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THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS

MARTIN HILS AND ROSARIO MENNUNI

We study the domination monoid in various classes of structures arising from
henselian valuations, including RV-expansions of henselian valued fields of
equicharacteristic 0 (and, more generally, of benign valued fields), p-adically
closed fields, monotone D-henselian differential valued fields with many
constants, regular ordered abelian groups, and pure short exact sequences
of abelian structures. We obtain Ax–Kochen–Ershov-type reductions to
suitable fully embedded families of sorts in quite general settings, and full
computations in concrete ones.

In their seminal work [17] on stable domination, Haskell, Hrushovski and
Macpherson introduced the domination monoid

∼

Inv(U), and showed that in al-
gebraically closed valued fields it decomposes as

∼

Inv(k(U))×
∼

Inv(0(U)), where
k denotes the residue field, 0 the value group, and U a monster model, that is, a
sufficiently saturated and strongly homogeneous model. (Strictly speaking, Haskell
et al. [17] work with Inv(U), which is in general different, but coincides with

∼

Inv(U)
in their setting. See [21, Remark 2.1.14 and Theorem 5.2.22].) A similar result
was proven in [12; 23] in the case of real closed fields with a convex valuation.
This paper revolves around understanding

∼

Inv(U) in more general classes of valued
fields, and expansions thereof. A special case of our results is the following.

Theorem A (Corollary 6.19). Let T be the theory of a henselian valued field of
equicharacteristic 0, or algebraically maximal Kaplansky, possibly enriched on k
and 0. If all k×/(k×)n are finite, then

∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U)).

More generally, we obtain a two-step reduction, first to leading term structures,
and then, using technology on pure short exact sequences recently developed
in [2], to k and 0, albeit in a form which, in general, is (necessarily) slightly more
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involved. We also compute
∼

Inv(0(U)) when the theory of 0 has an archimedean
model, and prove several accessory statements.

Before stating our results in more detail, let us give an informal account of the
context (see Section 1 for the precise definitions). The starting point is the space
Sinv(U) of invariant types over a monster model U: those which are invariant over
a small subset. It is a dense subspace of S(U), whose points may be canonically
extended to larger parameter sets. Such extensions allow to define the tensor
product, or Morley product, obtaining a semigroup (Sinv(U),⊗), in fact a monoid.
The space Sinv(U) also comes with a preorder ≥D, called domination: roughly,
p ≥D q means that q is recoverable from p plus a small amount of information.
The quotient by the induced equivalence relation, domination-equivalence ∼D, is
then a poset, denoted by (

∼

Inv(U),≥D). If ⊗ respects ≥D, i.e., if (Sinv(U),⊗,≥D) is
a preordered semigroup, then ∼D is a congruence with respect to ⊗ and we say that
the domination monoid is well defined, and equip (

∼

Inv(U),≥D) with the operation
induced by ⊗. Compatibility of ⊗ and ≥D in a given theory can be shown by using
certain sufficient criteria, isolated in [22] and applied, e.g., in [24], or by finding a
nice system of representatives for ∼D-classes (see Proposition 1.3). Nevertheless, in
general, ⊗ may fail to respect ≥D [22]. Hence, when dealing with

∼

Inv(U) in a given
structure, one needs to understand whether it is well defined as a monoid; and, when
dealing with it in the abstract, the monoid structure cannot be taken for granted.

Recall that to a valued field K are associated certain abelian groups augmented
by an absorbing element, fitting in a short exact sequence

1 → (k,×)→ (K,×)/(1 +m)→ 0 ∪ {∞} → 0,

denoted by RV . This sequence is interpretable in K, and this interpretation endows
it with extra structure. The amount of induced structure clearly depends on whether
K has extra structure itself, but at a bare minimum k will carry the language of
fields and 0 that of ordered abelian groups. By [4] (see also [20], or [14; 15]
for a more modern treatment), henselian valued fields of residue characteristic 0
eliminate quantifiers relatively to RV , and the latter is fully embedded with the
structure described above. This holds resplendently, in the sense that it is still true
after arbitrary expansions of RV . The same holds in the algebraically maximal
Kaplansky case, by [20] (see also [15]).1 These are known after [30] as classes
of benign valued fields and, in several contexts, they turn out to be particularly
amenable to model-theoretic investigation. One of our main results says the context
of domination is no exception.

Theorem B (Theorem 6.18). In every RV-expansion of a benign theory of valued
fields there is an isomorphism of posets

∼

Inv(U) ∼=
∼

Inv(RV(U)). If ⊗ respects ≥D

in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

1Note that these quantifier elimination results are already implicitly contained in [9].
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Having reduced
∼

Inv(U) to the short exact sequence RV , the next step is to
reduce it to its kernel k and quotient 0. If we add an angular component map,
the sequence RV splits and we obtain a product decomposition as in Theorem A
(Remark 6.1). Without an angular component, a product decomposition is not
always possible; yet, k and 0 still exert a tight control on RV . This behaviour is
not peculiar of RV: it holds in short exact sequences of abelian structures, provided
they satisfy a purity assumption, using the relative quantifier elimination from [2].
For reasons to be clarified later (Remark 4.17), here it is natural to look at types in
infinitely many variables, say κ , and hence at the corresponding analogue

∼

Invκ(U)
of
∼

Inv(U).

Theorem C (Corollary 4.9). Let U be a pure short exact sequence

0 → A → B → C → 0

of L-abelian structures, where A and C may carry extra structure. Let κ ≥ |L| be
a small cardinal. There is an expansion AF of A by imaginary sorts yielding an
isomorphism of posets

∼

Invκ(U)∼=
∼

Invκ(AF (U))×
∼

Invκ(C(U)). If ⊗ respects ≥D in
both AF (U) and C(U), then ⊗ respects ≥D in U, and the above is an isomorphism
of monoids.

In algebraically or real closed valued fields, the isomorphism
∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U))

is complemented by a computation of the factors, carried out in [17; 23]. In
particular, if 0(U) is divisible, then

∼

Inv(0(U)) is isomorphic to the upper semilattice
of finite sets of invariant convex subgroups of 0(U) (in the sense of Definition 3.16).
A further contribution of this work is the computation of

∼

Inv(U) in the next simplest
class of theories of ordered abelian groups: those with an archimedean model,
known as regular. Denote by CSinv(U) the set of invariant convex subgroups of U,
by P≤κ(CSinv(U)) the upper semilattice of its subsets of size at most κ , and by κ̂
the ordered monoid of cardinals smaller or equal than κ with cardinal sum.

Theorem D (Corollary 3.33). Let T be the theory of a regular ordered abelian
group, κ a small infinite cardinal, and PT the set of primes p such that U/pU is
infinite. Then

∼

Invκ(Ueq) is well defined, and
∼

Invκ(Ueq)∼= P≤κ(CSinv(U))×
∏

PT
κ̂ .

Theorem D applies to Presburger arithmetic, the theory of (Z,+, <). Pairing
this with a suitable generalisation of Theorem B, we obtain the following.

Theorem E (Corollary 7.7). In the theory Th(Qp) of p-adically closed fields, ⊗ re-
spects ≥D, and

∼

Inv(U)∼= P<ω

(
CSinv(0(U))

)
.

A similar statement (Corollary 7.5) holds for Witt vectors over F
alg
p . Finally,

we move to monotone D-henselian differential valued fields with many constants.
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While Theorem B does not generalise to this context (Remark 8.5), its analogue
for

∼

Invκ(U) does (Theorem 8.2). We fully compute
∼

Invκ(U) in the model companion
VDFEC . Similar results hold for σ -henselian valued difference fields (Remark 8.6).

Theorem F (Theorem 8.4). In VDFEC , for every small infinite cardinal κ , the
monoid

∼

Invκ(U) is well defined, and we have isomorphisms

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼=

≤κ∏
δ(U)

κ̂ × P≤κ

(
CSinv(0(U))

)
,

where δ(U) is a certain cardinal, and
∏

≤κ
δ(U) κ̂ denotes the submonoid of

∏
δ(U) κ̂

consisting of δ(U)-sequences with support of size at most κ .

The paper is structured as follows. In the first two sections we recall some prelim-
inary notions and facts, and deal with some easy observations about orthogonality
of invariant types. In Section 3 we prove Theorem D, while in Section 4 we study
expanded pure short exact sequences of abelian structures, proving Theorem C. The
results from these two sections are then combined in Section 5 to deal with the case of
ordered abelian groups with finitely many definable convex subgroups. In Section 6
we prove Theorem B, and illustrate how it may be combined with Theorem C
to obtain statements such as Theorem A. Section 7 deals with finitely ramified
mixed characteristic henselian valued fields and includes a proof of Theorem E,
and Section 8 deals with the differential case, proving Theorem F.

1. Preliminaries

Notation and conventions. We adopt the conventions and notations of [23, Sec-
tion 1.1] (e.g., we usually (and tacitly) fix a monster model U, and definable means
U-definable), with the following additions and differences. The set of prime natural
numbers is denoted by P. Sorts are denoted by upright letters, as in A,K, k, 0,
families of sorts by calligraphic letters such as C, and SC<ω(A) stands for the disjoint
union of all spaces of types in finitely many variables, each with sort in C. Terms
may contain parameters, as in t (x, d); we write t (x) if they do not.

Domination. We assume familiarity with invariant types, and recall some basic
definitions and facts about domination. See [23, Section 1.2], [21, Section 2.1.2]
and [22] for a more thorough treatment.

If p(x), q(y) ∈ S(U), let Spq(A) be the set of types over A in variables xy
extending (p(x) ↾ A) ∪ (q(y) ↾ A). We say that p(x) ∈ S(U) dominates q(y) ∈

S(U), and write p ≥D q, if there are a small A ⊂
+ U and r ∈ Spq(A) such that

p(x) ∪ r(x, y) ⊢ q(y). We say that p, q ∈ S(U) are domination-equivalent, and
write p ∼D q , if p ≥D q and q ≥D p. We denote the domination-equivalence class of
p by [[p]]. The domination poset

∼

Inv(U) is the quotient of Sinv(U) by ∼D, equipped
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with the partial order induced by ≥D, denoted by the same symbol. In other words,
domination is the semiisolation counterpart to Fs

κ(U)-isolation in the sense of [29,
Chapter IV]; the two notions are distinct, see [24, Example 3.3].

We will be mostly concerned with domination on Sinv(U). When describing
a witness to p ≥D q, we write, e.g., “let r contain ϕ(x, y)” with the meaning
“let r ∈ Spq(A) contain ϕ(x, y), for an A such that p, q ∈ Sinv(U, A)”. By [22,
Lemma 1.14], if p0, p1 ∈ Sinv(U) and p0 ≥D p1, then p0 ⊗ q ≥D p1 ⊗ q. We say
that ⊗ respects ≥D if q0 ≥D q1 implies p ⊗ q0 ≥D p ⊗ q1. If this is the case, the
domination monoid is the expansion of

∼

Inv(U) by the operation induced by ⊗, also
denoted by ⊗. If we say

∼

Inv(U) is well defined (as a partially ordered monoid) we
mean “⊗ respects ≥D”. As

∼

Inv(U) is always well defined as a poset, this should
cause no confusion.

