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Abstract
The aimof this paper is to construct left-invariant Einstein pseudo-Riemannian Sasakimetrics
on solvable Lie groups. We consider the class of z-standard Sasaki solvable Lie algebras of
dimension 2n + 3, which are in one-to-one correspondence with pseudo-Kähler nilpotent
Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense.
We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein
metrics. We classify z-standard Sasaki solvable Lie algebras of dimension ≤ 7 and those
whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are
standard, but not of pseudo-Iwasawa type.
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Introduction

An effective method to construct Einstein metrics is by considering invariant metrics on a
solvmanifold obtained by extending a suitablemetric on a nilpotent Lie group of codimension
one. Indeed, in the Riemannian case, Einstein solvmanifolds are described by a standard
solvable Lie algebra g̃ of Iwasawa type ([22, 26]). In particular, this means that g̃ admits
an orthogonal decomposition g̃ = g � a, with g nilpotent, a abelian and ad X self-adjoint
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whenever X is in a. Furthermore, the restriction of the metric to g satisfies the so-called
nilsoliton equation ([25]).

Things are more complicated in the indefinite case (see e.g. [14]), but it is still possible to
construct Einstein solvmanifolds by extending a nilsoliton; indeed, there is a correspondence
between nilsolitons and a class of Einstein solvmanifolds for which g̃ admits a decomposition
as above, called a pseudo-Iwasawa decomposition (see [15]).

In the non-invariant setting, Einsteinmetrics are often studied in the presence of additional
structures, such as a Killing spinor or a restriction on the holonomy (see, e.g., [2, 3]). It is
then natural to ask whether Einstein metrics compatible with such special structures can be
obtained in the invariant setting too.

This paper is focused on Sasaki metrics. More precisely, we consider a class of
left-invariant pseudo-Riemannian Sasaki–Einstein metrics on solvable Lie groups. Sasaki–
Einstein metrics admit a Killing spinor (see [20]) and may be viewed as the odd-dimensional
counterpart of Kähler–Einstein geometry. We showed in [12] that Sasaki Lie algebras can
never be of pseudo-Iwasawa type, regardless of whether they are Einstein; therefore, Sasaki–
Einstein solvmanifolds cannot be obtained by extending a nilsoliton.

We therefore consider a different construction, represented pictorially in Fig. 1; we illus-
trate it in the invariant case, though it holds more generally.

Suppose that ˜G is a solvable Lie group with a left-invariant pseudo-Riemannian Sasaki
structure and X is a left-invariant, non-null Killing field preserving the structure; one can then
consider the moment map μ̃ and the contact reduction ˜G//X . Suppose that the zero-level set
G of the moment map is a nilpotent Lie subgroup, and X is in the center of its Lie algebra;
then, the contact reduction ˜G//X is also a Lie group with a left-invariant Sasaki structure.
Notice that we do not assume that X is in the center of the Lie algebra of ˜G; therefore, the
quotient ˜G/FX , which we omitted in the diagram, is not necessarily a Lie group.

Assuming that the Reeb vector field ξ is central, we have that the quotient by the Reeb
foliation ˜G/Fξ is also a Lie group, with a left-invariant pseudo-Kähler structure. Then, its
symplectic reduction is a pseudo-Kähler nilpotent Lie group qG, which can also be described
as the quotient of the contact reduction ˜G//X by the Reeb foliation. In accord with [12], we
call qG the Kähler reduction of ˜G. Notice that qG is Ricci-flat; this is a general property of
pseudo-Kähler nilpotent Lie groups (see [19]).

Our aim is to obtain Sasaki–Einstein solvmanifolds by inverting the diagram of Fig. 1. The
straight arrows have natural inverses: one takes a circle bundle with curvature determined
by the Kähler form or d X � (see [21]). By contrast, the curly arrows are not bijections in
general: if ∇ X � = d X � is known, only the metric on μ−1(0) and the second fundamental
form are determined, but this does not determine the metric on the full group ˜G, for general
Sasaki metrics. However, the metric is determined by its restriction to the hypersurface and
its second fundamental form if one requires ˜G to be Einstein, according to [24].

More explicitly, symplectic reduction can be inverted as follows. The pseudo-Kähler Lie
group qG is endowed with a closed (1, 1)-form γ , corresponding to d X �. We can describe
˜G/Fξ as the product of a circle bundle with curvature γ = dθ and a line, endowed with the
complex structure for which (1, 0)-forms are generated by the pull-back of (1, 0)-forms on
qG along with dr + ie2rθ and the Kähler form

e2rω − dr ∧ (e2rθ), (1)

where ω denotes the Kähler form of qG. It turns out that this can be written as a left-invariant
metric on a solvable Lie group ˜G/Fξ .

123



Annals of Global Analysis and Geometry (2023) 63 :25 Page 3 of 26 25

Fig. 1 Contact and symplectic reduction of a Sasaki Lie group ˜G. Dimension increases going up, fromdim qG =
2n at the bottom to dim ˜G = 2n +3 at the top. The arrows represent a determines-type relation; straight arrows
are used for quotients (bundles), and curly arrows for other constructions, namely symplectic/contact quotient
and extraction of a level set of the moment maps μ and μ̃

In our invariant setup, the hypersurface G in ˜G corresponds to a nilpotent ideal of codi-
mension one in a solvable Lie algebra, and the construction can be studied with the language
of standard Lie algebras. However, rather than the Lie algebras of (pseudo-)Iwasawa type
studied in [15, 22], we need to consider a different class, that we introduced in [12] under
the name of z-standard Sasaki Lie algebras. This condition means that the Lie algebra g̃ is
endowed with a Sasaki structure (φ, ξ, η, g) such that g̃ takes the form of an orthogonal
semidirect product g � Span {e0}, with φ(e0) a central element of g corresponding to the
vector field X in Fig. 1 (see Sect. 1 for the precise definitions). It then becomes possible
to characterize and study the construction of Fig. 1 in purely algebraic terms. In particular,
we showed in [12] that the Lie algebra qg of the Kähler reduction comes endowed with a
derivation qD satisfying certain conditions; in Fig. 1, qD determines ˜G/Fξ,X as a semidirect
product qG � R.

In this paper, we specialize this construction to the Sasaki–Einstein case. As a first step, we
introduce a generalization of the nilsoliton condition that enables one to construct Einstein
solvmanifolds, which are not of pseudo-Iwasawa type, by taking a semidirect product with
R; these metrics are not necessarily Sasaki (Proposition 2.1).We then characterize z-standard
Sasaki–Einstein solvable Lie algebras in terms of their Kähler reduction qg, showing that the
symmetric part of the derivation qD is the identity and preserves the pseudo-Kähler structure.
This implies that qD lies in the Lie algebra Der qg ∩ cu(p, q), where cu(p, q) = u(p, q) ⊕
Span {Id}.

In the opposite direction, as sketched in Fig. 2, we show that any pseudo-Kähler nilpotent
Lie algebra with a derivation qD whose symmetric part is the identity induces:

• an Einstein metric on qg �
qD R, corresponding to ˜G/Fξ,X in Fig. 1;

• a pseudo-Kähler–Einsteinmetricwith positive curvature on a solvable double extension˜k,
corresponding to ˜G/Fξ . Geometrically, this corresponds to setting γ = 2ω and applying
the ansatz (1). Notice that if one flips a sign in (1) andwrites e2rω+e2r dr ∧θ , one obtains
the construction of a (Riemannian) Kähler–Einsteinmetric with negative curvature on the
bundle over aKählerRicci-flatmanifold given in [4, § 11.8] (see also [31, Equation (3.20)]
and [5, Theorem 9.129]).
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• a Sasaki–Einstein metric on a central extension of˜k, corresponding to ˜G in the diagram.
Notice that having chosen the metric with positive curvature on˜k is essential for this step,
due to the constraints on the space of leaves of a Sasaki–Einstein manifold.

We then show that any two choices of qD on qg with symmetric part equal to the identity
determine isometric Einstein extensions; the isometry is at the level of solvmanifolds as
pseudo-Riemannian manifolds, and it does not preserve the Lie algebra structure (Theo-
rem 4.1).

It turns out that Der qg ∩ cu(p, q) contains elements qD with symmetric part equal to the
identity if and only if it contains an element with nonzero trace; in that case, we show that the
Lie algebra contains a canonical choice of qD. This canonical element is obtained by adapting
a construction of Nikolayevsky. Indeed, we fix an algebraic subalgebra h of gl(m, R) and
define the h-Nikolayevsky derivation on a Lie algebra g with a H -structure as the unique
semisimple derivation N in h ∩ Der g such that

tr(ψ N ) = trψ, ψ ∈ h ∩ Der g.

