
ar
X

iv
:1

30
2.

31
90

v2
  [

m
at

h.
G

T
] 

 2
2 

M
ay

 2
01

3

SIGNATURES, HEEGAARD FLOER CORRECTION TERMS AND

QUASI–ALTERNATING LINKS

PAOLO LISCA AND BRENDAN OWENS

Abstract. Turaev showed that there is a well–defined map assigning to an oriented link L in the
three–sphere a Spin structure t0 on Σ(L), the two–fold cover of S3 branched along L. We prove,
generalizing results of Manolescu–Owens and Donald–Owens, that for an oriented quasi–alternating
link L the signature of L equals minus four times the Heegaard Floer correction term of (Σ(L), t0).

1. Introduction

Vladimir Turaev [21, § 2.2] proved that there is a surjective map which associates to a link L ⊂ S3

decorated with an orientation o a Spin structure t(L,o) on Σ(L), the double cover of S3 branched
along L. Moreover, he showed that the only other orientation on L which maps to t(L,o) is −o,
the overall reversed orientation. In other words, Turaev described a bijection between the set of
quasi–orientations on L (i.e. orientations up to overall reversal) and the set Spin(Σ(L)) of Spin
structures on Σ(L). Each element t ∈ Spin(Σ(L)) can be viewed as a Spinc structure on Σ(L), so
if Σ(L) is a rational homology sphere it makes sense to consider the rational number d(Σ(L), t),
where d is the correction term invariant defined by Ozsváth and Szabó [13]. Under the assumption
that L is nonsplit alternating it was proved — in [10] when L is a knot and in [3] for any number
of components of L — that

(∗) σ(L, o) = −4d(Σ(L), t(L,o)) for every orientation o on L,

where σ(L, o) is the link signature. For an alternating link associated to a plumbing graph with no
bad vertices, this follows from a combination of earlier results of Saveliev [19] and Stipsicz [20], each
of whom showed that one of the quantities in (∗) is equal to the Neumann-Siebenmann µ-invariant
of the plumbing tree. The main purpose of this paper is to prove Property (∗) for the family of
quasi–alternating links introduced in [14]:

Definition 1. The quasi–alternating links are the links in S3 with nonzero determinant defined
recursively as follows:

(1) the unknot is quasi–alternating;
(2) if L0, L1 are quasi–alternating, L ⊂ S3 is a link such that detL = detL0 + detL1 and L,

L0, L1 differ only inside a 3–ball as illustrated in Figure 1, then L is quasi–alternating.

L1 L L0

Figure 1. L and its resolutions L0 and L1.
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Quasi–alternating links have recently been the object of considerable attention [1, 2, 4, 5, 6, 11, 16,
17, 22, 23]. Alternating links are quasi–alternating [14, Lemma 3.2], but (as shown in e.g. [1]) there
exist infinitely many quasi–alternating, non–alternating links. Our main result is the following:

Theorem 1. Let (L, o) be an oriented link. If L is quasi–alternating then

(1) σ(L, o) = −4d(Σ(L), t(L,o)).

The contents of the paper are as follows. In Section 2 we first recall some basic facts on Spin
structures and the existence of two natural 4–dimensional cobordisms, one from Σ(L1) to Σ(L), the
other from Σ(L) to Σ(L0). Then, in Proposition 1 we show that for an orientation o on L for which
the crossing in Figure 1 is positive, the Spin structure t(L,o) extends to the first cobordism but not
to the second one. In Section 3 we use this information together with the Heegaard Floer surgery
exact triangle to prove Proposition 2, which relates the value of the correction term d(Σ(L), t(L,o))
with the value of an analogous correction term for Σ(L1). In Section 4 we restate and prove our
main result, Theorem 1. The proof consists of an inductive argument based on Proposition 2 and
the known relationship between the signatures of L and L1. The use of Proposition 2 is made
possible by the fact that up to mirroring L one may always assume the crossing of Figure 1 to be
positive. We close Section 4 with Corollary 3, which uses results of Rustamov and Mullins to relate
Turaev’s torsion function for the two–fold branched cover of a quasi–alternating link L with the
Jones polynomial of L.

Acknowledgements. The authors would like to thank the anonymous referee for suggestions
which helped to improve the exposition.