Adding imaginary sorts to U may result in an enlargement of
∼

Inv(U) [22, Corol-
lary 3.8]. Yet, if T eliminates imaginaries, even just geometrically, then the natural
embedding

∼

Inv(U) ↪→
∼

Inv(Ueq) is easily seen to be an isomorphism. By [22,
Proposition 1.23], domination witnessed by algebraicity is compatible with ⊗: if
p, q0, q1 ∈ Sinv(U) and, for i<2, there are realisations ai ⊨qi such that a1 ∈acl(Ua0),
then for all invariant p we have p ⊗q0 ≥D p ⊗q1. In particular, if T has geometric
elimination of imaginaries, then

∼

Inv(Ueq) is well defined if and only if
∼

Inv(U) is.
Frequently, we will equip a family of sorts, say A = {As | s ∈ S}, with the traces

of some ∅-definable relations, and consider it as a standalone structure. We call
A fully embedded if, for each s0, . . . , sn ∈ S, every subset of (As0 × · · · × Asn )(U)

is definable in U if and only if it is definable in A(U). When talking of a fully
embedded A in the abstract, as below, we assume a structure on A to be fixed.

Fact 1.1 [21, Proposition 2.3.31]. Let A be a fully embedded family of sorts, and
let ι : SA<ω(A(U))→ S(U) send a type of A(U) to the unique type of U it entails.
The type p is invariant if and only if ι(p) is. The map ι ↾ Sinv(A(U)) is an injective
⊗-homomorphism inducing an embedding of posets ι̃ :

∼

Inv(A(U)) ↪→∼

Inv(U) which,
if ⊗ respects ≥D in U (hence also in A(U)), is also an embedding of monoids.

Remark 1.2. With the notation and assumptions from Fact 1.1, if p is an invariant
A(U)-type, U1 ≻ U, and A(U)⊆ B ⊆ A(U1), then (p | B) ⊢ (ιp | UB).

Proof. Suppose ϕ(x, w, t) ∈ L(∅), d ∈ U, e ∈ B, and ιp(x) | B ⊢ ϕ(x, d, e). Since
x, t are A-variables, and d ∈ U, full embeddedness yields an LA(A(U))-formula
ψ(x, t) equivalent to ϕ(x, d, t). So ψ(x, e) ∈ p | B and we are done. □

Proposition 1.3. Assume for all p ∈ Sinv(U) there is a tuple τ p of definable functions
with codomains in a fully embedded A such that p ∼D τ

p
∗ p and p⊗q ∼D τ

p
∗ p⊗τ

q
∗ q.

If ⊗ respects ≥D in A(U), then ⊗ respects ≥D in U.
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Proof. We need to show that if q0 ≥D q1 then p ⊗ q0 ≥D p ⊗ q1. By assumption,
p ⊗q0 ∼D τ

p
∗ p ⊗τ

q0
∗ q0 and τ p

∗ p ⊗τ
q1
∗ q1 ∼D p ⊗q1. Since ⊗ respects ≥D in A(U),

we obtain τ p
∗ p ⊗ τ

q0
∗ q0 ≥D τ

p
∗ p ⊗ τ

q1
∗ q1, and we are done. □

Note that a map τ as above induces an inverse of ι̃.

A word on ∗-types. We will deal with types in a small infinite number of variables,
also known in the literature as ∗-types. We define

∼

Invκ(U) as the quotient of S<κ+(U)

by ∼D. Note that, by padding with realised coordinates and permuting variables,
every ∼D-class has a representative with variables indexed by κ . We leave to the
reader easy tasks such as defining the α-th power p(α), for α an ordinal, or such as
convincing themselves that basic statements such as Fact 1.1 generalise.

Nevertheless, it is not clear if well-definedness of
∼

Inv(U) implies well-definedness
of
∼

Invκ(U) (the converse is easy): for instance, at least a priori, one could have a
situation where the finitary

∼

Inv(U) is well defined, but there are a 1-type q0 and a
κ-type q1 such that q0 ≥D q1 but, for some p, we have p ⊗ q0 ̸≥D p ⊗ q1. In the
rest of the paper we will say, e.g., “⊗ respects ≥D” with the understanding that,
whenever ∗-types are involved, this is to be read as “⊗ respects ≥D on ∗-types”.

Question 1.4. If ⊗ respects ≥D on finitary types, does ⊗ respect ≥D on ∗-types?

2. Orthogonality

Definition 2.1. We say that p, q ∈ S(A) are weakly orthogonal, and write p ⊥
w q ,

if p(x)∪ q(y) implies a complete xy-type over A. We say that p, q ∈ Sinv(U) are
orthogonal, and write p ⊥ q , if (p | B)⊥

w (q | B) for every B ⊇ U. Two definable
sets ϕ,ψ are orthogonal if for every n,m ∈ ω, every p ∈ Sϕn (U) and q ∈ Sψm (U),
we have p ⊥

w q . Two families of sorts A, C are orthogonal if every cartesian product
of sorts in A is orthogonal to every cartesian product of sorts in C.

It is easily seen that if p, q ∈ Sinv(U,M) are weakly orthogonal and U1 ≻ U is
|M |

+-saturated and |M |
+-strongly homogeneous, then (p |U1)⊥

w (q |U1). This can
fail for arbitrary B ⊇U, i.e., weak orthogonality is indeed weaker than orthogonality.
While this is folklore (Mennuni thanks E. Hrushovski for pointing this out), we
could not find any example in print, so we record one.

Example 2.2. There is a theory with invariant p, q such that p ⊥
w q but p ̸⊥ q.

Proof. Let L be a two-sorted language with sorts P,O (points, orders) and a relation
symbol x <t y of arity P2

× O. The class K of finite L-structures where, for every
d ∈ O, the relation x <d y is a linear order, is a (strong) amalgamation class. Let T
be the theory of the Fraïssé limit of K . Fix a small M ⊨T , and let p, q be the 1-types
of sort P defined as p(x) = {m <d x <d e | d ∈ O(U),m ∈ M, e ∈ P(U), e > M}

and q(y) := {e <d y | d ∈ O(U), e ∈ P(U)}. By quantifier elimination p, q are
complete, p is M-invariant, and q is ∅-definable, hence ∅-invariant.
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Since M is small, for every d ∈ O(U) it is <d-bounded, hence p ⊥
w q. Let

b be a point of sort O such that M is ≤b-cofinal in U, and set B := Ub. Then
(q(y) | B) ⊢ y ≥b P(U) and (p(x) | B) ⊢ x ≥b P(U), and both x <b y and y <b x
are consistent with (p(x) | B)∪ (q(y) | B), which is therefore not complete. □

Remark 2.3. If p ∈ S(A) is such that p ⊥
w p, then p is realised in dcl(A). If

p, q ∈ Sinv(U) and p ⊥
w q, then p(x)⊗ q(y) = q(y)⊗ p(x): they both coincide

with (the unique completion of) p(x)∪q(y). Two definable sets ϕ,ψ are orthogonal
if and only if every definable subset of ϕm(x)∧ψn(y) can be defined by a finite
disjunction of formulas of the form θ(x) ∧ η(y). If two M-definable sets are
orthogonal, then the definition of orthogonality still holds after replacing U with M .
Adding imaginaries preserves orthogonality, in the following sense. Let A be a
family of sorts, and let Ã be a larger family, consisting of A together with imaginary
sorts obtained as definable quotients of products of elements of A. Let C̃ be obtained
similarly from another family of sorts C. If A and C are orthogonal, then so are Ã
and C̃.

By [22, Proposition 3.13], if p0 ≥D p1 and p0 ⊥
w q , then p1 ⊥

w q . In particular,
if p0 ≥D q and p0 ⊥

w q, then q is realised. As a consequence, ⊥
w induces a well-

defined relation on the domination poset, which we may expand to (
∼

Inv(U),≥D,⊥
w).

By [22, Proposition 2.3.31] the map ι̃ from Fact 1.1 is a homomorphism for both ⊥
w

and ̸⊥
w. We prove the analogous statements for orthogonality.

Proposition 2.4. Let p0, p1, q ∈ Sinv(U). If p0 ⊥ q and p0 ≥D p1, then p1 ⊥ q. In
particular, ⊥ induces a well-defined relation on

∼

Inv(U).

Proof. Fix r witnessing p0 ≥D p1 and let B ⊇ U. Let b ⊨ p1 | B and c ⊨ q | B. By
[22, Lemma 1.13], (p0 | B)∪ r ⊢ (p1 | B). Let a be such that ab ⊨ (p0 | B)∪ r .
Since p0 ⊥ q, we have (p0 | B)⊥

w (q | B), and hence a ⊨ p0 | Bc. Again by [22,
Lemma 1.13] we have (p0 | Bc)∪ r ⊢ (p1 | Bc), therefore b ⊨ p1 | Bc. □

Proposition 2.5. In the setting of Fact 1.1, ι ↾ Sinv
A<ω(A(U)) is a ⊥-homomorphism

and a ̸⊥-homomorphism, and so is the induced map ι̃ :
∼

Inv(A(U)) ↪→∼

Inv(U).

Proof. Let p, q ∈ Sinv
A<ω(A(U)) be orthogonal and let U1 ≻ U be |U|

+-saturated and
|U|

+-strongly homogeneous. We show that, for ϕ(x, y, z) ∈ L(U) and d ∈ U1, if
(ιp(x)⊗ ιq(y)) | U1 ⊢ ϕ(x, y, d) then (ιp | Ud)(x) ∪ (ιq | Ud)(y) ⊢ ϕ(x, y, d).
By full embeddedness, there are χ(x, y, w) ∈ LA(A(U)) and e ∈ A(U1) such that
U1 ⊨ ∀x, y (χ(x, y, e)↔ ϕ(x, y, d)). Because (p | A(U)e)⊥

w (q | A(U)e), there
are θp(x, w), θq(y, w)∈ LA(A(U)) such that (p |A(U)e)⊢ θp(x, e), (q |A(U)e)⊢
θq(y, e), and A(U1) ⊨ ∀x, y ((θp(x, e) ∧ θq(y, e)) → χ(x, y, e)). By invariance
of p, q , we have

πp(x) := {θp(x, e′) | e′
∈ U1, e ≡Ud e′

} ⊆ ιp | U1,

πq(y) := {θq(y, e′) | e′
∈ U1, e ≡Ud e′

} ⊆ ιq | U1.
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So πp, πq are consistent. As Aut(U1/Ud) fixes them, they are equivalent to partial
types σp, σq over Ud . But σp ⊆ ιp |Ud , σq ⊆ ιq |Ud , and σp(x)∪σq(y)⊢ϕ(x, y, d),
proving that ⊥ is preserved.

Suppose there is B with A(U) ⊆ B ⊆ A(U1) such that (p | B) ̸⊥
w (q | B). By

Remark 1.2, this yields (ιp | UB) ̸⊥w (ιq | UB), proving that ̸⊥ is preserved as well.
The statement for ι̃ follows from Proposition 2.4. □

Lemma 2.6. Let p, q0, q1 ∈ S(U), with p ⊥
w q0 and (p(x) ∪ q0(y)) ≥D q1(z),

witnessed by r ∈ Sp⊗q0,q1(M). If (r ↾ x) ⊥
w (r ↾ yz), then q0 ≥D q1, witnessed

by r ↾ yz. Hence, if A, C are orthogonal families of sorts, p ∈ Sinv
A<ω(U), and

q0, q1 ∈ Sinv
C<ω(U), if (p ∪ q0)≥D q1, then q0 ≥D q1.

Proof. Routine, left to the reader. □

Recall that the product
∏

i∈I Pi of a family of posets (Pi ,≤i )i∈I is the cartesian
product of the Pi partially ordered by (pi )i∈I ≤ (qi )i∈I if ∀i ∈ I pi ≤i qi .