For h = gl(m, R), one obtains the Nikolayevsky derivation introduced in [28], and for
h = co(p, q) the metric Nikolayevsky derivation of [11]. Existence and uniqueness of the
h-Nikolayevsky derivation is proved similarly as in these particular cases (Proposition 2.7).

The relevant situation for this paper is the cu(p, q)-Nikolayevsky derivation of a
pseudo-Kähler Lie algebra, which turns out to have rational eigenvalues, like the ordinary
Nikolayevsky derivation. Thus, we see that the element ofDer qg∩cu(p, q) that determines the
Sasaki–Einstein extension can be assumed to be diagonalizable overQ (Proposition 2.8). The
existence of a nonzero cu(p, q)-Nikolayevsky derivation guarantees that there is a standard
Einstein extension, corresponding to ˜G/Fξ,X in Fig. 1.

The characterization of z-standard Sasaki–Einstein solvmanifolds in terms of their Kähler
reduction allows us to classify all z-standard Sasaki–Einstein solvmanifolds of dimension 7
(Theorem 4.4). In addition, we are able to write down all z-standard Sasaki–Einstein solv-
manifolds that reduce to a pseudo-Kähler qgwhich is abelian as a Lie algebra (Corollary 4.2).
This includes all Lorentzian z-standard Sasaki–Einstein solvmanifolds, for which qg is forced
to be a nilpotent Kähler Lie algebra, hence abelian.

In particular, our results give rise to explicit pseudo-Kähler-Einstein and Sasaki–Einstein
solvmanifolds in all dimensions≥ 4 (Theorem 4.4, Remark 4.5). Thesemetrics are not Ricci-
flat, which is a general fact for Sasaki–Einstein metrics and their Kähler-Einstein quotients.

We point out that our Sasaki–Einstein metrics are examples of Einstein standard solv-
manifolds that are not isometric to any Einstein solvmanifold of pseudo-Iwasawa type. This
is in sharp contrast to the Riemannian case, where [22] shows that all standard Einstein
solvmanifolds are of Iwasawa type up to isometry.

We also show with an example that not all pseudo-Kähler Lie algebras can be extended
to a z-standard Sasaki–Einstein Lie algebra (Example 4.6).

1 Preliminaries: structures on Lie algebras

In this section, we introduce some general language relevant to the study of Sasaki–Einstein
metrics, specialized to the invariant setting, and recall some results that will be needed in the
sequel.

Given aLie algebra g of dimensionm, we can think of a basis of g as a frameR
m ∼= g. There

is a natural right action of GL(m, R) on the set of frames. Given a subgroup H ⊂ GL(m, R),
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we will say that a H -structure on g is a H -orbit in the space of frames. Given any frame u,
the identification u : R

m ∼= g induces a left action of H on g. This induces an inclusion map
H → GL(g) that depends on the frame u, but the image of the inclusion only depends on the
H -structure. Accordingly, whenever we have a H -structure on g, we will write H ⊂ GL(g),
h ⊂ gl(g).

It is clear that a H -structure on a Lie algebra g induces a left-invariant H -structure, in the
usual sense, on any Lie group with Lie algebra g.

An almost contact structure on a (2n + 1)-dimensional Lie algebra g̃ is a triple (φ, ξ, η),
where φ is a linear map from g̃ to itself, ξ is an element of g̃, η is in g̃∗ and

η(ξ) = 1, η ◦ φ = 0, φ2 = − Id+η ⊗ ξ.

Given a non-degenerate scalar product g on g̃, the quadruple (φ, ξ, η, g) is called an almost
contact metric structure if (φ, ξ, η) is an almost contact structure and

g(ξ, ξ) = 1, η = ξ�, g(φX , φY ) = g(X , Y ) − η(X)η(Y ),

for any X , Y ∈ g. One then defines a two-form 
 by 
(X , Y ) = g(X , φY ).
Given an almost contact metric structure of signature (2p + 1, 2q) on g, one can find a

frame e1, . . . , e2n+1 with dual basis {ei } such that
g = e1 ⊗ e1 + . . . + e2p ⊗ e2p − e2p+1 ⊗ e2p+1 − · · · − e2p+2q ⊗ e2p+2q

+e2p+2q+1 ⊗ e2p+2q+1,

η = e2p+2q+1, 
 = e12 + . . . + e2p−1,2p − e2p+1,2p+2 − . . . − e2p+2q−1,2p+2q .

The common stabilizer of these tensors in GL(2p + 2q + 1, R) is U(p, q). Thus, an almost
contact metric structure on a Lie algebra can be viewed as a U(p, q)-structure.

An almost contact metric structure is called Sasaki if Nφ + dη ⊗ ξ = 0 and dη = 2
,
where Nφ denotes the Nijenhuis tensor.

These definitions mimic analogous definitions for structures on manifolds (see, e.g., [7,
8]). It is clear that a Sasaki structure on g̃ defines a left-invariant almost Sasaki structure on
any Lie group ˜G with Lie algebra g̃ by left translation. In particular, g defines a pseudo-
Riemannian metric on ˜G. We shall also refer to g as a metric on g̃ and define its Levi-Civita
connection, curvature and so on in terms of the corresponding objects on ˜G.

Sasaki structures are an odd-dimensional analogue of (pseudo)-Kähler structures. In our
invariant setting, a pseudo-Kähler structure on a Lie algebra g is a triple (g, J , ω), where
g is a pseudo-Riemannian metric, J : g → g is an almost complex structure satisfying
the compatibility condition g(J X , JY ) = g(X , Y ), and ω(X , Y ) = g(X , JY ), where one
further imposes that NJ = 0 and dω = 0.

Having fixed the metric, for any endomorphism f : g̃ → g̃ we write f = f s + f a , where
f s is symmetric and f a is skew-symmetric relative to the metric, i.e.

f s = 1

2
( f + f ∗), f a = 1

2
( f − f ∗).

With this notation, the Levi-Civita connection is given by

∇wv = − ad(v)sw − 1

2
(adw)∗v. (2)

The Ricci tensor can be written as:

2 ric(v,w) = − tr ad(v� dw� + w� dv�) + g(dv�, dw�) − g(ad v, adw) − tr(ad v ◦ adw),

(3)
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see, e.g., [13, Lemma 1.1]. If g̃ is unimodular with Killing form equal to zero, this formula
simplifies to

2 ric(v,w) = g(dv�, dw�) − g(ad v, adw). (4)

We will need a result originally proved in [1] for Riemannian metrics and later adapted
to standard indefinite metrics in [15], though the standard condition turned out not to be
necessary (see [12]). The precise statement we are going to need is the following:

Proposition 1.1 ([1], [12]) Let H be a subgroup of SO(r , s) with Lie algebra h and g̃ a Lie
algebra of the form g̃ = g � a endowed with a H-structure. Let χ : a → Der(g) be a Lie
algebra homomorphism such that, extending χ(X) to g̃ by declaring it to be zero on a,

χ(X) − ad X ∈ h, [χ(X), ad Y ] = 0, X , Y ∈ a. (5)

Let g̃∗ be the Lie algebra g �χ a. If ˜G and ˜G∗ denote the connected, simply connected Lie
groups with Lie algebras g̃ and g̃∗, with the corresponding left-invariant H-structures, there
is an isometry from ˜G to ˜G∗, whose differential at e is the identity of g⊕ a as a vector space,
mapping the H-structure on ˜G into the H-structure on ˜G∗.

Proof For h = so(r , s), χ(X) − ad X is skew-symmetric and the proof is identical to [[12],
Proposition 2.2]. In general, one uses that χ(X) − ad X is in h to conclude that the action of
G∗ on ˜G preserves the H -structure.

We will say that two Lie algebras endowed with a H -structure are equivalent if there is an
isometry between the corresponding simply connected Lie groups mapping one H -structure
into the other.

Recall from [15] that a standard decomposition of the Lie algebra with a fixed metric is
an orthogonal splitting

g̃ = g �
⊥ a,

where g is a nilpotent ideal and a is an abelian subalgebra. This definition generalizes the
definition given in [22] for positive-definite metrics.

In [12], we introduced a special class of standard Sasaki Lie algebras: if g̃ has both a
Sasaki structure (φ, ξ, η, g) and a standard decomposition of the form g̃ = g � Span {e0},
it is called z-standard if φ(e0) lies in the center z of g. This means that the one-parameter
group {exp tb}, with b = φ(e0), acts on the corresponding group in such a way that the
contact quotient is still a Lie group; this implies that the pseudo-Kähler Lie group obtained
by quotienting by the Reeb direction has a symplectic reduction which is a pseudo-Kähler
Lie group, motivating the following:

Definition 1.2 Given a z-standard Lie algebra g̃ = g � Span {e0} with Sasaki structure
(φ, ξ, η, g), the quotient Lie algebra qg = g/Span {b, ξ} with the metric induced by g and
complex structure induced by φ is called the Kähler reduction of g̃.