2. Triads and Spin structures

A Spin structure on an n–manifold Mn is a double cover of the oriented frame bundle of M
with the added condition that if n > 1, it restricts to the nontrivial double cover on fibres. A Spin
structure on a manifold restricts to give a Spin structure on a codimension–one submanifold, or
on a framed submanifold of codimension higher than one. As mentioned in the introduction, an
orientation o on a link L in S3 induces a Spin structure t(L,o) on the double–branched cover Σ(L),

as in [21]. Recall also that there are two Spin structures on S1 = ∂D2: the nontrivial or bounding
Spin structure, which is the restriction of the unique Spin structure on D2, and the trivial or Lie

Spin structure, which does not extend over the disk. The restriction map from Spin structures on
a solid torus to Spin structures on its boundary is injective; thus if two Spin structures on a closed
3–manifold agree outside a solid torus then they are the same. For more details on Spin structures
see for example [7].

If Y is a 3–manifold with a Spin structure t and K is a knot in Y with framing λ, we may attach
a 2–handle to K giving a surgery cobordism W from Y to Yλ(K). There is a unique Spin structure
on D2 ×D2, which restricts to the bounding Spin structure on each framed circle ∂D2 × {point}
in ∂D2 × D2. Thus the Spin structure on Y extends over W if and only if its restriction to K,
viewed as a framed submanifold via the framing λ, is the bounding Spin structure. Note that this
is equivalent, symmetrically, to the restriction of t to the submanifold λ framed by K being the
bounding Spin structure. Moreover, the extension over W is unique if it exists.

Let L, L0, L1 be three links in S3 differing only in a 3–ball B as in Figure 1. The double cover of

B branched along the pair of arcs B∩L is a solid torus B̃ with core C. The boundary of a properly
embedded disk in B which separates the two branching arcs lifts to a disjoint pair of meridians of

B̃. The preimage in Σ(L) of the curve λ0 shown in Figure 2 is a pair of parallel framings for C;

denote one of these by λ̃0. Similarly, let λ̃1 denote one of the components of the preimage in Σ(L)
of λ1. Since λ0 is homotopic in B − L to the boundary of a disk separating the two components
of L0 ∩ B, we see that Σ(L0) is obtained from Σ(L) by λ̃0–framed surgery on C. Similarly, λ1 is



SIGNATURES, HEEGAARD FLOER CORRECTION TERMS AND QUASI–ALTERNATING LINKS 3

homotopic in B−L to the boundary of a disk separating the two components of L1 ∩B, and Σ(L1)

is obtained from Σ(L) by λ̃1–framed surgery on C.

The two framings λ̃0 and λ̃1 differ by a meridian of C. In the terminology from [14], the manifolds
Σ(L), Σ(L0) and Σ(L1) form a triad and there are surgery cobordisms

(2) V : Σ(L1) → Σ(L), and W : Σ(L) → Σ(L0).

The surgery cobordism W is built by attaching a 2–handle to Σ(L) along the knot C with framing

λ̃0. The cobordism V is built by attaching a 2–handle to Σ(L1). Dualising this handle structure,

V is obtained by attaching a 2–handle to Σ(L) along the knot C with framing λ̃1 (and reversing
orientation).

λ1 λ0

L

Figure 2. The loops λ0 and λ1.

Proposition 1. For any orientation o on L such that the crossing shown in Figure 1 is positive,

the Spin structure t(L,o) extends to a unique Spin structure so on the cobordism V and does not

admit an extension over W . The restriction of so to Σ(L1) is the Spin structure t(L1,o1), where o1
is the orientation on L1 induced by o.

Proof. Let π : Σ(L) → S3 be the branched covering map. The Spin structure t(L,o) is the lift s̃ of

the Spin structure restricted from S3 to S3 − L, twisted by h ∈ H1(Σ(L) − π−1(L);Z/2Z), where
the value of h on a curve γ is the parity of half the sum of the linking numbers of π ◦ γ about the
components of L (following Turaev [21, §2.2]). Suppose that the crossing in Figure 1 is positive as,
for example, illustrated in Figure 3, so that the orientation o induces an orientation o1 on L1.

L1 L L0

Figure 3. The oriented link (L, o) together with the oriented resolution (L1, o1)
and the unoriented resolution L0.