Corollary 2.7. Suppose that A, C are orthogonal, fully embedded families of sorts.
Assume that for every p ∈ Sinv(U) there are some pA ∈ Sinv

A<ω(U) and pC ∈ Sinv
C<ω(U)

such that p ∼D pA ∪ pC . Then the map [[p]] 7→ ([[pA]], [[pC]]) is an isomorphism of
posets

∼

Inv(U)→
∼

Inv(A(U))×∼

Inv(C(U)). Moreover, if ⊗ respects ≥D in U (hence
also in A(U), C(U)), then this is also an isomorphism of monoids.

Proof. Fact 1.1 yields embeddings of posets
∼

Inv(A(U)) ↪→∼

Inv(U) and
∼

Inv(C(U)) ↪→∼

Inv(U).

We define a morphism of posets
∼

Inv(A(U)) ×
∼

Inv(C(U)) →
∼

Inv(U) by setting
([[p(x)]], [[q(y)]]) 7→ ([[p(x)∪ q(y)]]). It follows from orthogonality of A and C
that this morphism is well defined: if p′

∼D p and q ′
∼D q, by just taking unions

of domination witnesses we find that p ∪ q ∼D p′
∪ q ′. As this map is injective

by Lemma 2.6, it is enough to show that the natural candidate for its inverse,
[[p]] 7→ ([[pA]], [[pC]]), is well defined and a morphism of posets. Both these
statements follow from the observation that, if (pA ∪ pC)∼D p ≥D q ∼D (qA ∪qC),
then by Lemma 2.6 we must have pA ≥D qA and pC ≥D qC . The “moreover” part
follows from Fact 1.1, and the fact that AC is fully embedded. □

Example 2.8. Let A, C be structures in disjoint languages, T the theory of their
disjoint union, in families of sorts A, C. Then A and C are orthogonal, and invari-
ant types in A are orthogonal to those in C. Therefore,

∼

Inv(U) is isomorphic to
∼

Inv(A(U))×∼Inv(C(U)), and is well defined as a monoid if and only if both factors are.

Orthogonality is preserved by the Morley product. The proof is folklore, and
essentially the same as in the stable case, but we record it here for convenience.

Proposition 2.9. If p0, p1 ∈ Sinv(U) are orthogonal to q, then so is p0 ⊗ p1.
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Proof. Let ab ⊨ p0 ⊗ p1 and c ⊨ q. Because p1 ⊥ q we have c ⊨ q | Ub, and by
definition of ⊗ we have a ⊨ p0 | Ub. Since p0 ⊥ q , this entails c ⊨ q | Uab. □

3. Regular ordered abelian groups

In this section we study the domination monoid in certain theories of (linearly)
ordered abelian groups, henceforth oags. Model-theoretically, the simplest oags
are the (nontrivial) divisible ones. Their theory is o-minimal and their domination
monoid was one of the first ones to be computed [17; 23]. It is isomorphic to the
finite powerset semilattice (P<ω(CSinv(U)),∪,⊆) of the set of invariant convex
subgroups of U, and weakly orthogonal classes of types correspond to disjoint finite
sets. Divisible oags eliminate quantifiers in the language Loag := {+, 0,−, <}. In
this section we compute the domination monoid in the next simplest case.

Definition 3.1. A (nontrivial) oag is discrete if it has a minimum positive element,
and dense otherwise. We view an oag M as a structure in the Presburger language
LPres := {+, 0,−, <, 1,≡n| n ∈ ω} by interpreting +, 0,−, < in the natural way, 1
as the minimum positive element if M is discrete and as 0 otherwise, and ≡n as
congruence modulo nM . An oag is regular if it eliminates quantifiers in LPres.

Fact 3.2 [7; 8; 27; 33; 34]. For an oag M , the following are equivalent.

(1) M is regular.

(2) The only definable convex subgroups of M are {0} and M .

(3) The theory of M has an archimedean model.

(4) For every n > 1, if the interval [a, b] contains at least n elements, then it
contains an element divisible by n.

(5) Every quotient of M by a nontrivial convex subgroup is divisible.

Fact 3.3 [27; 34]. Every discrete regular M is a model of Presburger Arithmetic,
i.e., M ≡ Z. If M, N are dense regular, then M ≡ N if and only if, for each p ∈ P,
either M/pM and N/pN are both infinite or they have the same finite size.

Notation 3.4. For the rest of the section we adopt the following (not entirely
standard) conventions. Let M be an oag and A ⊆ M . We denote by A>0 the set
{a ∈ A | a > 0}, by ⟨A⟩ the group generated by A, and by div(M) the divisible
hull of M . We allow intervals to have endpoints in the divisible hull. In other
words, an interval in M is a set of the form {x ∈ M | a ⊏0 x ⊏1 b}, for suitable
a, b ∈ div(M)∪ {±∞} and {⊏0,⊏1} ⊆ {<,≤}.

A cut (L , R) is given by subsets L , R ⊆ M such that L ≤ R and L ∪ R = M . We
call such a cut realised if L ∩ R ̸=∅, and nonrealised otherwise. The cut (L , R) of
c ∈ N > M is given by L = {m ∈ M | c ≥ m} and R = {m ∈ M | c ≤ m}. The cut of
a type p ∈ S1(M) is the cut of any c ⊨ p. We say that c ∈ N > M fills a cut (L , R)
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if the latter equals the cut of c. For a ∈ M , we denote by a+ the cut (L , R) with
L = {m ∈ M | m ≤ a} and R = {m ∈ M | a < m}, and similarly for a−. Analogous
notions are defined for a ∈ div(M).

Every interval is definable: e.g., (a/n,+∞) is defined by a< n ·x . If (L , R) is a
cut then |L ∩ R| ≤ 1. A type is realised if and only if its cut is. Let Lab := {0,+,−}.

Remark 3.5. By regularity, a 1-type over M ⊨ T is determined by a cut in M and a
choice of cosets modulo each nM (if M/nM is infinite a type may say that the
coset x + nM is not represented in M) consistent with the Lab-theory of M .

Lemma 3.6. If M is a dense regular oag then, for every n > 0, every coset of nM is
dense in M. In particular, given any nonrealised p ∈ S1(M), and any nonrealised
q0 ∈ S1(M ↾ Lab), there is q ∈ S1(M) restricting to q0 and in the same cut as p.

Proof. By density and point (4) of Fact 3.2, every nM is dense; as translations are
homeomorphisms for the order topology, each coset of nM is dense. □

Imaginaries in regular ordered abelian groups. The first step to compute
∼

Inv(Ueq)

is to take care of the reduct to a certain fully embedded family of imaginary sorts,
that suffice for weak elimination of imaginaries by a result of Vicaría [32]. Recall
that T has weak elimination of imaginaries if for every imaginary e there is a real
tuple a such that e ∈ dcleq(a) and a ∈ acleq(e). For p ∈ P and n ≥ 1, define Tpn as
the Lab-theory of

⊕
i∈ω Z/pnZ. The following is well known.

Fact 3.7. (1) Let A be an infinite abelian group. Then A ⊨ Tpn if and only if
pA = {a ∈ A | pn−1a = 0}.

(2) Tpn has quantifier elimination and is totally categorical.

(3) If A ⊨ Tpn , then pA is a model of Tpn−1 , and the induced structure on pA is
that of a pure abelian group.

(4) Tpn has weak elimination of imaginaries.

Proof sketch. For (4), as Tpn is stable, it suffices to show that canonical bases of
types over models are interdefinable with real tuples [13, Proposition 3]. This is an
application of the elementary divisor theorem, and is left to the reader. □

Let Tp∞ be the following multisorted theory:

• For every n > 0 there is a sort Qpn , endowed with a copy of Lab.

• For every n > 0 there is a function symbol ρpn+1 : Qpn+1 → Qpn .

• M ⊨ Tp∞ if and only if, for all n > 0, Qpn (M) ⊨ Tpn and ρpn+1 : Qpn+1(M)→

Qpn (M) is a surjective group homomorphism with kernel pn Qpn+1(M).

Remark 3.8. In an earlier version of this manuscript, we had claimed that Tp∞ has
quantifier elimination. This does not hold. But one may show that it is enough to
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add function symbols λn : Qpn → Qpn+1 for all n, interpreted as the definable group
isomorphism Qpn (A)→ pQpn+1(A) mapping a to pã where ã is any element with
ρpn+1(ã)= a. We thank A. Gehret for having pointed this out to us.

The quantifier elimination result above, which has been mentioned for the sake
of completeness, will not be used below. Let κ̂ be the monoid of cardinals not larger
than κ , with the usual sum and order.

Corollary 3.9. (1) The theory Tp∞ is complete, totally categorical, 1-based, and has
weak elimination of imaginaries.

(2) In Tp∞ , we have
∼

Inv(U) ∼= N and, for each infinite cardinal κ , the monoid
∼

Invκ(U) is (well defined and) isomorphic to κ̂ .

(3) More precisely, if tp(a/U) is M-invariant, then there is a basis b ∈ dcl(Ma)
of the Fp-vector space Qp(dcl(Ua)) over U, and tp(a/U) is domination-equivalent
to tp(b/U), witnessed by tp(ab/M) in both directions, and the isomorphism above
sends its domination-equivalence class to the cardinality of b.

Proof. Statement (1) is immediate from Fact 3.7 and the fact that abelian groups are
1-based. As for (2), each of the sorts Qpn is stable unidimensional, that is, if p ⊥ q
then one of p, q is algebraic, and it follows easily that so is Tp∞ . The conclusion
for finitary types then follows from [22, Corollary 5.19], and the version for ∗-types
is similar.

To prove (3), if b ∈ dcl(Ma) is a basis of Qp(dcl(Ma)) over M , by M-invariance
it is also a basis of Qp(dcl(Ua)) over U. Because in unidimensional theories
the domination-equivalence class of a tuple is determined by its weight [22, Re-
mark 5.12], it suffices to show that the cardinality κ of b equals the weight
w(tp(a/U)). For Tpn this is well known, and as Qpn (U) is a fully embedded model
of Tpn , the result is easily seen to transfer to Tp∞ . □

We now consider a regular oag M . Since it is well known that Presburger arith-
metic eliminates imaginaries (by definable choice), we may assume that M is dense.

We view M as a structure in the language with one sort for the oag itself, endowed
with Loag, one sort Qpn for each prime p and each n > 0, endowed with Lab and
interpreted as the group M/pn M , functions πpn for the quotient map from M
to M/pn M and functions ρpn+1 for the canonical surjections M/pn+1 M → M/pn M .
Moreover, for every prime p we definably expand the language on (Qpn )n>0 so that
the multisorted structure (Qpn (M))n>0 has quantifier elimination.

For every p∈ P, let dp ∈ N∪{∞} be such that (M : pM)= pdp . Set T := Th(M).
The proof of the following lemma is straightforward from Lemma 3.6 and quantifier
elimination for the one-sorted theory of M in LPres, and we leave it to the reader.

Lemma 3.10. The theory T eliminates quantifiers. For U ⊨ T , the following holds.
For every p prime and n>0, the sort Qpn (U) equipped with the natural Lab-structure
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is fully embedded. If dp = ∞, the structure given by (Qpn (U))n>0, together with
the maps ρpn+1 and the natural Lab-structure on each sort, is fully embedded and a
model of Tp∞ . If dp is finite, every sort Qpn (U) is finite. If p, q are distinct primes,
then Qpn (U)n>0 and Qqn (U)n>0 are orthogonal.