In fact, z-standard Sasaki Lie algebras can be characterized in terms of their Kähler reduction
as follows (Corollary 4.4 and Proposition 5.1 in [12]):

Proposition 1.3 ([[12], Proposition 5.1 and Corollary 4.4]) Let (qg, J , ω) be a pseudo-Kähler
nilpotent Lie algebra. Let qD be a derivation of qg, τ = ±1, and g = qg⊕Span {b, ξ} a central
extension of g with a metric of the form:

g(x, y) = qg(x, y), g(x, b) = 0 = g(x, ξ), g(ξ, ξ) = 1, g(b, b) = τ, g(b, ξ) = 0,

where x, y ∈ qg. Assume furthermore
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• dξ� = 2ω, where the right-hand side is implicitly pulled back to g̃;
• db� = qDω, where the right-hand side is implicitly pulled back to g̃;
• [J , qD] = 0;
• [ qDs, qDa] = h qDs − 2( qDs)2 for some constant h.

Let g̃ = g � Span {e0}, where

[e0, x] = qDx, [e0, b] = hb − 2τξ, [e0, ξ ] = 0;
then g̃ has a z-standard Sasaki structure (φ, η, ξ, g̃) given by

g̃ = g + τe0 ⊗ e0, φ(x) = J (x) + τg(b, x)e0, φ(e0) = −b, x ∈ g.

Conversely, every z-standard Sasaki Lie algebra arises in this way.

Figure2, which should be compared with Fig. 1, summarizes the Lie algebras appearing in
Proposition 1.3 and their relations, alongside other related Lie algebras which will appear in
the sequel of the paper, namely

qg a pseudo-Kähler nilpotent Lie algebra of dimension 2n;
gstd a solvable standard extension of qg by the derivation qD, also a quotient of˜k by the non-

central one-dimensional ideal Span {b};
k a nilpotent central extension of qg by the cocycle db� = qDω;

g� a nilpotent Sasaki central extension of qg by the cocycle dξ� = 2ω;
˜k a solvable Kähler Lie algebra, which can be obtained as a standard extension of k by the

derivation qD + 2τb� ⊗ b;
g a nilpotent central extension of qg by db� = qDω and dξ� = 2ω;
g̃ a z-standard Sasaki Lie algebra of dimension 2n + 3.

Remark 1.4 Composing a semidirect product with a central extension in such a way that the
two new directions span an indefinite two-plane is a procedure known as double extension
(see [27]).Our construction is different because the semidirect products and central extensions
corresponding to vertical arrows in Fig. 2 have the effect of adding a definite two-plane.

It is well known that, given a Sasaki manifold M , the space of leaves of the Reeb foliation
has a pseudo-Kähler structure (see [29]), and the Ricci tensor of the latter is determined by
the Ricci tensor of M (see [7, Theorem 7.3.12]). In our invariant setting, this fact takes the
following form:

Proposition 1.5 Let g be a Lie algebra with a Sasaki structure (φ, ξ, η, g). Suppose g has
nonzero center. Then, z(g) = Span {ξ} and the quotient qg = g/Span {ξ} has an induced
pseudo-Kähler structure (qg, J , ω) with

|ric = ric+2qg,

where ric is restricted to ξ⊥ implicitly.

Proof Any element of the center satisfies v� dη = 0, so it is a multiple of ξ . Thus, the kernel
coincides with Span {ξ}.

As a vector space, we identify qg with ξ⊥, so that the metric qg is the restriction of g. The
Lie algebra structure of qg is given by a projection, i.e.

ad(v)(w) = |ad(v)(w) − dη(v,w)ξ.
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Fig. 2 Construction of a z-standard Sasaki Lie algebra from its Kähler reduction. Dimension increases going
up, from dim qg = 2n at the bottom to dim g̃ = 2n + 3 at the top

Therefore,

ad(v)∗(w) = |ad(v)∗(w), ad(v)∗(ξ) = −(v� dη)
.

Then, from equation (2), the Levi-Civita connections ∇, q∇ are related by

∇wv = − ad(v)s(w) − 1

2
ad(w)∗(v)

= −|ad(v)s(w) + 1

2
dη(v,w)ξ − 1

2
|ad(w)∗(v) = q∇wv + 1

2
dη(v,w)ξ ;

∇wξ = − ad(w)s(ξ) − 1

2
ad(ξ)∗(w) = 1

2
(w� dη)
.

If α ∈ Ann(ξ), we have

(∇wα)(v) = −α(∇wv) = −α(q∇wv) = (q∇wα)(v),

(∇wα)(ξ) = −α(∇wξ) = −1

2
g(w� dη, α).

The Sasaki condition implies

∇vdη = 2η ∧ v�,

so q∇vdη = 0. This implies that dη defines a pseudo-Kähler structure on qg.
The exterior derivative qd on qg can be identified with the restriction of d . By (3), we obtain

2 ric(v,w) = − tr ad(v� dw� + w� dv�) + g(dv�, dw�) − g(ad v, adw) − tr(ad v ◦ adw)

= − tr|ad(v� qdw� + w� qdv�) + g(qdv�, qdw�)

−g(|adv,|adw) − g(v� dη,w� dη) − tr(|adv ◦ |adw)

= 2|ric(v,w) − g(2φ(v), 2φ(w)) = 2|ric(v,w) − 4g(v,w).

Remark 1.6 Every Sasaki metric on a manifold of dimension 2n + 1 satisfies Ric(ξ) = 2nξ .
Accordingly, the space of leaves of a Sasaki–Einstein manifolds satisfies

|ric = (2n + 2)qg. (6)
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Conversely, every Kähler–Einstein manifold with positive scalar curvature, suitably normal-
ized so as to satisfy (6), gives rise to a Sasaki–Einstein manifold in one dimension higher.

We recall the following fact from [19]:

Lemma 1.7 [19, Lemma 6.3] Pseudo-Kähler metrics on nilpotent Lie algebras are Ricci-flat.

Proof On a simply connected manifold, it is well known that pseudo-Kähler metrics have
holonomy contained in U(p, q); Ricci-flatness is equivalent to holonomy being contained in
SU(p, q), i.e., the existence of a closed complex volume form.

In the case of a nilpotent Lie algebra g, the complex volume form is unique up to multiple;
the fact that it is closed can be proved using the methods of [33], or directly as follows.

Let θ1, . . . , θn be a complex frame of vectors of type (1, 0), and let θ1, . . . , θn be the dual
coframe of (1, 0)-forms. Relative to the splitting gC = g1,0 ⊕ g0,1, we have

ad θk =
(

fk 0
∗ ∗

)

, k = 1, . . . , n,

where fk : g1,0 → g1,0 is nilpotent and hence trace-free. Therefore, for all k we have

θk� d(θ1 ∧ · · · ∧ θn) = − tr( fk)θ
1 ∧ · · · ∧ θn = 0,

implying that the complex volume form θ1 ∧ · · · ∧ θn is closed.

Proposition 1.8 There is no nilpotent Sasaki–Einstein Lie algebra.

Proof Let g be a nilpotent Lie algebra with a Sasaki–Einstein structure. We know that its
center is spanned by ξ . By Proposition 1.5, the quotient g/Span {ξ} is pseudo-Kähler and
Einstein with positive scalar curvature. Since it is also nilpotent, it must be Ricci-flat by
Lemma 1.7, which is absurd.

Another link between Sasaki–Einstein and Kähler–Einstein geometry is given by the
following:

Proposition 1.9 ([7, Corollary 11.1.8]) Let (φ, ξ, η, g) be an almost contact pseudo-
Riemannian metric structure on a manifold M of dimension 2n + 1. The following are
equivalent:

1. (φ, ξ, η, g) is Sasaki–Einstein;
2. the cone (R+ × M, J , ω) is pseudo-Kähler and Ricci-flat.

2 Einstein standard Lie algebras

In this section, we study the Einstein condition on standard Lie algebras g � Span {e0},
without assuming the pseudo-Iwasawa condition (see [[12], Proposition 2.6]). We write
down the conditions that the induced metric g and the derivation D = ad e0 must satisfy,
generalizing the nilsoliton equation. In particular, the conditions are satisfied if g is Ricci-flat
and the symmetric part of D is an appropriate multiple of the identity.

