathbf{t}_{(L^m, o^m)}) = 4d(-\Sigma(L), \mathbf{t}_{(L, o)}) = -4d(\Sigma(L), \mathbf{t}_{(L, o)}),
$$

therefore Equation [\(1\)](#page-1-2) holds for (L, o) if and only if it holds for (L^m, o^m) . Hence, without loss of generality we may now fix an orientation o on L so that the crossing appearing in Figure [1](#page-0-1) is positive.

Denote by o_1 the orientation on L_1 naturally induced by o . By [\[11,](#page-5-12) Lemma 2.1]

(7)
$$
\sigma(L, o) = \sigma(L_1, o_1) - 1.
$$

Since we are assuming that the statement holds for L_1 , we have

(8)
$$
\sigma(L_1, o_1) = -4d(\Sigma(L_1), \mathbf{t}_{(L_1, o_1)}).
$$

Equations [\(7\)](#page-4-2) and [\(8\)](#page-4-3) together with Proposition [2](#page-3-1) immediately imply Equation [\(1\)](#page-1-2). \Box

Corollary 3. *Let* (L, o) *be an oriented, quasi–alternating link. Then,*

$$
\tau(\Sigma(L),\mathbf{t}_{(L,o)}) = -\frac{1}{12} \frac{V'_{(L,o)}(-1)}{V_{(L,o)}(-1)},
$$

where τ *is Turaev's torsion function and* $V_{(L,o)}(t)$ *is the Jones polynomial of* (L, o) *.*

Proof. By [\[18,](#page-5-21) Theorem 3.4] we have

(9)
$$
d(\Sigma(L), \mathbf{t}_{(L,o)}) = 2\chi(HF_{\text{red}}^+(\Sigma(L))) + 2\tau(\Sigma(L), \mathbf{t}_{(L,o)}) - \lambda(\Sigma(L)),
$$

where λ denotes the Casson–Walker invariant, normalized so that it takes value -2 on the Poincaré sphere oriented as the boundary of the negative E_8 plumbing. Moreover, since L is quasi-alternating $\Sigma(L)$ is an L–space, therefore the first summand on the right–hand side of [\(9\)](#page-5-22) vanishes. By [\[12,](#page-5-23) Theorem 5.1, when $\det(L) > 0$ we have

(10)
$$
\lambda(\Sigma(L)) = -\frac{1}{6} \frac{V'_{(L,o)}(-1)}{V_{(L,o)}(-1)} + \frac{1}{4}\sigma(L,o)),
$$

Therefore, when (L, o) is an oriented quasi-alternating link, Theorem [1](#page-1-1) together with Equations [\(9\)](#page-5-22) and [\(10\)](#page-5-24) yield the statement. \Box

REFERENCES

- 1. A. Champanerkar and I. Kofman, Twisting quasi-alternating links, Proceedings of the American Mathematical Society 137 (2009), no. 7, 2451-2458.
- 2. A. Champanerkar and P. Ording, A note on quasi-alternating Montesinos links, arXiv preprint 1205.5261.
- 3. A. Donald and B. Owens, Concordance groups of links, Algebraic and Geometric Topology 12 (2012), 2069–2093.
- 4. J. Greene, Homologically thin, non-quasi-alternating links, Mathematical Research Letters 17 (2010), no. 1, 39–50.
- 5. J.E. Greene and L. Watson, Turaev torsion, definite 4-manifolds, and quasi-alternating knots, arXiv preprint 1106.5559.
- 6. S. Jablan and R. Sazdanović, *Quasi-alternating links and odd homology: computations and conjectures*, arXiv preprint 0901.0075.
- 7. R.C. Kirby, The topology of 4-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989.
- 8. W.B.R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer Verlag, 1997.
- 9. P. Lisca and A.I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds, II, Journal of Differential Geometry 75 (2007), no. 1, 109–142.
- 10. C. Manolescu and B. Owens, A concordance invariant from the Floer homology of double branched covers, International Mathematics Research Notices 2007 (2007), no. 20, Art. ID rnm077.
- 11. C. Manolescu and P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry–Topology Conference (2007), Gökova Geometry/Topology Conference (GGT), 2008, pp. 60– 81.
- 12. D. Mullins, The generalized Casson invariant for 2-fold branched covers of S^3 and the Jones polynomial, Topology 32 (1993), no. 2, 419–438.
- 13. P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Advances in Mathematics 173 (2003), no. 2, 179–261.
- 14. \ldots , On the Heegaard Floer homology of branched double-covers, Advances in Mathematics 194 (2005), no. 1, 1–33.
- 15. Molomorphic triangles and invariants for smooth four-manifolds, Advances in Mathematics 202 (2006), no. 2, 326–400.
- 16. K. Qazaqzeh, N. Chbili, and B. Qublan, Characterization of quasi-alternating Montesinos links, arXiv preprint 1205.4650.
- 17. K. Qazaqzeh, B. Qublan, and A. Jaradat, A new property of quasi-alternating links, arXiv preprint 1205.4291.
- 18. R. Rustamov, Surgery formula for the renormalized Euler characteristic of Heegaard Floer homology, arXiv preprint math/0409294.
- 19. N. Saveliev, A surgery formula for the μ -invariant, Topology and its Applications 106 (2000), no. 1, 91–102.
- 20. A.I. Stipsicz, On the $\overline{\mu}$ -invariant of rational surface singularities, Proceedings of the American Mathematical Society 136 (2008), no. 11, 3815–3823.
- 21. V. Turaev, Classification of oriented Montesinos links via spin structures, Topology and Geometry – Rohlin Seminar (Oleg Y. Viro, ed.), Lecture Notes in Mathematics, vol. 1346, Springer, 1988, pp. 271–289.
- 22. L. Watson, A surgical perspective on quasi-alternating links, Low–dimensional and Symplectic Topology, 2009 Georgia International Topology Conference (Michael Usher, ed.), Proceedings of Symposia in Pure Mathematics, vol. 82, American Mathematical Society, 2011, pp. 39–51.
- 23. T. Widmer, Quasi-alternating Montesinos links, Journal of Knot Theory and Its Ramifications 18 (2009), no. 10, 1459–1469.