Definition 3.11. Denote by Q the family of sorts {Qpn |p∈ P, n>0}. If q = tp(c/U)
is a ∗-type, possibly with coordinates in the sorts in Q, for each p ∈ P, let κp(q)
be the dimension of the Fp-vector space dcl(Uc)/p(dcl(Uc)) over U/pU. Let PT

be the set of primes p such that if M ⊨ T then pM has infinite index, and denote
by

∏
PT
κ̂ the monoid of PT -indexed sequences of cardinals smaller or equal than κ

with pointwise cardinal sum, equipped with the product (partial) order.

Corollary 3.12. The family of sorts Q, equipped with the Lab-structure on each
sort and the maps ρpn+1 , is fully embedded. When viewed as a standalone structure,
⊗ respects ≥D and

∼

Invκ(Q(U))∼=
∏

PT
κ̂ .

Proof. This follows from Lemma 3.10, Corollary 3.9, and Fact 1.1. Compatibility
of ⊗ with ≥D is a consequence of stability, see [22, Propositions 1.21 and 1.25]. □

Fact 3.13 [32, Theorem 5.1]. The theory T has weak elimination of imaginaries.

Remark 3.14. Vicaría [32] proves a more general result, of which Fact 3.13 is a
special case. Note that she adds sorts for quotients of the form M/nM for all n > 0.
As M/nM is definably isomorphic to

∏m
i=1 M/pni

i M , where n =
∏m

i=1 p
ni
i is the

decomposition of n into prime powers, it suffices to add the sorts Qpn .
Observe that, for the above to go through, we need to have in our language

the sorts Qpn even when they are finite. Alternatively, one may dispense with the
finite Qpn by naming enough constants, e.g., by naming a model.

Moving to the right of a convex subgroup.

Assumption 3.15. Until the end of the section, T is the complete LPres-theory of a
regular oag. Imaginary sorts are not in our language until further notice.

Definition 3.16. Let B ⊆ M . A cut (L , R) is right of B if R ∩ B = ∅ and B is
cofinal in L . An element c ∈ N > M is right of B if its cut is, and a type q ∈ S1(M)
is right of B if any of its realisations is. A convex subgroup H of U is called
(A-)invariant if there is an (A-)invariant type to its right.

Remark 3.17. Let p ∈ S1(U) be an M-invariant type. If its cut (L , R) is definable,
then it is M-definable. If not, then exactly one between the cofinality of L and the
coinitiality of R is small, and M contains a set cofinal in L or coinitial in R.

Proof. The case of a definable cut is clear, so let us assume (L , R) is a nondefinable
cut of U. In particular, L ̸= ∅ ̸= R. If L ∩ M is not cofinal in L , there is ℓ ∈ L
with L ∩ M < ℓ, so by regularity of U and saturation there is ℓ0 ∈ L divisible by all
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n ≥ 1 such that L ∩ M < ℓ0 < ℓ. Similarly, if R ∩ M is not coinitial in M there is
r0 ∈ R, which is divisible by all n ≥ 1, such that r0 < R ∩ M . By Remark 3.5 it
follows that tp(ℓ0/M)= tp(r0/M), showing that (L , R) is not M-invariant. □

In particular, in a regular oag a nontrivial convex subgroup H of U is invariant if
and only if the cofinality of H or the coinitiality of (U \ H)>0 is small, while the
trivial subgroup {0} is invariant if and only if U is dense.

Lemma 3.18. In the theory of a regular oag, suppose that p ∈ Sinv
1 (U) and f is a

definable function such that f∗ p is not realised. Then p ∼D f∗ p.

Proof. Clearly p ≥D f∗ p. By [7, Corollary 1.10], f is piecewise affine. As f∗ p is
not realised, f cannot be constant at p, so it is invertible at p and

f∗ p ≥D f −1
∗
( f∗ p)= p. □

Proposition 3.19. In Presburger arithmetic, every invariant 1-type is domination-
equivalent to a type right of an invariant convex subgroup.

Proof. By Lemma 3.18 it suffices to show that, for every nonrealised p ∈ Sinv
1 (U)

there is a definable f such that f∗ p is right of an invariant convex subgroup. By
Fact 3.2, U/Z is divisible, and it is easy to see that U/Z inherits saturation and
strong homogeneity from U. The conclusion follows by lifting the analogous result
[17, Corollary 13.11] (see also [23, Proposition 4.8]) from U/Z. □

In the rest of the subsection we generalise the above to the regular case.

Assumption 3.20. Until the end of the subsection, M denotes a dense regular oag,
and U a monster model of T := Th(M).

Proposition 3.21. Let b ∈ U \ M be divisible by every n > 1 and let B := ⟨Mb⟩ =

M + Qb. If M>0 is coinitial in B>0, then M ≺ B ≺ U.

Proof. The inclusion M ⊆ B is pure, i.e., for every n > 1 we have nB ∩ M = nM .
Moreover, if c = a + γ b, with a ∈ M and γ ∈ Q, then for every n we clearly have
c − a ∈ nB, and hence B/nB may be naturally identified with M/nM .

Because M is dense and M>0 is coinitial in B>0, it follows that B is as well dense.
Let c < d ∈ B and n > 1. By assumption, (0, d − c) intersects M , so it contains an
interval I of M , and hence represents all elements of M/nM by Lemma 3.6. These
can be identified with the elements of B/nB, as observed above, so there is e ∈ I
such that c + e ∈ nB. Clearly, c + e ∈ (c, d), and hence B is regular by Fact 3.2.

By Fact 3.3 and the identification of M/nM with B/nB, we obtain B ≡ M .
Since M is pure in B, it is an LPres-substructure of B, and the conclusion follows
by quantifier elimination in LPres. □

Recall that an extension A < B of oags is an i-extension if there is no b ∈ B>0

such that the set {a ∈ A | a < b} is closed under sum.
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Lemma 3.22. Let H < M < N , with M dense regular and H convex. The set of
elements of N right of H is closed under sum. In particular, N is an i-extension if
and only if H 7→ H ∩ M is a bijection between the convex subgroups of N and M.

Proof. If H = M , the statement is trivial. If H = {0}, let 0< c, d < M>0 and pick
a ∈ M>0. By density, there is b ∈ M with 0< b< a, and since b and a −b are both
in M>0 we conclude c + d < b + a − b = a. If H is proper nontrivial, by Fact 3.2
the quotient M/H is divisible, and the conclusion follows from the previous case
applied to M/H as a subgroup of the quotient of N by the convex hull of H . □

Proposition 3.23. Every M ⊨ T has a maximal elementary i-extension.

Proof. This is easy, see, e.g., [21, Proposition 4.2.17]. □

Proposition 3.24. Suppose M ⊨ T has no proper elementary i-extension and let
p ∈ S1(M) be nonrealised. Then there are a ∈ M and β ∈ Z \ {0} such that, if
f (t)= a +βt , then the pushforward f∗ p is right of a convex subgroup.

Proof. Let b ⊨ p, and suppose first that b is divisible by every n. Consider
B := ⟨Mb⟩ = M +Qb. If there are a′

∈ M and β ′
∈ Q such that 0< a′

+β ′b<M>0,
by Lemma 3.22 multiplying by the denominator of β ′ yields a positive element
smaller than M>0, so we obtain the conclusion with the convex subgroup {0}. If
instead there is no such a′

+β ′b, then M>0 is coinitial in B>0, and by Proposition 3.21
B ≻ M . By maximality of M , there must be convex subgroups H0 ⊊ H1 of B such
that H0 ∩ M = H1 ∩ M . Hence any positive a +βb ∈ H1 \ H0 is right of H0 ∩ M .
We conclude again by clearing the denominator of β and using Lemma 3.22.

This shows the conclusion when b is divisible by all n. In the general case, by
Lemma 3.6, there is c ∈U with the same cut in M as b which is divisible by every n.
As we just proved, there is f (t) := a + βt , with β ∈ Z and a ∈ M , such that the
cut of f (c) in M is that of a convex subgroup. Because f (t) sends intervals to
intervals, it sends cuts to cuts, and hence the cut of f (b) equals that of f (c). □

Corollary 3.25. For every nonrealised p(x)∈ Sinv
1 (U) there is a definable function f

such that ( f∗ p)(y) is right of an invariant convex subgroup, and domination-
equivalent to p, witnessed by any small type containing y = f (x).

Proof. If p is M-invariant, up to enlarging M we may assume that it has no
proper elementary i-extension. Let f (t) be an M-definable function given by
Proposition 3.24 applied to p ↾ M . Then f∗ p is M-invariant, and its cut is either
the one to the left of ( f∗ p ↾ M)(U) or the one to its right, which are both cuts right
of convex subgroups of U by Lemma 3.22. Now apply Lemma 3.18. □

Computing the domination monoid. By Fact 3.13, regular oags weakly eliminate
imaginaries after adding the sorts Qpn . As already remarked, this implies that passing
to T eq does not affect the poset

∼

Inv(U), nor its well-definedness as a monoid. Hence,
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we will conflate the two settings, and refer to our theory in this language as T eq,
reserving T for the 1-sorted LPres-theory of a regular oag.

Assumption 3.26. Until the end of the section, we work in T eq.

Lemma 3.27. Let H0 ⊊ H1 be convex subgroups of M ⊨ T and, for i < 2, let
qi (x i ) ∈ S1(M) be right of Hi . Suppose that there is no prime p ∈ P such that
both qi (x i ) prove that x i is in a new coset modulo some pℓi Then q0 ⊥

w q1.

Proof. By Lemma 3.22 the cut of every k0 x0
+k1x1 is determined by q0(x0)∪q1(x1),

and we conclude by assumption and quantifier elimination. □

Proposition 3.28. Suppose that qH (x) ∈ Sinv
1 (U) is right of the convex subgroup H

and prescribes realised cosets modulo every n for x. For an invariant ∗-type q with
all coordinates in the home sort, the following are equivalent.

(1) For every (equivalently, some) b ⊨ q , no type right of H is realised in ⟨Ub⟩.

(2) qH ⊥
w q.

(3) qH commutes with q.

(4) qH ⊥ q.

Moreover, if q ′ is a ∗-type with no coordinates in the home sort, then qH ⊥ q ′.

Proof. To show (1)⇒ (2), consider qH (x)∪ q(y). By assumption on qH we only
need to deal with inequalities of the form kx +

∑
i<|y|

ki yi + d ≥ 0, but (1) gives
immediately that the cut of kx in ⟨Ub⟩ is determined. If (1) fails, as witnessed
by f (b), say, then qH (x)⊗q(y) and q(y)⊗qH (x) disagree on the formula f (y)< x ,
proving (3)⇒ (1), and (2)⇒ (3) holds for every type in every theory.

We prove (2) ⇒ (4), the converse being trivial. Suppose that B ⊇ U is such
that (qH | B) ̸⊥

w (q | B). The cosets modulo every n of a realisation of qH are all
realised in U, so there must be some inequality of the form kx +

∑
i<|y|

ki yi +d ≥ 0,
with ki ∈ Z and d ∈ ⟨B⟩, that is not decided. Hence, if (4) fails, it fails for a 1-type q̃ ,
namely the pushforward of q under the map y 7→

∑
i<|y|

ki yi . By Corollary 3.25
and Proposition 2.4, we may assume q̃ is right of a convex subgroup. Therefore
qH (x) and q̃(z) are weakly orthogonal by (2) and [22, Proposition 3.13], to the
right of distinct (by weak orthogonality) convex subgroups, but the cut in ⟨B⟩ of
kx + z is not determined by (qH | B)(x)∪ (q̃ | B)(z). This contradicts Lemma 3.22.