We then recall and generalize the construction of the Nikolayevsky and metric Niko-
layevsky derivation ([11, 28]).We show that a nilpotent Lie algebra admits a standard Einstein
extension with the symmetric part of D equal to a multiple of the identity if and only if it
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is Ricci-flat and the metric Nikolayevsky derivation is nonzero. In this case, the extension is
unique up to isometry.

Recall that given endomorphisms f , g of g, we have

g( f , g) = tr( f g∗) = tr( f (gs − ga)).

Proposition 2.1 Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g, D a
derivation and τ = ±1. Then, the metric g̃ = g+τe0⊗e0 on g̃ = g�D Span {e0} is Einstein
if and only if

Ric = τ
(− tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds), tr(ad v ◦ D∗) = 0, v ∈ g;

in this case, ˜ric = −τ tr((Ds)2)g̃.

Proof By [15, Proposition 1.10], we have

˜ric(v,w) = ric(v,w) + τ g̃(
1

2
[D, D∗](v), w) − τ(tr D)g̃(Ds(v), w)

˜ric(v, e0) = 1

2
g̃(ad v, D)

˜ric(e0, e0) = −1

2
g̃(D, D) − 1

2
tr D2 = −1

2
tr D(Ds − Da) − 1

2
tr D(Ds + Da)

= − tr DDs = − tr(Ds)2.

Thus, the Einstein condition ˜Ric = λ Id holds if and only if

λ Id = Ric+1

2
τ [D, D∗] − τ(tr D)Ds, tr(ad v ◦ D∗) = 0, λ = −τ tr(Ds)2.

Remark 2.2 If h = −g, then h, g have the same Ricci tensor and opposite Ricci operators;
the operators D �→ D∗ and D �→ Ds are identical. Therefore, if g satisfies

Ricg = τ
(− tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds), tr(ad v ◦ D∗) = 0, v ∈ g,

then

Rich = (−τ)
(− tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds), tr(ad v ◦ D∗) = 0, v ∈ g.

This amounts to the fact that g + τe0 ⊗ e0 is Einstein if and only if so is h − τe0 ⊗ e0.

Remark 2.3 We can write

[D, D∗] = [Da + Ds,−Da + Ds] = 2[Da, Ds].
It turns out that the condition that tr(ad v ◦ D∗) vanish can be eschewed under a suitable
assumption on the eigenvalues of D:

Corollary 2.4 Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g, D a
derivation such that − tr D is not an eigenvalue of D and τ = ±1. Then, the metric g̃ =
g + τe0 ⊗ e0 on g̃ = g �D Span {e0} is Einstein if and only if

Ric = τ
(− tr((Ds)2) Id−1

2
[D, D∗] + (tr D)Ds); (7)

in this case, ˜ric = −τ tr((Ds)2)g̃.
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Proof One direction follows from Proposition 2.1. For the other direction, assume that f =
(tr D) Id+D is invertible and (7) holds. Since ad v is a derivation,

0 = tr(ad v ◦ Ric) = − tr((Ds)2) tr ad v − 1

2
tr([D, D∗] ◦ ad v) + (tr D) tr(ad v ◦ Ds)

= −1

2
tr([ad v, D] ◦ D∗) + 1

2
(tr D) tr(ad v ◦ (D + D∗))

= 1

2
tr(ad Dv ◦ D∗) + 1

2
(tr D) tr(ad v ◦ D∗) = 1

2
tr(ad( f (v)) ◦ D∗),

where we have used tr(ad v ◦ D) = 0 (see, e.g., [6, Chapter 1, Section 5.5]). Since f is
invertible, this implies that tr(adw ◦ D∗) = 0 for all w, so g̃ is Einstein by Proposition 2.1.

Proposition 2.1 and Corollary 2.4 generalize a similar result of [15], where the derivation
D was assumed to be symmetric. The resulting standard extensions take the form g̃ =
g �D Span {e0}, with D symmetric; such a standard decomposition is said to be of pseudo-
Iwasawa type.

Example 2.5 Fix the Lie algebra g = (0, 0, e12, 0), which is the direct sum of the Heisenberg
Lie algebra and R; the notation, inspired by [33], means that g∗ has a fixed basis of 1-forms
e1, e2, e3, e4 with de3 = e1∧e2 and the other forms closed. Themetric g = e1�e2+e3�e4

has Ricci operator equal to:

Ric =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 − 1

2
0 0 0 0

⎞

⎟

⎟

⎠

.

Consider the derivation

D =

⎛

⎜

⎜

⎝

−μ
4 λ 0 0

−μ2

8λ −μ
4 0 0

0 0 −μ
2 − 1

3μτ

0 0 0 μ

⎞

⎟

⎟

⎠

,

where λ and μ are nonzero parameters. Then, equation (7) is satisfied for any choice of
τ = ±1. In this case,

Ds =

⎛

⎜

⎜

⎝

−μ
4 λ 0 0

−μ2

8λ −μ
4 0 0

0 0 μ
4 − 1

3μτ

0 0 0 μ
4

⎞

⎟

⎟

⎠

,

hence tr(Ds) = 0 and tr((Ds)2) = 0.
In order to obtain a standard Einstein metric, it is sufficient, thanks to Corollary 2.4, to

show that tr D = 0 is not an eigenvalue. Since μ is assumed not to be zero, D is not singular
and 0 cannot be an eigenvalue. For τ = 1, we obtain a two-parameter family of Ricci-flat
solvmanifolds of signature (3, 2); for τ = −1,we obtain another familywhich corresponds to
reversing the overall sign of the metric and applying the isomorphism e2 �→ −e2, e3 �→ −e3.

Notice that the resulting standard Lie algebra g̃ = g � Span {e0} has derived algebra
equal to g, because D is surjective. Therefore, the standard decomposition is unique. In
addition, it is not possible to use Proposition 1.1 to obtain an isometric standard Lie algebra
of pseudo-Iwasawa type because D and Ds do not commute.
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Example 2.6 In this example, we apply Corollary 2.4 to a nilpotent Lie algebra of step
greater than 2 and obtain an Einstein solvmanifold with nonzero scalar curvature. Fix
the 4-dimensional 3-step nilpotent Lie algebra g = (0, 0, e12, e13) with metric g =
e1 � e3 + 1

2e2 ⊗ e2 − e4 ⊗ e4. Its Ricci operator equals

Ric =

⎛

⎜

⎜

⎝

− 1
2 0 0 0
0 0 0 0
0 0 − 1

2 0
0 0 0 1

2

⎞

⎟

⎟

⎠

.

Consider the one-parameter family of derivations

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
√

3
8 0 0 0

0
√

3
2 0 0

μ 0
√

3
8 0

0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where μ ∈ R. Then, equation (7) is satisfied with τ = 1. In this case,

Ds =

⎛

⎜

⎜

⎜

⎝

0 0 0 0

0
√

3
2 0 −1

μ 0 0 0
0 1

2 0 0

⎞

⎟

⎟

⎟

⎠

,

hence tr D = tr(Ds) =
√

3
2 and tr((Ds)2) = 1

2 . Note that− tr D is not an eigenvalue, then by
Corollary 2.4 for any choice of μ the Lie algebra g̃ = g � Span {e0} has a standard Einstein
metric g̃ = g + e0 ⊗ e0. Even if D is not surjective, the resulting standard Einstein Lie
algebra has derived algebra equal to g, so the standard decomposition is unique. In addition,
it is not possible to obtain an isometric standard Lie algebra of pseudo-Iwasawa type using
either [15, Proposition 1.19] (because D∗ is not a derivation) or Proposition 1.1 (because D
and Ds do not commute).

As a particular case of Proposition 2.1, consider solutions of (7) such that Ds = a Id.
The case a = 0 corresponds to a standard extension by a skew-symmetric derivation of a
Ricci-flat metric, which by Proposition 1.1 yields a Ricci-flat metric isometric to a product
with a line.

In the case a �= 0, we have that D is a derivation in the Lie algebra

co(r , s) = so(r , s) ⊕ Span {Id} ,

where (r , s) is the signature of g, and the inclusion co(r , s) ⊂ gl(g) is determined by
fixing an orthonormal frame. Additionally, D has nonzero trace. This implies that the metric
Nikolayevsky derivation N is nonzero. We proceed to recall the construction of N , giving
a slight generalization for use in later sections. For the proof, we refer to [28] and [11,
Theorem 4.9].

Proposition 2.7 Let h be an algebraic subalgebra of gl(m, R). There exists a semisimple
derivation N in h ∩ Der g such that

tr(Nψ) = trψ, ψ ∈ h ∩ Der g.