Then, we can compute from Figure 2 that h(λ̃1) = 0 and h(λ̃0) = 1. The Spin structure on S3

restricts to the bounding structure on each of λ0 and λ1 using the 0–framing. The map π restricts
to a diffeomorphism on neighbourhoods of λ̃0 and λ̃1. Therefore, the restriction of s̃ to each of
λ̃0 and λ̃1 using the pullback of the 0–framing is also the bounding structure. Also note that the
preimage under π of a disk bounded by λi is an annulus with core C, so the framing of λ̃i given by
C is the same as the pullback of the 0–framing.

The spin structure t(L,o) is equal to s̃ twisted by h. Since s̃ restricts to the bounding spin structure

on λ̃1, and h(λ̃1) = 0, we see that t(L,o) restricts to the bounding Spin structure on λ̃1 using the

framing given by C. On the other hand since h(λ̃0) = 1, t(L,o) restricts to the Lie Spin structure
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on λ̃0, again using the framing given by C. It follows that t(L,o) admits a unique extension so over
the 2–handle giving the cobordism V , and does not extend over the cobordism W .

The restriction of so to Σ(L1) coincides with t(L1,o1) outside of the solid torus B̃, and therefore
also on the closed manifold Σ(L1). �

3. Relations between correction terms

By [14, Proposition 2.1] we have the following exact triangle:

ĤF (Σ(L1)) ĤF (Σ(L))

ĤF (Σ(L0))

FV

FW

where the maps FV and FW are induced by the surgery cobordisms of (2). (All the Heegaard Floer
groups are taken with Z/2Z coefficients.)

By [14, Proposition 3.3] (and notation as in that paper), if L ⊂ S3 is a quasi–alternating link
and L0 and L1 are resolutions of L as in Definition 1 then Σ(L), Σ(L0) and Σ(L1) are L–spaces.
Moreover, by assumption we have

(3) |H2(Σ(L);Z)| = |H2(Σ(L0);Z)|+ |H2(Σ(L1);Z)|.

Since for every L–space Y we have |H2(Y ;Z)| = dim ĤF (Y ), the Heegaard Floer surgery exact
triangle reduces to a short exact sequence:

(4) 0 → ĤF (Σ(L1))
FV−−→ ĤF (Σ(L))

FW−−→ ĤF (Σ(L0)) → 0.

The type of argument employed in the proof of the following proposition goes back to [9] and was
also used in [20].

Proposition 2. Let L be a quasi–alternating link and let L0, L1 be resolutions of L as in Defini-

tion 1. Let o be an orientation on L for which the crossing of Figure 1 is positive, and let o1 be the

induced orientation on L1. Then, the following holds:

−4d(Σ(L), t(L,o)) = −4d(Σ(L1), t(L1,o1))− 1.

Proof. Since Σ(L), Σ(L1) and Σ(L0) are L–spaces, we may think of the Spinc structures on these

spaces as generators of their ĤF–groups, and we shall abuse our notation accordingly. Let V :
Σ(L1) → Σ(L) be the surgery cobordism of (2), and let so be the unique Spin structure on V which
extends t(L,o) as in Proposition 1. Recall that, by definition, the map FU associated to a cobordism
U : Y1 → Y2 is given by

FU =
∑

s∈Spinc(U)

FU,s,

where FU,s : ĤF (Y1, t1) → ĤF (Y2, t2) and ti = s|Yi
for i = 1, 2. We claim that

(5) FV,so(t(L1,o1)) = t(L,o).

The Heegaard Floer ĤF–groups admit a natural involution, usually denoted by J . The maps
induced by cobordisms are equivariant with respect to the Z/2Z–actions associated to conjugation
on Spinc structures and the J –map on the Heegaard Floer groups, in the sense that, if x := J (x)
for an element x, we have

(6) FW,s(x) = FW,s(x)

for each s ∈ Spinc(W ). Since by Proposition 1 there are no Spin structures on the surgery cobordism

W : Σ(L) → Σ(L0) of (2) which restrict to t(L,o), the element FW (t(L,o)) ∈ ĤF (Σ(L0)) has no Spin
component. In fact, since t(L,o) is fixed under conjugation and we are working over Z/2Z, (6) implies
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that the contribution of each non–Spin s ∈ Spinc(W ) to a Spin component of FW (t(L,o)) is cancelled
by the contribution of s to the same component. Therefore we may write