Now we consider the “moreover” part. By Proposition 2.4 we may replace q ′

with any domination-equivalent type, so we may assume, using Corollary 3.12
and Proposition 2.5, that q ′(z) is the type of an independent tuple, with zi ∈ Qpi .
Let H ′ be any invariant convex subgroup different from H , let pi be the 1-type
right of H ′ in a new coset modulo pi and congruent to 0 modulo every other prime,
and let q be the tensor product, in any order, of the pi . Clearly q ≥D q ′ and, by
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construction, if b ⊨ q then no type right of H is realised in ⟨Ub⟩, so we conclude
by Proposition 2.4. □

Definition 3.29. Let q be an invariant global ∗-type, and c ⊨ q. Let H(q) be the
set of cuts of convex subgroups of U filled in ⟨Uc⟩.

Theorem 3.30. If p, q are invariant ∗-types, then p≥D q if and only if H(p)⊇H(q)
and ∀p ∈ P κp(p)≥ κp(q). Hence, [[q]] is determined by H(q) and p 7→ κp(q).

Proof. Let c ⊨ q, and write c = c0c1, with c0 a tuple in the home sort and c1 a
tuple from the sorts Qpn . By enlarging c1 with at most |c| points of dcl(Uc) if
necessary, we may assume that it contains bases of all Fp-vector spaces Qp(dcl(Uc))
over U. Observe that this is harmless domination-wise, and that it does not impact
compatibility of ⊗ with ≥D by [22, Proposition 1.23].

Index on a suitable cardinal κ , bounded by the cardinality of c0, the (necessarily
invariant) convex subgroups H j whose cuts are filled in ⟨Uc0

⟩. Note that, by
Corollary 3.25, we have κ ̸= 0 unless c0 is realised.

For j < κ , let q j (y j ) be the type right of H j divisible by every nonzero integer.
By Lemma 3.27 and Proposition 3.28, the q j are orthogonal, and it follows from
Proposition 2.9 and compactness that their union is a complete type; call it qH(y).
Let qQ(z) := tp(c1/U). By Propositions 3.28 and 2.9, qH ⊥ qQ. We prove that q(x)
is domination-equivalent to q ′(yz) := qH(y)⊗ qQ(z). If c0

∈ U, equivalently if qH

is realised, this is trivial, so we assume this is not the case.
To show q ′(yz) ≥D q(x), let b ∈ dcl(Uc) be maximal amongst the tuples with

each bk in the cut of an invariant convex subgroup, and such that if k < k ′ then
⟨bk⟩>0 < ⟨bk′⟩>0. A maximal such b exists because the size of b is at most that
of c0, by looking at Q-linear dimension over U in the divisible hull. Since c0 /∈ U,
by Corollary 3.25 there is a point of dcl(Uc) in the cut of an invariant convex
subgroup, and hence b is nonempty. By [7, Corollary 1.10] definable functions are
piecewise affine and, by clearing denominators using Lemma 3.22, we may assume
that b ∈ ⟨Uc0

⟩.
Write bk = fk(c0), for suitable affine functions fk . Let M ≺

+ U be large enough
to contain the parameters of the fk , such that q and q ′ are M-invariant, and such that
M has no proper elementary i-extension. Let r ∈ Sqq ′(M) contain the following.

(1) For each k, by choice of q ′ there is j < κ such that y j is in the same cut as bk

according to q ′. If the cut of bk has small cofinality on the right, put in r the formula
fk(x) > y j ; if it has small cofinality on the left, put in r the formula fk(x) < y j .

(2) For each j < |c1
|, the formula x|c0|+ j = z j .

By Lemma 3.10, point (2) above, the fact that c1 contains bases of all Fp-vector
spaces Qp(dcl(Uc)) over U, and Corollary 3.9, to prove q ′

≥D q it suffices to show
that q ′

∪ r decides the cut in U of every
∑

i δi xi . We first prove a special case.
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Claim. q ′
∪ r entails the quantifier-free {+, 0,−, <}-type of the fk(x) over U.

Proof of Claim. It is enough to show that the cut of every
∑

k βk fk(x) in U is decided,
where only finitely many βk ∈ Z are nonzero. By choice of r and Remark 3.17,
q ′

∪r determines the cut of each fk(x) over U. Moreover, r contains the information
that ⟨ fk(x)⟩>0 < ⟨ fk′(x)⟩>0 for k < k ′. By this, the fact that the fk(x) are right
of convex subgroups, and Lemma 3.22, the cut of

∑
k βk fk(x) must be that of

sign(βk) fk(x), with k the largest such that βk ̸= 0. □

As M has no proper elementary i-extension, given a term
∑

i δi xi , by Propo-
sition 3.24 we can compose with an M-definable injective affine function and
reduce to a term

∑
i γi xi + d, with d ∈ M and γi ∈ Z, with cut in M right of a

convex subgroup. As tp
(∑

i γi xi + d/U
)

is M-invariant,
∑

i γi xi + d is in the cut
of an M-invariant convex subgroup of U. By maximality of b, there must be k
and positive integers n,m such that nbk ≤ m

(∑
i γi xi + d

)
≤ (n + 1)bk . Thus

r ⊢ n fk(x)≤ m
(∑

i γi xi + d
)
≤ (n + 1) fk(x), and by the Claim q ′

≥D q .
Similar arguments show q ≥D q ′ and that, if H(p)⊇H(q) and κp(p)≥ κp(q) for

all p ∈ P, and p′ is defined analogously to q ′, then p′
≥D q ′. That H(p)⊇ H(q) is

necessary to have p ≥D q follows from Proposition 3.28 and [22, Proposition 3.13].
As ∀p ∈ P κp(p)≥ κp(q), if for some p ∈ P we have κp(q) > κp(p) then we easily
find a type in the quotient sorts dominated by q but not by p, a contradiction. □

Proposition 3.31. For all invariant ∗-types p, q and p ∈ P, we have

H(p ⊗ q)= H(p)∪H(q) and κp(p ⊗ q)= κp(p)+ κp(q).

Proof. By Proposition 3.28, H(q) is precisely the set of convex invariant sub-
groups H such that q ̸⊥ qH . By Proposition 2.9, we therefore have the first
statement. The second one is an easy consequence of the definition of ⊗. □

Note that if q ∈ Sinv
<κ+(U) then |H(q)| and each κp(q) are at most κ .

Definition 3.32. We denote by CSinv(U) the set of invariant convex subgroups of U,
and by P≤κ(CSinv(U)) the monoid of its subsets of size at most κ with union,
partially ordered by inclusion.

Corollary 3.33 (Theorem D). For T the theory of a regular oag and κ a small infi-
nite cardinal,

∼

Invκ(Ueq) is well defined, and
∼

Invκ(Ueq)∼= P≤κ(CSinv(U))×
∏

PT
κ̂ .

Proof. Compatibility of ⊗ and ≥D follows from Theorem 3.30 and Proposition 3.31.
The same results show that the map [[p]] to (H(p), p 7→ κp(p)) is well defined, an
embedding of posets, and a morphism of monoids. Surjectivity is easily checked. □

In general, the embedding
∼

Invκ(U) ↪→
∼

Invκ(Ueq) is not surjective, although its
image may be easily computed. We state the result of this computation, which we
leave to the reader, and of the analogous ones for finitary types. Denote by

∏bdd
PT
ω

the submonoid of
∏

PT
ω̂ consisting of bounded sequences of natural numbers.
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Corollary 3.34. The monoids
∼

Invκ(U),
∼

Inv(U),
∼

Inv(Ueq) are all well defined, and

∼

Invκ(U)∼=

(
P≤κ(CSinv(U))×

∏
PT

κ̂

)
\ {(a, b) | a = ∅, b ̸= 0},

∼

Inv(Ueq)∼=

(
P<ω(CSinv(U))×

bdd∏
PT

ω

)
\ {(a, b) | a = ∅, supp(b) infinite},

∼

Inv(U)∼=

(
P<ω(CSinv(U))×

bdd∏
PT

ω

)
\ {(a, b) | a = ∅, b ̸= 0}.

4. Pure short exact sequences

We study pure short exact sequences of abelian structures 0 → A ι
−→ B ν

−→

C → 0, where A and C may be equipped with extra structure. We view them as
multisorted structures, and use the relative quantifier elimination results from [2] to
describe the domination poset in terms of A and C. A decomposition of the form
∼

Inv(A(U))×∼

Inv(C(U)) only holds in special cases; in general we will need to look
at ∗-types and introduce a family of imaginaries of A which depends on B.

We refer the reader to [2, Section 4.5] for definitions. We adopt almost identical
notations, with the following differences. We write A for an abelian structure and L
for its language. We denote by F a fundamental family of pp formulas for B. The
corresponding family of quotient sorts of A is denoted by AF . An A-sort is simply
a sort in A. We write, e.g., t (x) for a tuple of terms, 0 for a tuple of zeroes of the
appropriate length, etc. Tuples of the same length may be added, and tuples of
appropriate lengths used as arguments, as in f (t (x, 0)− d)= 0.

Example 4.1. In the simplest abelian structures, namely abelian groups, we have
that F := {∃y x = n · y | n ∈ ω} is always fundamental. In an arbitrary abelian
structure, one may always resort to taking as F the trivially fundamental set of all
pp formulas.

Remark 4.2. In an L-abelian structure, each L-term t (x) is built from homomor-
phisms of abelian groups by taking Z-linear combinations and compositions. Hence,
t (x) is itself a homomorphism of abelian groups.

A short exact sequence of abelian groups 0 → A → B → C → 0 is pure if and
only if, for each n, we have nB ∩ A = nA. This holds, e.g., if C is torsion-free, and
in particular in the two examples below. We may take as F that of Example 4.1.

Example 4.3. Suppose that the expansion L∗
ac endows A, C with the structure of

oags. Note that one then recovers, definably, an oag structure on B, induced by
declaring that ι(A) is convex. Because of this, and of the fact that the kernel of
a morphism of oags is convex, this setting is equivalent to that of a short exact
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sequence of oags. This will be used in Section 5, with B an oag and A a suitably
chosen convex subgroup. The sorts Aϕ coincide with the quotients A/nA.

Example 4.4. In the valued field context (Section 6) we will deal with the sequence
1 → k×

→ RV \ {0} → 0 → 0, which is pure since 0 is torsion-free. The extra
structure in L∗

ac is induced by the field structure on k and the order on 0. The
sorts Aϕ are in this case k×/(k×)n .

We may and will assume that, for each variable x from an A-sort As , the formula
ϕ := x = 0 is in F , and identify As with Aϕ = As/0As . In other words, A ⊆ AF .

Remark 4.5. As pp formulas commute with cartesian products, every split short
exact sequence is pure. Since purity is first-order, a short exact sequence is pure in
case some elementarily equivalent structure splits. Note that, even if a short exact
sequence splits, it need not do so definably, and that the definition of expanded
pure short exact sequence does not allow to add splitting maps. If we add one, then
matters simplify considerably. For example, if in L∗

ac there is no symbol involving A
and C jointly, a splitting map makes the short exact sequence interdefinable with the
disjoint union of A and C, where

∼

Inv(U) decomposes as a product (Example 2.8).

Fact 4.6 [2, Remark 4.21]. Let ϕ(xa, xb, xc) be an L∗

abcq-formula with xa, xb, xc

tuples of variables from the AF -sorts, B-sorts and C-sorts respectively. There are
an L∗

acq-formulaψ and special terms σi such that, in the L∗

abcq-theory of all expanded
pure short exact sequences, we have ϕ(xa, xb, xc)↔ψ(xa, σ1(xb), . . . , σm(xb), xc).