The derivation N is unique up to automorphisms of h.
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For h = gl(m, R), the derivation N of Proposition 2.7 corresponds to the pre-Einstein or
Nikolayevsky derivation introduced in [28]; accordingly, we will refer to the derivation N
of Proposition 2.7 as the h-Nikolayevsky derivation. For h = co(r , s), the h-Nikolayevsky
derivation is the metric Nikolayevsky derivation introduced in [11].

Notice that the h-Nikolayevsky derivation is zero if and only if all derivations in h are
traceless (i.e., h is contained in sl(m, R)). In particular, we see that that there is derivation
with Ds = Id if and only if the metric Nikolayevsky derivation is nonzero.

In later sections, we will consider Lie algebras with an almost pseudo-Hermitian structure
and use the cu(p, q)-Nikolayevsky derivation, where

cu(p, q) = u(p, q) ⊕ Span {Id} .

Like the Nikolayevsky and the metric Nikolayevsky derivation, the cu(p, q)-Nikolayevsky
derivation turns out to have rational eigenvalues:

Proposition 2.8 Let g be a Lie algebra with an almost pseudo-Hermitian structure. Then, the
cu(p, q)-Nikolayevsky derivation of g has rational eigenvalues.

Proof The proof follows [28] and [11, Theorem 4.9]. We can characterize elements of
cu(p, q) as elements of co(2p, 2q) that commute with the complex structure J .

If N is the cu(p, q)-Nikolayevsky, let gC = ⊕

bt be the decomposition into eigenspaces
and let πt : gC → bt denote the projections. Define

n =
{
∑

νtπt |
∑

νtπt ∈ (Der g ∩ co(2p, 2q))C
}

.

Since N commutes with J , each bt is J -invariant. Therefore, J commutes with projections,
and we can write

n =
{
∑

νtπt |
∑

νtπt ∈ (Der g ∩ h)C
}

.

One can now proceed as in [11, Theorem 4.9] and show that N is the unique element of n
such that tr(Nψ) = tr(ψ) for all ψ ∈ n, and its coefficients νt are rational numbers.

Lemma 2.9 Let H be an algebraic subgroup of SO(r , s) with Lie algebra h and let g be a
nilpotent Lie algebra with a H-structure. If D, D′ are two elements of (h⊕Span {Id})∩Der g
with the same trace, then the H-structures on g �D Span {e0} and g �D′ Span {e0} are
equivalent.

Proof TheLie algebra f = (h⊕Span {Id})∩Der g is algebraic. Observe that that two commut-
ing derivations of f with the same trace determine equivalent extensions by Proposition 1.1,
as their difference is in h ∩ so(r , s). We will use this fact repeatedly.

Denote by r the radical of f. By [10], the fact that f is algebraic implies that r is also
algebraic, and we can write r = n � a, where a is an abelian Lie algebra consisting of
semisimple elements and n is the nilradical. Since a is abelian, any two derivations in a with
the same trace determine isometric extensions. Thus, we only need to show that for any D ∈ f

there is an element of a determining an equivalent extension.
Since f is algebraic, we canwrite D = Dss +Dn , where Dss is semisimple, Dn is nilpotent,

and [Dss, Dn] = 0. Since Dn has trace zero, D and Dss determine isometric extensions. Since
Dss is semisimple, so are

ad Dss : f → f, ad Dss : f0 → f0,
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where we have set f0 = f ∩ so(r , s). We can choose a decomposition

f = r ⊕ W ,

where W is contained in h and ad Dss-invariant. Indeed, it suffices to choose for W an
ad Dss-invariant complement of f0 ∩ r in f0.

Accordingly, write Dss = Dr + DW . Then,

[Dss, DW ] = [Dr, DW ];
the left-hand side belongs to the ad Dss-invariant space W , and the right-hand side to the
ideal r, so both must vanish.

Therefore, Dss and Dr are commuting derivations with the same trace, and they determine
equivalent extensions.

Using the Jordan decomposition in the algebraic Lie algebra r, we see that Dr determines,
up to equivalence, the same standard extension as its semisimple part. On the other hand, the
latter is conjugate in r to an element of a by [23, Section 19.3]. The conjugation is realized
by an element of the Lie group with Lie algebra f, which can be assumed to have determinant
one, and therefore by an element of H .

Theorem 2.10 Let g be a nilpotent Lie algebra with a pseudo-Riemannian metric g such that
the metric Nikolayevsky derivation N is nonzero. Then, g is Ricci-flat and g has an Einstein
standard extension g �N Span {e0}.

Conversely, suppose g is a nilpotent Lie algebra with a pseudo-Riemannian metric g and
an Einstein standard extension with Ds = a Id. Then, g is Ricci-flat and, up to a scaling
factor, the extension is isometric to either g ⊕ R or g �N Span {e0} according to whether a
is zero or not.

Proof Let D be a multiple of N such that Ds = Id. Every metric of the form et g can be
written as g(exp(t D)·, exp(t D)·), i.e., it is related to g by an isomorphism. The Ricci tensor
transforms accordingly; however, the Ricci tensor of et g coincides with that of g, and this
forces it to be zero. Then, [D, D∗] = [D, 2 Id−D] = 0 and (7) holds. In addition,

tr(ad v ◦ D∗) = tr(ad v ◦ (2 Id−D)) = tr(2 ad v − ad v ◦ D) = 0,

where ad v and ad v ◦ D are traceless because g is nilpotent and D is a multiple of the
Nikolayevsky derivation. Thus, Proposition 2.1 implies that g �D Span {e0} is Einstein.

We claim that replacing D with a nonzero multiple, say D′ = k D, has the effect of giving
the same standard extension up to isometry and rescaling. Indeed, observe that {exp t D} acts
on the metric g by rescaling while leaving D unchanged. This means that the g̃ = g+e0⊗e0

and g̃′ = k2 g + e0 ⊗ e0 are isometric metrics on g̃ = g�D Span {e0}. Setting e′
0 = ke0, we

can write g̃′ = k2(g + (e0)′ ⊗ (e0)′), and g̃ = g �D′ Span {e0}.
Now suppose that g has a standard Einstein extension with Ds = a Id. In this case, if g

has dimension m and Ds = a Id, then [D, D∗] = 2[Da, Ds] = 0 and (7) becomes

Ric = τ(−a2m Id+ma2 Id) = 0.

If a = 0, D is skew-symmetric; by Proposition 1.1, we can assume D = 0 up to isometry,
obtaining a direct product g × R.

If a �= 0, D has nonzero trace and the metric Nikolayevsky derivation N is nonzero, so
it too has nonzero trace. We already observed that rescaling N yields an isometric extension
up to isometry. Therefore, we can assume that D and N have the same trace and conclude
by Lemma 2.9.
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Remark 2.11 Geometrically, we can describe themetric of Theorem 2.10 as follows. Let G be
the simply connected Lie groupwith Lie algebra g.We can exponentiate N to a one-parameter
group of automorphisms { ft } = {exp t N } ⊂ Aut g, which determines a one-parameter group
of automorphisms {φt } in Aut G. The semidirect product G �φt R has Lie algebra g �N R,
and a left-invariant metric g on G induces a left-invariant metric (exp t N )g + dt2. Since
skew-symmetric elements act trivially on the metric and N s is a multiple of the identity, the
metric takes the form of a warped product,

(exp t N s)g + dt2 = e2kt g + dt2, k = tr N

dim g
.

The fact that a metric of this form is Einstein follows directly from g being Ricci-flat (see
[5, § 9.109]).

3 z-standard Sasaki–Einstein Lie algebras

In this section, we study the Ricci curvature of z-standard Sasaki Lie algebras, characterizing
the Einstein metrics in terms of their Kähler reduction. Recall from Sect. 1 that a z-standard
Sasaki Lie algebra is a Lie algebra g̃ carrying both a Sasaki structure (φ, ξ, η, g) and a
standard decomposition of the form g̃ = g� Span {e0} such that φ(e0) lies in the center z of
g.

Let g be a central extension of a nilpotent Lie algebra qg, i.e.,

0 → R
k → g → qg → 0.

As vector spaces, g = qg ⊕ R
k . Let {es} be a basis of R

k ; the elements {es} of the dual basis
can be viewed as elements of g∗, and the Lie algebra structure of g is entirely determined by
qg and the exterior derivatives {des}. Explicitly,

[v,w]g = [v,w]
qg −

∑

s

des(v,w)es, v, w ∈ g.

Lemma 3.1 Let qg be a nilpotent Lie algebra with a metric qg; on the central extension g =
qg ⊕ R

k , fix a metric of the form

g = qg +
∑

s

εses ⊗ es, εs = ±1.

Then, for v,w ∈ qg, the Ricci tensors of g and qg are related by

ric(v,w) = |ric(v,w) − 1

2

∑

s

εs g(v� des, w� des),

ric(v, es) = 1

2
εs g(dv�, des), ric(es, et ) = 1

2
εsεt g(des, det ).