FW (t(L,o)) = x+ x

for some x ∈ ĤF (Σ(L0)). By the surjectivity of FW there is some y ∈ ĤF (Σ(L)) with FW (y) = x,
therefore FW (t(L,o)+y+y) = 0, and by the exactness of (4) we have t(L,o)+y+y = FV (z) for some

z ∈ ĤF (Σ(L0)). Since FV (z) = FV (z) = FV (z), the injectivity of FV implies z = z. Moreover, z
must have some nonzero Spin component, otherwise we could write z = u+ u and

FV (u+ u) = FV (u) + FV (u) = FV (u) + FV (u)

could not have the Spin component t(L,o). This shows that there is a Spin structure t ∈ ĤF (Σ(L1))
such that FV (t) = t(L,o). But, as we argued before for FW (t(L,o)), in order for FV (t) to have a Spin
component it must be the case that there is some Spin structure s on V such that FV,s(t) = t(L,o).
Applying Proposition 1 we conclude s = so and therefore t = t(L1,o1). This establishes Claim (5).

Using Equation (3) and the fact that det(L1) > 0 it is easy to check that V is negative definite.
The statement follows immediately from Equation (5) and the degree–shift formula in Heegaard
Floer theory [15, Theorem 7.1] using the fact that c1(so) = 0, σ(V ) = −1 and χ(V ) = 1. �

4. The main result and a corollary

Theorem 1. Let (L, o) be an oriented link. If L is quasi–alternating then

(1) σ(L, o) = −4d(Σ(L), t(L,o)).

Proof. The statement trivially holds for the unknot, because the unknot has zero signature and the
two–fold cover of S3 branched along the unknot is S3, whose only correction term vanishes. If L is
not the unknot and L is quasi–alternating, there are quasi–alternating links L0 and L1 such that
det(L) = det(L0) + det(L1) and L, L0 and L1 are related as in Figure 1. To prove the theorem it
suffices to show that if the statement holds for L0 and L1 then it holds for L as well.

Denote by Lm the mirror image of L, and by om the orientation on Lm naturally induced by
an orientation o on L. The orientation–reversing diffeomorphism from S3 to itself taking L to Lm

lifts to one from Σ(L) to Σ(Lm) sending t(L,o) to t(Lm,om). Thus by [8, Theorem 8.10] and [13,
Proposition 4.2] we have

σ(Lm, om) = −σ(L, o) and 4d(Σ(Lm), t(Lm,om)) = 4d(−Σ(L), t(L,o)) = −4d(Σ(L), t(L,o)),

therefore Equation (1) holds for (L, o) if and only if it holds for (Lm, om). Hence, without loss
of generality we may now fix an orientation o on L so that the crossing appearing in Figure 1 is
positive.

Denote by o1 the orientation on L1 naturally induced by o. By [11, Lemma 2.1]

(7) σ(L, o) = σ(L1, o1)− 1.

Since we are assuming that the statement holds for L1, we have

(8) σ(L1, o1) = −4d(Σ(L1), t(L1,o1)).

Equations (7) and (8) together with Proposition 2 immediately imply Equation (1). �

Corollary 3. Let (L, o) be an oriented, quasi–alternating link. Then,

τ(Σ(L), t(L,o)) = −
1

12

V ′

(L,o)(−1)

V(L,o)(−1)
,

where τ is Turaev’s torsion function and V(L,o)(t) is the Jones polynomial of (L, o).



6 PAOLO LISCA AND BRENDAN OWENS

Proof. By [18, Theorem 3.4] we have

(9) d(Σ(L), t(L,o)) = 2χ(HF+
red(Σ(L))) + 2τ(Σ(L), t(L,o))− λ(Σ(L)),

where λ denotes the Casson–Walker invariant, normalized so that it takes value −2 on the Poincaré
sphere oriented as the boundary of the negative E8 plumbing. Moreover, since L is quasi–alternating
Σ(L) is an L–space, therefore the first summand on the right–hand side of (9) vanishes. By [12,
Theorem 5.1], when det(L) > 0 we have

(10) λ(Σ(L)) = −
1

6

V ′

(L,o)(−1)

V(L,o)(−1)
+

1

4
σ(L, o)),

Therefore, when (L, o) is an oriented quasi–alternating link, Theorem 1 together with Equations (9)
and (10) yield the statement. �
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