Corollary 4.7. The L∗
acq-reduct is fully embedded. In particular, A and C are

orthogonal if and only if they are such in the L∗
acq-reduct.

We show that expanded pure short exact sequences are controlled, domination-
wise, by their L∗

acq-part, provided we pass to ∗-types. This is a necessity since, in
general, there are finite tuples from B that cannot be domination-equivalent to any
finitary tuple from the L∗

acq-reduct; see Remark 4.17.

Proposition 4.8. In an expanded pure short exact sequence of L-abelian structures,
let F be a fundamental family for B, and let κ ≥ |L| be a small cardinal. There is a
family of κ-tuples of definable functions {τ p

| p ∈ Sκ(U)} such that:

(1) Each function in τ p is defined at realisations of p.

(2) Each τ p is partitioned as (ρ p, ν p), where each function in ρ p is either the
identity on some Aϕ , or has domain a cartesian product of B-sorts and codomain
one of the Aϕ , and each function in ν p is either the identity on a C-sort, or one of
the νs .

(3) For each p ∈ Sκ(U) we have p ∼D τ
p
∗ p.

(4) For each p0, p1 ∈ Sinv
κ (U) we have p0 ⊗ p1 ∼D τ

p0
∗ p0 ⊗ τ

p1
∗ p1.
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Proof. Let abc ⊨ p(xa, xb, xc), in the notation of Fact 4.6. Define the tuples ν p

and ρ p as follows. For each coordinate in xc of sort Cs , put in ν p the corresponding
identity map on Cs . For each coordinate in xb of sort Bs , put in ν p the corresponding
map νs : Bs → Cs . For each coordinate in xa of sort Aϕ , put in ρ p the corresponding
identity map on Aϕ . For each finite tuple of Lb-terms t (xb, w) and ϕ ∈ F , if there
is d ∈ U such that p ⊢ t (xb, 0)− d ∈ ν−1(ϕ(C)), choose such a d, call it dp,ϕ,t,xb ,
and put in ρ p the map ρϕ(t (xb, 0)− dp,ϕ,t,xb).

Let τ p be the concatenation of ρ p and ν p, let q(y) := τ p
∗ p(x), let Dp be the set of

all dp,ϕ,t,xb as above, and let r(x, y)∈ Spq(Dp) contain y = τ(x). Clearly p∪r ⊢ q .
By Fact 4.6, to show q ∪ r ⊢ p it suffices to prove that q ∪ r recovers the formulas
ϕ(xa, da, σ1(xb, db), . . . , σm(xb, db), xc, dc) implied by p, where the σi are special
terms, ϕ is an L∗

acq-formula, and the d• are tuples of parameters from the appropriate
sorts of U. Let us say that q ∪ r has access to the term (with parameters) σ(xb, d)
if for some U-definable function f we have q(y)∪ r(x, y) ⊢ f (y)= σ(xb, d). We
show that q ∪r has access to all special terms with parameters, and hence q ∪r ⊢ p.

By construction, q ∪ r has access to each νs(xb
i ). Because ν is a homomorphism

of L-structures, q ∪ r also has access to each ν(t0(xb, d)), for t0 an Lb-term. In
particular, q ∪r decides whether a given tuple t (xb, d) of Lb-terms with parameters
is in ν−1(ϕ(C)) or not. If not, then q ∪ r entails ρϕ(t (xb, d))= 0.

If instead q ∪ r ⊢ t (xb, d) ∈ ν−1(ϕ(C)), by Remark 4.2 we have

t (xb, d)= t (xb, 0)+ t (0, d),

and by construction and the fact that p is consistent with q ∪ r we have that p
entails t (xb, 0)−dp,ϕ,t,xb ∈ ν−1(ϕ(C)). As this formula is over Dp, it is in r . Hence

q ∪ r ⊢ t (0, d)+ dp,ϕ,t,xb = t (xb, 0)+ t (0, d)− (t (xb, 0)− dp,ϕ,t,xb) ∈ ν−1(ϕ(C)).

But t (0, d)+dp,ϕ,t,xb ∈ U, and ρϕ ↾ ν−1(ϕ(C)) is a homomorphism of L-structures.
Because of this, and because q ∪ r has access to ρϕ(t (xb, 0)− dp,ϕ,t,xb) by con-
struction, it also has access to

ρϕ(t (xb, 0)− dp,ϕ,t,xb)+ ρϕ(t (0, d)+ dp,ϕ,t,xb)= ρϕ(t (xb, d)).

We are left to prove (4). By definition of ⊗, if

p0(x)⊗ p1(y) ⊢ t (xb, yb, d) ∈ ν−1(ϕ(C)),

then there is b̃ ∈ U with p0(x) ⊢ t (xb, b̃, d) ∈ ν−1(ϕ(C)). Hence, by arguing as
above, p0 ⊢ t (xb, 0, 0)− dp0,ϕ,t,xb ∈ ν−1(ϕ(C)). So p0(x)⊗ p1(y) entails

ν−1(ϕ(C))∋ t (xb, yb, d)−t (xb, 0, 0)+dp0,ϕ,t,xb = t (0, yb, 0)+t (0, 0, d)+dp0,ϕ,t,xb
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and because t (0, 0, d)+ dp0,ϕ,t ∈ U, by construction we have

p1(y) ⊢ t (0, yb, 0)− dp1,ϕ,t,yb ∈ ν−1(ϕ(C)).

Similar arguments show that, in order to have access to ρϕ(t (xb, yb, d)), it is enough
to have access to ρϕ(t (xb, 0, 0)−dp0,ϕ,t,xb) together with ρϕ(t (0, yb, 0)−dp1,ϕ,t,yb),
and the conclusion follows. □

Corollary 4.9 (Theorem C). Suppose that U is an expanded pure short exact
sequence of L-abelian structures and κ ≥ |L| is a small cardinal.

(1) There is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(U ↾ L∗
acq).

(2) If ⊗ respects ≥D in U ↾ L∗
acq, then the same is true in U, and the above is also

an isomorphism of monoids.

(3) If A and C are orthogonal, then there is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(AF (U))×
∼

Invκ(C(U)). Moreover, if ⊗ respects ≥D in both AF (U) and C(U),
then the same is true in U, and the above is also an isomorphism of monoids.

Proof. By Fact 1.1 we have an embedding of posets
∼

Invκ(U ↾ L∗
acq) ↪→

∼

Invκ(U). This
embedding is surjective by Proposition 4.8, its inverse being induced by the maps τ ,
hence an isomorphism. For (2), by Proposition 4.8 we may apply Proposition 1.3
to the family of sorts AF C. We conclude by combining (2) with Corollary 2.7. □

Remark 4.10. Variants of Fact 4.6 for settings such as abelian groups augmented
by an absorbing element are presented in [2, Section 4]. These yield variants of
Proposition 4.8 and its consequences, with no significant difference in the proofs.

Specialised to abelian groups, the results above enjoy a form of local finiteness.

Notation 4.11. For the rest of the section, L is just the language of abelian groups,
and F the family of formulas {∃y x = n · y | n ∈ ω}. We will write ρn : B → A/nA
in place of ρϕ : B → Aϕ , and identify A with A/0A for notational convenience.

Definition 4.12. A ∗-type p(x) is locally finitary if x has finitely many coordinates
of each sort.

Proposition 4.13. Consider a pure short exact sequence of abelian groups equipped
with an L∗

abcq-structure. Let p(x) be a locally finitary global type. Then, in Proposi-
tion 4.8, we may choose τ p in such a way that τ p

∗ p is locally finitary.

Proof. Write p(x)= p(xa, xb, xc) as in the proof of Proposition 4.8, and recall that
an L-term is just a Z-linear combination. For each n ∈ ω, consider the subgroup

K p
n := {k ∈ Z|xb

|
| ∃d ∈ B(U) p ⊢ k · xb

− d ∈ ν−1(nC)} of Z|xb
|,

say generated by kn
0 , . . . , kn

m(n). Choose dp,n,i,xb witnessing kn
i ∈ K p

n . Proceed as
in Proposition 4.8 but, instead of putting in ρ p each ρϕ(t (xb, 0)− dp,ϕ,t,xb), use
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a locally finite ρ p extending (ρn(kn
i · xb

− dp,n,i,xb))n∈ω,i≤m(n). Besides this, τ p

contains a finite tuple of identity maps and finitely many ν, therefore τ p
∗ p is locally

finitary.
The proof of Proposition 4.8 now goes through, with a pair of modifications

which we now sketch. The first one concerns proving access to each ρn(t (xb, d)).
Fix n and t (xb, d). Without loss of generality we have that d is a singleton and
t (xb, d)= ℓ · xb

− d . If p ⊢ t (xb, d) ∈ ν−1(nC), by definition we have ℓ ∈ K p
n , so

we may write ℓ=
∑

i≤m(n) ei kn
i for suitable ei ∈ Z. This allows us to rewrite

t (xb, d)= ℓ · xb
− d =

( ∑
i≤m(n)

ei kn
i

)
· xb

− d

=

∑
i≤m(n)

ei (kn
i · xb

− dp,n,i,xb)+
∑

i≤m(n)

ei dp,n,i,xb − d.

Since ℓ·xb
−d and all kn

i ·xb
−dp,n,i,xb are in ν−1(nC), so is

∑
i≤m(n) ei dp,n,i,xb −d .

Since ρn ↾ ν−1(nC) is a homomorphism and
∑

i≤m(n) ei dp,n,i,xb − d ∈ U, we have
that q ∪ r has access to ρn(t (xb, d)).

Finally, proving (4) of Proposition 4.8 boils down to showing K p⊗q
n = K p

n × K q
n ,

where we identify, e.g., K p
n with K p

n ×{0}. Since by construction K p
n ∩ K q

n = {0},
one only needs to show generation. We leave the easy proof to the reader. □

Remark 4.14. In the case of abelian groups, we therefore have an analogue of
Corollary 4.9 where κ-types are replaced by locally finitary ω-types.

Corollary 4.15. Let U be an expanded pure short exact sequences of abelian groups
where, for all n > 0, the sort A/nA is finite. If A and C are orthogonal, there is
an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(A(U))×
∼

Inv(C(U)). If ⊗ respects ≥D in A
and C, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. Use Proposition 4.13 and observe that for each p we may replace τ p by its
composition with the projection on the nonrealised coordinates of τ p

∗ p and still have
the same results. If A/nA is finite for all n > 0 and p is finitary, this yields another
finitary type. The conclusion now follows as in the proof of Corollary 4.9. □

Remark 4.16. The A/n A are in general necessary to obtain a product decompo-
sition. For example, let A be a regular oag divisible by all p ∈ P \ {2}, and with
[A : 2A] infinite, and let C be a nontrivial divisible oag. The expanded short exact
sequence 0 → A → B → C → 0 induces a group ordering on B (Example 4.3). Let
p(y) concentrate on B, at +∞, in a new coset modulo 2B. For every nonrealised
1-type q of an element of sort A divisible by all n, we have p ⊥

w q. It follows
that p cannot dominate any nonrealised p′ in a cartesian power of A: such a p′

must have a coordinate in a nonrealised cut, and hence dominate a type q as above.
Hence, if we had a product decomposition as in Corollary 4.15, then p would be
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domination-equivalent to a type in a cartesian power of C. This is a contradiction,
because C is orthogonal to (A/nA)n<ω, while p dominates a nonrealised type
in A/2A.