Proof By construction, ad v = |adv − ∑

s v� des ⊗ es . For one-forms α on qg, zero-extended
to g, we have dα = qdα. We use the fact that the musical isomorphisms relative to g and qg
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are compatible, so using (4) we obtain

ric(v,w) = 1

2
g(dv�, dw�) − 1

2
g(ad v, adw)

= 1

2
g(qdv�, qdw�) − 1

2
g(|adv,|adw) − 1

2
g(

∑

s

v� des ⊗ es,
∑

�

w� de� ⊗ e�)

= |ric(v,w) − 1

2

∑

s

εs g(v� des, w� des).

Lemma 3.2 The Ricci tensor of the metric on g constructed in Proposition 1.3 is:

Ric(v) = −2(τ ( qDs)2 + Id)v, v ∈ Span {b, ξ}⊥ ,

Ric(b) = τ tr(( qDs)2)b − (tr qD)ξ, Ric(ξ) = (2n − 2)ξ − τ(tr qD)b.

where dim g = 2n.

Proof Since qg is pseudo-Kähler and nilpotent, |ric is zero by Lemma 1.7. By Lemma 3.1, we
have

ric(v,w) = −1

2
τg(v� db�, w� db�) − 1

2
g(v� dη,w� dη)

= −1

2
τg( qDs(v)� dη, qDs(w)� dη) − 1

2
g(v� dη,w� dη)

= −2τg(J Ds(v), J Ds(w)) − 2g(Jv, Jw) = −2τg(Ds(v), Ds(w)) − 2g(v,w).

Then,

ric(v, b) = 1

2
τg(dv�, db�) = 1

2
τg(dv�, qDω), ric(v, ξ) = 1

2
τg(dv�, dη) = τg(dv�, ω),

ric(b, b) = 1

2
g(db�, db�) = 1

2
g( qDω, qDω), ric(b, ξ) = 1

2
g(db�, dη) = g( qDω,ω),

ric(ξ, ξ) = 1

2
τg(dη, dη) = 2g(ω, ω).

We can simplify these formulae by observing that

qDω(x, y) = −ω( qDx, y) − ω(x, qDy) = −qg( qDx, J y) − qg(x, J qDy)

= −qg(x, (J qD + qD∗ J )y) = −qg(x, ( qD + qD∗)J y),

so we can view qDω as a (1, 1) tensor ( qDω)
 = −( qD + qD∗)J . Similarly, we have ω
 = J .
Then

g(ω, ω) = 1

2
g(J , J ) = n − 1,

g(ω, qDω) = 1

2
g(J ,−( qD + qD∗)J ) = 1

2
tr(( qD + qD∗)J 2)

= −1

2
tr( qD + qD∗) = − tr qDs = − tr qD,

g( qDω, qDω) = 1

2
g(( qD + qD∗)J , ( qD + qD∗)J ) = 1

2
tr(( qD + qD∗)2) = 2 tr( qDs)2.

Finally, observe that ω and qDω are d∗-closed, so (since qg is unimodular),

g(dv�, ω) = g(v�, d∗ω) = 0, g(dv�, qDω) = g(v�, d∗
qDω) = 0.
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Summing up,

ric(v,w) = −2τg( qDs(v), qDs(w)) − 2g(v,w), ric(v, b) = 0,

ric(v, ξ) = 0, ric(b, b) = tr(( qDs)2),

ric(b, ξ) = − tr qD, ric(ξ, ξ) = (2n − 2).

Lemma 3.3 With the hypothesis of Proposition 1.3, the metric g̃ = g + τe0 ⊗ e0 on g̃ =
g �D Span {e0} is Einstein if and only if

τ = −1, qDs = ± Id, h = ±2.

Proof By Proposition 2.1, g̃ is Einstein if and only if

Ric = τ
(− tr((Ds)2) Id+[Ds, Da] + (tr D)Ds), tr(ad v ◦ D∗) = 0, v ∈ g.

We have

D =
⎛

⎝

qD 0 0
0 h 0
0 −2τ 0

⎞

⎠ , D∗ =
⎛

⎝

qD∗ 0 0
0 h −2
0 0 0

⎞

⎠ ,

Ds =
⎛

⎝

qDs 0 0
0 h −1
0 −τ 0

⎞

⎠ , Da =
⎛

⎝

qDa 0 0
0 0 1
0 −τ 0

⎞

⎠ .

So

[Ds, Da] =
⎛

⎝

h qDs − 2( qDs)2 0 0
0 2τ h
0 hτ −2τ

⎞

⎠ .

Multiplying by τ each side of (7) and using Lemma 3.2, we get
⎛

⎝

−2( qDs)2 − 2τ Id 0 0
0 tr(( qDs)2) −(tr qD)

0 −τ tr qD τ(2n − 2)

⎞

⎠ = −(tr(( qDs)2) + h2 + 2τ)

⎛

⎝

Id 0 0
0 1 0
0 0 1

⎞

⎠

+
⎛

⎝

h qDs − 2( qDs)2 0 0
0 2τ h
0 hτ −2τ

⎞

⎠ + (tr qDs + h)

⎛

⎝

qDs 0 0
0 h −1
0 −τ 0

⎞

⎠ ,

i.e.,

(tr(( qDs)2) + h2) Id = (tr qDs + 2h) qDs,

2 tr(( qDs)2) = (tr qDs)h,

τ (2n + 2) = −(tr(( qDs)2) + h2).

If this system of equations holds, qDs is a multiple of the identity; setting tr qDs = λ, so that

tr(( qDs)2) = λ2

2n − 2
, we get

τ = −1, h = 2λ

2n − 2
, λ = ±(2n − 2).
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So the system holds if and only if qDs = ± Id and h = ±2. This condition also implies
tr(ad v◦ D∗) = 0 because g is unimodular and tr(ad v◦ D) = 0 by [6, Chapter 1, Section 5.5],
proving the equivalence in the statement.

Remark 3.4 As observed in [[12], Remark 5.2], changing the sign of h, qD, e0 and b yields
an isometric metric. Therefore, we will only consider the case h = 2 and qDs = Id.

The construction of Proposition 1.3 can be specialized to the Sasaki–Einstein case as
follows:

Proposition 3.5 Let (qg, J , ω) be a pseudo-Kähler nilpotent Lie algebra, and let qD be a
derivation of qg with qDs = Id and commuting with J . If g = qg ⊕ Span {b, ξ} is the central
extension of qg characterized by dξ∗ = 2ω = db∗, where {b∗, ξ∗} is the basis dual to
Span {b, ξ}, with the metric g = qg − b∗ ⊗ b∗ + ξ∗ ⊗ ξ∗, then the semidirect product
g̃ = g � Span {e0}, where

[e0, x] = qDx, [e0, b] = 2b + 2ξ, [e0, ξ ] = 0

has a Sasaki–Einstein structure (φ, η, ξ, g̃) given by

g̃ = g − e0 ⊗ e0, φ(w) = J (w) − g(b, w)e0, φ(e0) = −b, w ∈ g.

Proof We have qDω = qDsω = −2ω; applying Proposition 1.3 with h = 2 and τ = −1 we
obtain a Sasaki extension as in the statement, which is Einstein by Lemma 3.3.

Proposition 3.5 has a Kähler analogue:

Corollary 3.6 Let (qg, J , ω) be a pseudo-Kähler nilpotent Lie algebra with nonzero metric
Nikolayevsky derivation, and let qD be a derivation of qg with qDs = Id. If k = qg ⊕ Span {b}
is the central extension of qg characterized by db∗ = 2ω, where {b∗} is the basis dual to
Span {b}, with the metric g = qg − b∗ ⊗ b∗, then the semidirect product˜k = k � Span {e0},
where

[e0, x] = qDx, [e0, b] = 2b

has a pseudo-Kähler–Einstein structure (˜k, ˜J , ω̃) given by

g̃ = g − e0 ⊗ e0, ˜J (w) = J (w) − g(b, w)e0, ˜J (e0) = −b, w ∈ g,

with ˜ric = (2n + 2)g̃, with 2n the dimension of˜k.

Proof Take the Lie algebra constructed in Proposition 3.5 and take the quotient by ξ . Then,
by Proposition 1.5 it is Kähler–Einstein with ˜ric = (2n + 2)g̃.

Remark 3.7 Arguing as in Remark 2.11, it follows that the pseudo-Kähler–Einstein metric
constructed in Corollary 3.6 has the form (1).

Remark 3.8 If the Lie algebra qg is not abelian, then Corollary 3.6 produces pseudo-Kähler–
Einstein rank-one extension which are not pseudo-Iwasawa, unlike the method presented
in [32], where one constructs pseudo-Kähler–Einstein rank-one extensions of pseudo-
Iwasawa-type.

Indeed, the derivation qD = ad e0 of Corollary 3.6 is self-adjoint with respect to the metric
if and only if qDs = 1

2 (D + D∗) is a derivation, but since qDs = Id, this happens only if the
identity is a derivation, i.e., if qg is an abelian Lie algebra.
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Example 3.9 Let qg = R
2n , with

Je1 = e2, . . . , Je2n−1 = e2n, ω = ε1e12 + · · · + εne2n−1,2n, εi = ±1,

and set D = Id. We get

dξ∗ = db∗ = 2ω, ad e0 = 2b∗ ⊗ (b + ξ) +
∑

ei ⊗ ei .

Applying Corollary 3.6, one obtains the Lie algebra k

de0 = 0,

dei = ei,0, i = 1, . . . , 2n,

de2n+1 = 2ε1e12 + · · · + 2εne2n−1,2n + 2e2n+1,0,

(8)

with the pseudo-Kähler–Einstein metric

g =
n

∑

i=1

εi (e
2i−1 ⊗ e2i−1 + e2i ⊗ e2i ) − e2n+1 ⊗ e2n+1 − e0 ⊗ e0. (9)

The resulting solvmanifold can be identifiedwith the symmetric space SU(p, q+1)/U(p, q).
Indeed, fix the diagonal matrices

Ip,q = diag(1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q

), H = diag(−1, 1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q

),

X = diag(−1, 1, . . . , 1
︸ ︷︷ ︸

p+q

).

We can identify su(p, q + 1) with the Lie algebra

su(p, q + 1) = {

A ∈ sl(p + q + 1, C) | tA + H AH = 0
}

.

The involution θ = Ad X makes (SU(p, q + 1),U(p, q)) into a symmetric pair, deter-
mining a splitting su(p, q + 1) = u(p, q) ⊕ p. Let a be the maximal abelian subalgebra of
p spanned by

E0 =
⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠ .

The positive eigenspaces of ad E0 generate the nilpotent Lie algebra n spanned by

E2n+1 =
⎛

⎝

i −i 0
i −i 0
0 0 0

⎞

⎠ , E2 j−1 =
⎛

⎝

0 0 te j Ip,q

0 0 te j Ip,q

e j e j 0

⎞

⎠ , E2 j =
⎛

⎝

0 0 −i t
e j

Ip,q

0 0 −i t
e j

Ip,q

e j e j 0

⎞

⎠ ,

where j ranges between 1 and n. Explicitly, we have

[E0, E2 j ] = E2 j , [E0, E2 j−1] = E2 j−1, [E0, E2n+1] = 2E2n+1, [E2 j−1, E2 j ] = −2ε j E2n+1,

where ε j is the j-th element in the diagonal of Ip,q . The semidirect product n�a is therefore
isomorphic to the Lie algebra k of (8). By [35], the symmetric metric can be expressed in
terms of the Killing form B as

2Bθ |a×a + Bθ |n×n, Bθ (X , Y ) = B(X , θ(Y )).
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A straightforward computation shows that this is indeed a multiple of the metric (9). For
q = 0,weobtain the positive-definite symmetricmetric on the Iwasawa subgroupofSU(n+1,
1). Suggestively, this Lie group andmetric appear as the fibre of quaternion-Kähler manifolds
obtained via the c-map (see [18]).

Notice that themetric (9) is of pseudo-Iwasawa type; in fact, Einstein solvmanifolds arising
from symmetric spaces as above are the motivating example for the notion of Iwasawa type.
On the other hand, by Proposition 3.5 qg can also be extended to a Sasaki–Einstein Lie algebra
g̃, which is not of pseudo-Iwasawa type. Explicitly, g̃ has a basis {e0, e1, . . . , e2n+2} such
that

de0 = 0,

dei = ei,0, i = 1, . . . , 2n,

de2n+2 = de2n+1 = 2ε1e12 + · · · + 2εn+1e2n−1,2n + 2e2n+1,0,

and the metric is

g̃ =
n

∑

i=1

εi (e
2i−1 ⊗ e2i−1 + e2i ⊗ e2i ) − e2n+1 ⊗ e2n+1 + e2n+2 ⊗ e2n+2 − e0 ⊗ e0.

Remark 3.10 The pseudo-Kähler–Einstein quotient constructed in Example 3.9 is precisely
the family of [32, Example 7.6], and since qg is abelian, this is consistent with Remark 3.8.

4 Classification results

In this section, we characterize z-standard Sasaki–Einstein Lie algebras in terms of their
Kähler reduction using the cu(p, q)-Nikolayevsky derivation introduced in Sect. 2. We also
classify z-standard Sasaki–Einstein Lie algebras of dimension ≤ 7.

Theorem 4.1 If g̃ = g�Span {e0} is a z-standard Sasaki–Einstein Lie algebra, the cu(p, q)-
Nikolayevsky derivation of its Kähler reduction is nonzero.

Conversely, if qg is a pseudo-Kähler Lie algebra with nonzero cu(p, q)-Nikolayevsky
derivation, it extends to a z-standard Sasaki–Einstein Lie algebra g̃ = g�Span {e0}, uniquely
determined up to equivalence.

Proof If g̃ = g � Span {e0} is a z-standard Sasaki–Einstein Lie algebra, Proposition 1.3
asserts that g̃ can be realized as an extension of its Kähler reduction qg. By Proposition 3.5,
qD is a derivation commuting with J such that qDs = Id. This implies that qD is an element of

co(2p, 2q) ∩ gl(p + q, C) = cu(p, q)

with nonzero trace; if such a qD exists, the cu(p, q)-Nikolayevsky derivation is nonzero.
Now assume qg is pseudo-Kähler and cu(p, q)-Nikolayevsky derivation is nonzero. By

rescaling, we obtain a derivation qD whose symmetric part is the identity; this yields a Sasaki–
Einstein extension by Proposition 3.5.

To prove uniqueness, fix two derivations qD, qD′ commuting with J , qDs = Id = ( qD′)s .
The Lie algebras qg �

qD Span {e0} and qg �
qD′ Span {e0} have a natural U(p, q)-structure. By

Lemma 2.9, they are equivalent.
We can view g̃ as an extension of qg�

qD by the ideal Span {b, ξ}, where ad b = −e0 ⊗
(2b + 2ξ) and db∗ and dξ∗ are determined by the U(p, q)-invariant form ω. Therefore, g̃
and its counterpart obtained using qD′ are equivalent.
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In the case that qg is abelian, we obtain:

Corollary 4.2 Every z-standard Sasaki–Einstein Lie algebra such that the Kähler reduction
is an abelian Lie algebra is equivalent to one of those constructed in Example 3.9.

Proof If qg is an abelian Lie algebra, we can assume qg = R
2n , with

Je1 = e2, . . . , Je2n−1 = e2n, ω = ε1e12 + · · · + εne2n−1,2n, εi = ±1;
the cu(p, q)-Nikolayevsky derivation is Id, so by Theorem 4.1 the extension is equivalent to
one of those constructed in Example 3.9.

In dimension 3, z-standard Sasaki–Einstein Lie algebras take the formR
2
�Span {e3}, with

ad e3 acting on R
2 as the identity. In dimension 5, z-standard Sasaki–Einstein Lie algebras

determine a reduction of dimension 2, which is abelian. Therefore, these metrics have the
form given in Example 3.9, and we obtain:

Proposition 4.3 Let g̃ be a z-standard Sasaki–Einstein Lie algebra of dimension ≤ 5. Then,
g̃ is equivalent to one of

(2e13, 2e13, 0), g̃ = −e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3,

(e15, e25, 2e12 + 2e35, 2e12 + 2e35, 0), g̃ = e1 ⊗ e1 + e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5,

(e15, e25,−2e12 + 2e35,−2e12 + 2e35, 0), g̃ = −e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 + e4 ⊗ e4 − e5 ⊗ e5.

Note that the 5-dimensional solvable Lie algebras appearing in Proposition 4.3 are isomor-
phic; up to a sign, the metric of signature (1, 4) is isometric to [16, Example 5.6].