Remark 4.17. Analogously, ω-types are a necessity: let A be a regular oag with
each [A : nA] infinite, C a nontrivial divisible oag, and take as p ∈ SB(U) the type
at +∞ in a new coset of each nA. For each n > 1, there is a nonrealised 1-type qn

of sort A/nA such that p ≥D qn . One shows that the only way for a finitary type in
((A/nA)n∈ω,C) to dominate all of the qn is to have a nonrealised coordinate in the
sort A, hence to dominate a type orthogonal to p.

5. Finitely many definable convex subgroups

Using the previous two sections we may describe
∼

Inv(U) in oags with finitely many
Loag-definable convex subgroups. The arguments still work if the subgroups are
defined “by fiat” using additional predicates, so we work in this setting.

Definition 5.1. Let G be an oag with unary predicates H0, . . . , Hs , each defining
a convex subgroup, with 0 = H0 ⊊ H1 ⊊ . . . ⊊ Hs−1 ⊊ Hs = G, and such that
G has no other definable convex subgroup. Denote by T the union of the set of
prime powers with {0} and work with the following sorts. For 0 ≤ i < s, a sort
Si for G/Hi , carrying Loag together with predicates for H j/Hi for i < j < s. For
1 ≤ i ≤ s and n ∈ T, sorts Qi,n for Hi/(nHi + Hi−1), carrying Lab if n ̸= 0 and Loag

if n = 0. We denote by Qi the family of sorts (Qi,n)n∈T. We include the canonical
projection and inclusion maps together with, for each n ∈ T and 1 ≤ i ≤ s − 1, the
maps ρn,i : Si−1 → Qi,n as in Notation 4.11, relative to the short exact sequence
0 → Qi,0 → Si−1 → Si → 0.

For 1 ≤ i < s the short exact sequence 0 → Hi/Hi−1 → G/Hi−1 → G/Hi → 0
is pure and, as pointed out in Example 4.4, interdefinable with an expanded pure
short exact sequence of abelian groups.

Lemma 5.2. Every Hi+1/Hi is regular. For each i ̸= j , the sort Si is fully embedded
as an oag, the family Qi (with Loag-structure on Qi,0, Lab-structure on other sorts,
and projection maps) is fully embedded, orthogonal to Si , and orthogonal to Q j .

Proof. Apply Fact 3.2 to Hi+1/Hi , whose only definable convex subgroups are
itself and {0}. The rest is by Corollary 4.7, Remark 2.3, and induction on i . □

Theorem 5.3. Let G be as in Definition 5.1, and κ a small infinite cardinal. Then
⊗ respects ≥D, and

∼

Invκ(Ueq)∼=
∏s

i=1
∼

Invκ(Qi (U)).

Proof. By the previous lemma, Corollaries 4.9, 3.33 and induction we get that
⊗ respects ≥D, and

∼

Invκ(U)∼=
∏s

i=1
∼

Invκ(Qi (U)).
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If the Hi are Loag-definable,2 a result of Vicaría [32, Theorem 5.1] yields weak
elimination of imaginaries in the language with sorts Si/nSi for 0≤ i< s and n ∈T,3

and one may check that her proof goes through also in the case where the Hi are
explicitly named by predicates, i.e., not necessarily Loag-definable.

After adding the sorts from Vicaría’s result, for 1≤ i ≤ s the short exact sequences
0 → Qi,n → Si−1/nSi−1 → Si/nSi → 0 are fully embedded, and Corollary 4.9 may
thus be applied to these. From this, we obtain an embedding

∏s
i=1

∼

Invκ(Qi (U)) ↪→
∼

Invκ(Ueq). As Qs,n = Ss−1/nSs−1, by induction on i one obtains surjectivity of this
embedding. We leave to the reader to check this, along with the proof of transfer
of compatibility of ⊗ and ≥D, by showing that every ∗-type is dominated by its
image among a suitable tuple of definable maps. □

6. Benign valued fields

In this section T is a complete RV-expansion of a theory of henselian valued
fields with elimination of K-quantifiers and “enough saturated maximal models”
(see below for the precise definitions). We show the existence of an isomorphism
∼

Inv(U)∼=
∼

Inv(RV(U)). In particular, our results hold in any benign valued field in
the sense of [30],4 i.e., in any henselian valued field which is of equicharacteristic 0,
or algebraically closed, or algebraically maximal Kaplansky of characteristic p> 0.

Associate to a valued field K the pure (Example 4.4) short exact sequence
1 → k×

→ K×/(1+m)→0→ 0. Add absorbing elements 0, 0, ∞, and view it as a
short exact sequence of abelian monoids 1 → k → K/(1+m)→0∪{∞} → 0. We
may harmlessly conflate the two settings (Remark 4.10) and write 0 for 0 ∪ {∞}.

The middle term K/(1 +m) is called the leading term structure RV, and comes
with a natural map rv : K → K/(1+m)= RV through which the valuation v : K →0

factors. Besides the structure of a (multiplicatively written) monoid, RV is equipped
with a “partially defined sum”: a ternary relation defined by

⊕(x0, x1, x2)
def

⇐⇒ ∃y0, y1, y2 ∈ K
(

y2 = y0 + y1 ∧

∧
i<3

rv(yi )= xi

)
.

When there is a unique x2 such that ⊕(x0, x1, x2), we write x0 ⊕ x1 = x2, and say
that x0 ⊕ x1 is well defined. It turns out that rv(x)⊕ rv(y) is well defined if and only
if v(x + y) = min{v(x), v(y)}. If we say that

⊕
i<ℓ xi is well defined, we mean

that, regardless of the choice of parentheses and order of the summands, the “sum”
is well defined and always yields the same result.

2Oags with finitely many definable convex subgroups are known as the oags of finite regular rank.
Note that every Hi must be fixed by every automorphism, and is therefore ∅-definable.

3Vicaría uses sorts indexed by n ∈ ω; as in Remark 3.14, it suffices to work with n ∈ T.
4Definition 1.57 of [30] allows {k}-{0}-expansions in the definition of benign. Since we are shortly

going to allow more general expansions, the difference is immaterial for our purposes.
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Let RV be the expansion of 1 → k ι
−→ RV v

−→ 0 → 0 by the field structure
on k and the order on 0. This induces an expansion of RV, which is precisely that
given by multiplication and ⊕ [2, Lemma 5.17], is biinterpretable with RV , and
can be axiomatised independently [30, Appendix B]. Hence, we may view RV as a
standalone structure (RV, · ,⊕), fully embedded in (K,RV, rv), and in RV .

By the (short) five lemma, an extension of valued fields is immediate, i.e., does
not change k nor 0, if and only if it does not change RV .

In this section, L has sorts K, k,RV, 0, function symbols rv :K→RV, ι :k→RV,
v : RV → 0. We abuse the notation and also write v for the composition v ◦ rv. The
sorts K and k carry disjoint copies of the language of rings, 0=0∪{∞} carries the
(additive) language of ordered groups, together with an absorbing element ∞ and an
extra constant symbol v(Char(K)), and RV carries the (multiplicative) language of
groups, together with an absorbing element 0 and a ternary relation symbol ⊕. We
denote by RV the reduct to the sorts k,RV, 0. There may be other arbitrary symbols
on RV , i.e., as long as they do not involve K. An RV-expansion of a theory T ′ of
valued fields is a complete L-theory T ⊇ T ′. Until the end of the section, T denotes
such a theory. We identify k with the image of its embedding ι in RV.

Remark 6.1. Angular components factor through the map rv, yielding a splitting
of RV . Therefore, the Denef–Pas language (and each of its {k, 0}-expansions)5

may be seen as an RV-expansion. In that case RV is definably isomorphic to k×0.

Fact 6.2. Fix a language L as above. The theory of all RV-expansions of benign
valued fields eliminates K-sorted quantifiers.

Proof. In equicharacteristic this follow from [9, Théorème 2.1]. The residue charac-
teristic 0 case is explicitly done in [4, Theorem B] (see also [20, Corollary 2.2]), the
algebraically maximal Kaplansky case in [20, Theorem 2.6] (see [15, Corollary A.3]
for a modern treatment). The algebraically closed case is folklore (see, e.g., [18,
Fact 2.4]). □

Remark 6.3. If T eliminates K-quantifiers, then every formula is equivalent to one
of the form ϕ

(
x, rv( f0(y)), . . . , rv( fm(y))

)
, where ϕ(x, z0, . . . , zm) is a formula in

RV , x and z tuples of RV-variables, y a tuple of K-variables, and the fi polynomials
over Z. In particular, RV (with the restriction of L to its sorts) is fully embedded.

Proof. By inspecting the formulas without K-sort quantifiers and observing that,
for example, if y is of sort K then T ⊢ y = 0 ↔ rv(y)= 0. □

Definition 6.4. Let K0 ⊆ K1 be an extension of valued fields. A basis (ai )i of
a K0-vector subspace of K1 is separating if for all finite tuples d from K ℓ

0 and
pairwise distinct i j , we have v

(∑
j<ℓ d j ai j

)
= min j<ℓ(v(d j )+ v(ai j )).

5A {k, 0}-expansion is one where the new symbols only involve the sorts k and 0, possibly
simultaneously. If we want to exclude the latter possibility, we speak of {k}-{0}-expansions.
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Fact 6.5. A basis (ai )i is separating if and only if each sum
⊕

j<ℓ rv(d j ) rv(ai j ) is
well defined. If this is the case, it equals rv

(∑
j<ℓ d j ai j

)
.

Lemma 6.6. Let p ∈ Sinv
K≤ω(U,M0), M0 ⪯ M ≺

+ U ⊆ B, a ⊨ p | B, and ( fi )i∈I a
family of M-definable functions Kω

→ K such that ( fi (a))i∈I is a separating basis
of the K(M)-vector space they generate. If M is |M0|

+-saturated, or p is definable,
then ( fi (a))i∈I is a separating basis of the K(B)-vector space they generate.

Proof. Towards a contradiction, suppose there are an L(M)-formula

ϕ(x, w) := v

(∑
i<ℓ

wi fi (x)
)
>min

i<ℓ
{v(wi )+ v( fi (x))}

and d ∈ B |w| such that a ⊨ ϕ(x, d). Let H be the set of parameters appearing in
ϕ(x, w). Choose d̃ ∈ M with d̃ ≡M0 H d if M is |M0|

+-saturated, or in dp ϕ if p is
definable. Then a ⊨ ϕ(x, d̃) contradicts that ( fi (a))i∈I is separating over M . □

Hence, saturation of M allows to lift separating bases. As maximality of M
guarantees their existence (see Lemma 6.13 below), we give the following definition.

Definition 6.7. We say that T has enough saturated maximal models if for every
κ > |L|, for every M0 ⊨ T of size at most κ there is M ≻ M0 of size at most 22κ

which is maximally complete and |M0|
+-saturated.

Remark 6.8. If we restrict to definable types, saturation is not necessary to lift
separating bases (see Lemma 6.6), and it is enough to assume only “enough maximal
models” for weak versions of the results of this section to go through.

Proposition 6.9. Let T be an RV-expansion of a theory of henselian valued fields
eliminating K-quantifiers, where every M ⊨ T has a unique maximal immediate
extension up to isomorphism over M. If M ′ ⊨ T is maximal, κ > |L|, and RV(M ′)

is κ-saturated, then M ′ is κ-saturated.

The proposition above is folklore, but we include a proof for convenience. As
pointed out to us by the referee, uniqueness of the maximal immediate extension is
not needed, and maximality of M ′ may be relaxed to requiring that chains of balls of
length smaller than κ have nonempty intersection; the result then follows by using
Swiss cheese decomposition. Nevertheless, the proof below has the advantage that
it can be adapted to more general contexts, which we will need in Proposition 8.1.