In dimension 7, we can classify z-standard Sasaki–Einstein Lie algebras by using the
classification of four-dimensional Lie algebras with a pseudo-Kähler metric in [30]:

Theorem 4.4 Let g̃ be a z-standard Sasaki–Einstein Lie algebra of dimension 7. Then, g̃ is
equivalent to one of the following:

1. g̃ is the solvable Lie algebra

(e17, e27, e37, e47, 2ε1e12 + 2ε2e34 + 2e57, 2ε1e12 + 2ε2e34 + 2e57, 0)

with metric

g̃ = ε1(e
1 ⊗ e1 + e2 ⊗ e2) + ε2(e

3 ⊗ e3 + e4 ⊗ e4) + γ, ε1, ε2 ∈ {+1,−1};
2. g̃ is the solvable Lie algebra

(2

3
e17,

2

3
e27,

a

3
e27 + 4

3
e37 + e12,−a

3
e17 + 4

3
e47,

2(e13 + e24 + ae12 + e57), 2(e13 + e24 + ae12 + e57), 0
)

with metric

g̃ = −a(e1 ⊗ e1 + e2 ⊗ e2) + e1 � e4 − e2 � e3 + γ, a ∈ R;
3. g̃ is the solvable Lie algebra

(2

3
e17,

2

3
e27,

b

3
e17 + 4

3
e37 + e12,

b

3
e27 + 4

3
e47,

2a(e13 + e24) + 2(e14 − e23 + be12 + e57), 2a(e13 + e24) + 2(e14 − e23 + be12 + e57), 0
)
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with metric

g̃ = −b(e1 ⊗ e1 + e2 ⊗ e2) + a(e1 � e4 − e2 � e3) − e1 � e3 − e2 � e4 + γ, a, b ∈ R;
where we have set γ = −e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

Proof By Proposition 1.3, every z-standard Sasaki Lie algebra can be obtained by extending
a four-dimensional pseudo-Kähler Lie algebra qg. By the classification of [30], we have the
following possibilities:

1. qg is abelian; we can assume that the metric is either positive-definite or neutral. Then,
we obtain the Lie algebras of Example 3.9, i.e.,

g̃ = (e17, e27, e37, e47, 2ε1e12 + 2ε2e34 + 2e57, 2ε1e12 + 2ε2e34 + 2e57, 0)

with metric

g̃ = ε1(e
1 ⊗ e1 + e2 ⊗ e2) + ε2(e

3 ⊗ e3 + e4 ⊗ e4) − e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7,

where ε1, ε2 = ±1.
2. qg = (0, 0, e12, 0), with Je1 = e2, Je3 = e4, and ω = e13 + e24 + ae12 for a ∈ R.

Then,

qg = −a(e1 ⊗ e1 + e2 ⊗ e2) + e1 � e4 − e2 � e3.

The generic qD satisfying the hypothesis of Proposition 3.5 is:

qD =

⎛

⎜

⎜

⎝

2
3 0 0 0
0 2

3 0 0
λ a

3
4
3 0

− a
3 λ 0 4

3

⎞

⎟

⎟

⎠

.

By Theorem 4.1, we can assume λ = 0. Therefore, we obtain the extension

g̃ =
(2

3
e17,

2

3
e27,

a

3
e27 + 4

3
e37 + e12,−a

3
e17 + 4

3
e47,

2e13 + 2e24 + 2ae12 + 2e57, 2e13 + 2e24 + 2ae12 + 2e57, 0
)

with the metric

g̃ = qg − e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

3. qg = (0, 0, e12, 0) with Je1 = e2, Je3 = e4, and ω = a(e13 + e24) + e14 − e23 + be12

for a, b ∈ R. Then,

qg = −b(e1 ⊗ e1 + e2 ⊗ e2) + a(e1 � e4 − e2 � e3) − e1 � e3 − e2 � e4.

The generic qD satisfying the hypothesis of Proposition 3.5 is:

qD =

⎛

⎜

⎜

⎝

2
3 0 0 0
0 2

3 0 0
aλ + b

3 −λ 4
3 0

λ aλ + b
3 0 4

3

⎞

⎟

⎟

⎠

.

Again, we may assume λ = 0 and obtain

g̃ =
(2

3
e17,

2

3
e27,

b

3
e17 + 4

3
e37 + e12,

b

3
e27 + 4

3
e47,

2a(e13+e24)+2e14−2e23+2be12+2e57, 2a(e13+e24)+2e14−2e23+2be12+2e57, 0
)
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with the metric

g̃ = qg − e5 ⊗ e5 + e6 ⊗ e6 − e7 ⊗ e7.

Remark 4.5 For each of the Sasaki–Einstein Lie algebras of Theorem 4.4, the center is
spanned by e6; taking the quotient gives explicit pseudo-Kähler–Einstein Lie algebras.

Example 4.6 Consider the 6-dimensional Lie algebra qg = (0, 0, 0, e12, e13, e14 − e23),
denoted by h11 in [17]; by [9, 33], it admits a one-parameter family of complex structures. By
the work of [17], we know that it has a four-dimensional space of compatible pseudo-Kähler
metrics.

Instead of fixing the complex structure, we use the explicit form of the two families of
pseudo-Kähler structures given in [34].

The first one is ω1 = e16 − λe25 − (λ − 1)e34, with the compatible complex structure

J1(e2) = (1 + λ)ae1, J1(e4) = ae3, J1(e6) = (1 + λ)a

λ
e5

and metric

qg1 = −ω1 J1 = λ

a(λ + 1)
e1 � e5 + a(λ + 1)e2 � e6 + 1 − λ

a
e3 ⊗ e3 + a(1 − λ)e4 ⊗ e4,

while the second one isω2 = e16+e24− 1
2 (e

25−e34)with the compatible complex structure

J2(e2) = −ae1, J2(e3) = 3

2a
e4 + 3

a
e5, J2(e4) = −2

3
ae3 − 1

a
e6, J2(e6) = −2ae5

and metric qg2 = −ω2 J2.
The first case, imposing [ qD, J1] = 0, gives

qD =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μ1
3 0 0 0 0 0
0 μ1

3 0 0 0 0
μ2
b −a2 μ3

b (b + 1) 2μ1
3 0 0 0

μ3
b μ2 + μ2

b 0 2μ1
3 0 0

μ4
b −a2 μ5

b (b + 1)2 μ2 + μ2
b −a2 μ3

b (b + 1) μ1 0
μ5 μ4 μ3 μ2 0 μ1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and imposing qDs = Id gives μ1 = 3
2 and μi = 0 for i = 2, . . . , 5, that is

qD =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 3

2 0
0 0 0 0 0 3

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Writing e7, e8, e9 instead of b, ξ, e0, themetric on g̃ is then g̃ = qg1−e7⊗e7+e8⊗e8−e9⊗e9,
whilst the Lie algebra is

g̃ = (
1

2
e19,

1

2
e29, e39, e12 + e49, e13 + 3

2
e59, e14 − e23 + 3

2
e69,

2e16 − 2λe25 − 2(λ − 1)e34 + 2e79, 2e16 − 2λe25 − 2(λ − 1)e34 + 2e79, 0)

123



25 Page 24 of 26 Annals of Global Analysis and Geometry (2023) 63 :25

On the other hand, [ qD, J2] = 0 gives

qD =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

μ1
3 0 0 0 0 0
0 μ1

3 0 0 0 0
2μ2 − 2

3 (2a2μ3 + μ1)
2μ1
3 0 0 0

2μ3 + μ1
a2

3μ2 0 2μ1
3 0 0

2(μ4 + 2μ3 + μ1
a2

) −2(a2μ5 + 3μ2) 3μ2 − 2
3 (2a2μ3 + μ1) μ1 0

μ5 μ4 μ3 μ2 0 μ1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

but imposing qDs = Id does not yield any solution for the μi .

Example 4.7 The following example shows a z-standard Sasaki–Einstein g̃ obtained by
extending a 6-dimensional pseudo-Kähler Lie algebra with a derivation qD, which is
not a multiple of the cu(p, q)-Nikolayevsky derivation. Consider the Lie algebra qg =
(0, 0, e12, 0, 0, 0) with symplectic form ω = e13 + e24 + e56 and complex structure
J (e1) = e2, J (e3) = e4 and J (e5) = e6. Then,

qD =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2
3 0 0 0 0 0
0 2

3 0 0 0 0
μ 0 4

3 0 λ −ν

0 μ 0 4
3 ν λ

ν −λ 0 0 1 −ρ

λ ν 0 0 ρ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

satisfies the hypothesis of Proposition 3.5 and therefore determines a z-standard Sasaki–
Einstein g̃ Lie algebra of dimension 9. The derivation qD is not diagonalizable over R, but
has eigenvalues ( 23 ,

2
3 , 1− iρ, 1+ iρ, 4

3 ,
4
3 ); therefore,

qD is only a multiple of the cu(p, q)-
Nikolayevsky derivation when ρ is zero. Note, however, that all the resulting extensions are
isometric by Theorem 4.1.
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