Proof. If κ is limit κ-saturation equals λ-saturation for all λ< κ , so we may assume
κ is successor, and hence regular. It suffices to prove that if M ≡ M ′ is κ-saturated,
then the set S of partial elementary maps between M and M ′ with domain of size
less than κ has the back-and-forth property. In fact, we only need the “forth” part
(and the “back” part is true by κ-saturation of M). So assume f ∈ S, with

f : A = (K(A),RV(A))→ A′
= (K(A′),RV(A′))
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and suppose that A ⊆ B ⊆ M , with |B|< κ . In order to extend f to some g ∈ S
with domain containing B, consider the following two constructions.

Construction 1. Enlarge A to an elementary substructure. That is, there are A1 ⊇ A
and f1 : A1 → A′

1 extending f such that f1 ∈ S and A1 ⪯ M . To do this, we find A′

1
with A′

⊆ A′

1 ⪯ M ′ and |A′

1| < κ using the Löwenheim–Skolem theorem, and
invoke κ-saturation of M to obtain the desired A1, f1.

Construction 2. For a given B̂ such that A ⊆ B̂ ⊆ M and |B̂| < κ , enlarge
RV(A) so that it contains RV(B̂). That is, there are A1 ⊇ A and f1 : A1 → A′

1
extending f such that f1 ∈ S and RV(A1) ⊇ RV(B̂). To do this, it suffices to
set A1 = (K(A),RV(B̂)) and extend f on RV using κ-saturation of RV(M ′); by
elimination of K-quantifiers, the extension is still an elementary map.

By repeated applications of the constructions above, we find an elementary chain
(Mn)n∈ω of elementary submodels of M , with A ⊆ M0, and fn ∈S with domain Mn

such that f0 ⊇ f , fn+1 ⊇ fn , and that if Bn is the structure generated by Mn B
then RV(Bn)⊆ RV(Mn+1). Let Mω :=

⋃
n∈ω Mn and let fω :=

⋃
n∈ω fn . Since κ

is regular and uncountable we have f ∈ S, and by construction the structure Bω
generated by Mω B is K-generated and an immediate extension of Mω. Since M ′ is
maximal and the maximal immediate extension of Mω is uniquely determined up to
Mω-isomorphism, we may extend fω to a map g ∈ S with domain Bω ⊇ B. □

Remark 6.10. Above (and in {k}-{0}-expansions of the Denef–Pas language), if k
and 0 are orthogonal it suffices to assume that k(M ′) and 0(M ′) are κ-saturated.

Corollary 6.11. Suppose that T satisfies the assumptions of Proposition 6.9, and
furthermore that every maximal immediate extension of every M ⊨ T is an elemen-
tary extension. Then T has enough saturated maximal models.

Proof. Given κ > |L| and M0 ⊨ T of size |M0| ≤ κ , find M1 ≻ M0 which is |M0|
+-

saturated of size |M1| ≤ 2|M0|. Let M be a maximal immediate extension of M1.
Then RV(M) = RV(M1), and the latter is |M0|

+-saturated because M1 is. By
assumption, M ≻ M1, and by Proposition 6.9 M is |M0|

+-saturated. To conclude,
observe that, since by Krull’s inequality [10, Proposition 3.6] we have |K| ≤ k0,
we obtain

|M | ≤ |k(M)||0(M)| = |k(M1)|
|0(M1)| ≤ (2|M0|)2

|M0|

= 22|M0|

. □

Corollary 6.12. Every RV-expansion of a benign T has enough saturated maximal
models.

Proof. Since the assumptions of Fact 6.2 are preserved by taking maximal immediate
extensions (which are unique by [19, Theorem 5]) elementarity follows from
elimination of K-quantifiers. We conclude by Corollary 6.11. □
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Lemma 6.13. Let p, q ∈ Sinv
K<ω(U,M0), let (a, b) ⊨ p ⊗ q and M0 ≺ M ≺

+ U.

(1) If M is maximally complete, then there are polynomials ( fi )i<ω in K(M)[x]

such that ( fi (a))i<ω is a separating basis of K(M)[a] as a K(M)-vector space.

(2) If M is |M0|
+-saturated then, for each ( fi )i<ω as above, { fi (a) | i < ω} is a

separating basis of K(U)[a].

(3) If ( f p
i (a))i<ω, ( f q

j (b)) j<ω are separating bases of K(U)[a] and K(U)[b], then
( f p

i (a) · f q
j (b))i, j<ω is a separating basis of K(U)[ab].

Proof. Part (1) is by [5, Lemma 3] (see also [17, Lemma 12.2]) and does not
require saturation, and part (2) is by Lemma 6.6 applied to ( fi )i<ω. So we only
need to prove (3). By the definition of ⊗, the tuple ( f p

i (a) · f q
j (b))i, j<ω is linearly

independent, and clearly it generates K(U)[ab] as a K(U)-vector space. Let us
check that this basis is separating. Let B be the structure generated by Ub. By
Lemma 6.6, ( f p

i (a))i<ω is a separating basis of the K(B)-vector space K(B)[a],
so we have

v

(∑
i, j

di j f p
i (a) f q

j (b)
)

= v

(∑
i

(∑
j

di j f q
j (b)

)
f p
i (a)

)
= min

i

(
v

(∑
j

di j f q
j (b)

)
+ v( f p

i (a))
)

= min
i

(
min

j

(
v(di j )+ v( f q

j (b))
)
+ v( f p

i (a))
)

= min
i, j

(
v(di j )+ v( f q

j (b))+ v( f p
i (a))

)
= min

i, j

(
v(di j )+ v( f q

j (b) · f p
i (a))

)
. □

Proposition 6.14. Suppose that T eliminates K-quantifiers and has enough satu-
rated maximal models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω(U) such that p ∼D q.
More precisely, let p(x, z) ∈ Sinv(U,M0), where x is a tuple of K-variables and z
a tuple of RV-variables. Let (a, c) ⊨ p(x, z), let M ≻ M0 be |M0|

+-saturated and
maximally complete, and let ( fi )i<ω be given by Lemma 6.13 applied to a and M.
Then p is domination-equivalent to the ∗-type q(y, t) := tp(rv( fi (a))i<ω, c/U),
witnessed by r(x, z, y, t) := tp(a, c, rv( fi (a))i<ω, c/M).

Proof. That p ∪ r ⊢ q is trivial. By elimination of K-quantifiers (Fact 6.2), to
prove q ∪ r ⊢ p it is enough to show that q ∪ r has access to every rv( f (x)),
that is, that for every f ∈ K(U)[x], there is a U-definable function g such that
q ∪ r ⊢ rv( f (x)) = g(y). Write f (x) =

∑
i<ℓ di fi (x). By Fact 6.5, we have

rv( f (a))=
⊕

i<ℓ rv(di ) rv( fi (a)), and we only need to ensure that this information
is in q ∪ r . But by Fact 6.5 whether the ( fi (a))i<ω form a separating basis or not
only depends on the type of their images in RV, which is part of q by definition. □
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The work done so far is enough to obtain an infinitary version of Theorem B.
After stating such a version, we will proceed to finitise it.

Remark 6.15. Separating bases of vector spaces of uncountable dimension need
not exist. Nevertheless, a ∗-type version of Lemma 6.13 still holds, with the fi (a)
now enumerating separating bases of all finite dimensional subspaces of K(M)[a].

Corollary 6.16. If κ is a small infinite cardinal, there is an isomorphism of posets
∼

Invκ(U) ∼=
∼

Invκ(RV(U)). If ⊗ respects ≥D on ∗-types in RV(U), then the same
holds in U, and the above is also an isomorphism of monoids.

Proof. By the ∗-type versions of Lemma 6.13 and Propositions 6.14 and 1.3. □

Lemma 6.17. Let M0 ≺
+ M ≺

+ U, let e ⊨ q ∈ Sinv
RVω(U,M0). Let I ⊆ω be such that

(v(ei ))i∈I generates Q⟨0(U)v(e)⟩ over Q0(U) as Q-vector spaces. Let G ⊆ RV
be the multiplicative group generated by RV(U)e. Let (g j ) j∈J ⊆ k ∩ G be such that
k ∩ G ⊆ acl(U(g j ) j∈J ) and J is countable. Let b := (ei , g j | i ∈ I, j ∈ J ). Then
there is M ≺ N ≺

+ U such that e and b are interalgebraic over N.

Proof. By assumption, for ℓ ∈ ω \ I there are nℓ > 0, dℓ ∈ U, a finite I0 ⊆ I
and, for i ∈ I0, integers nℓ,i ∈ Z, with nℓv(eℓ) = v(dℓ) +

∑
i∈I0

nℓ,i v(ei ). By
M0-invariance, we may assume dℓ ∈ M . Let hℓ(x) be the M-definable function
hℓ(y) := (ynℓ

ℓ )/
(
dℓ

∏
i∈I0

ynℓ,i
i

)
. By construction, we have v(hℓ(e))= 0, and hence

hℓ(e)∈ G ∩k×, so by assumption hℓ(e)∈ acl(U(g j ) j∈J ). Let N ≻ M be small such
that {hℓ(e) | ℓ ∈ ω \ I } ⊆ acl(N (g j ) j∈J ) and {g j | j ∈ J } is contained in the group
generated by RV(N )e. By definition of hℓ, for each ℓ ∈ ω \ I , we therefore have
enℓ
ℓ ∈ acl(Nb). As 0 is ordered and the kernel of v : RV → 0 is the multiplicative

group of a field, RV has finite n-torsion for each n, so eℓ is algebraic over enℓ
ℓ ,

and hence e ∈ acl(Nb). □

Theorem 6.18 (Theorem B). For T an RV-expansion of a theory of valued fields
with enough saturated maximal models eliminating K-quantifiers (e.g., a benign
one), there is an isomorphism of posets

∼

Inv(U) ∼=
∼

Inv(RV(U)). If ⊗ respects ≥D

in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

Proof. Fix p(x, z) ∈ Sinv(U) and ac ⊨ p, where x is a tuple of K-variables and z
a tuple of RV-variables. Let ( fi )i<ω be given by Lemma 6.13. As usual, de-
note by U(a) the field generated by a over U. As trdeg(U(a)/U) is finite, by
the Abhyankar inequality so is dimQ(Q0(U(a))/Q0(U)). Let m be such that
v( fi (a))i<m generates Q0(U(a)) over Q0(U). Again by the Abhyankar inequality,
trdeg(k(U(a))/ k(U)) is finite. By the choice of the f j and Fact 6.5, we may choose
a transcendence basis (g j | j < n) of k(U(a)) over k(U), which is contained in
the group generated by RV(U)

(
rv( fi (a))

)
i<ω. Write each g j as h j (a), for suitable

definable functions h j . We may now apply Lemma 6.17 to e =
(
rv( fi (a))

)
i<ω,
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the g j defined above, and I = {i ∈ ω | i < m}. Together with Proposition 6.14, we
obtain

(1) p ∼D p′
:= tp

(
rv( fi (a))i<m, (h j (a)) j<n, c/U

)
Therefore, every (finitary) type is equivalent to one in RV . By full embeddedness
of RV , and Fact 1.1, we obtain the required isomorphism of posets.

By Proposition 1.3 it is enough to show that if p′, q ′ are obtained from p, q as
in (1) above, then p ⊗ q ∼D p′

⊗ q ′. Denote by

ρ p(x, z) :=
(
rv( f p

i (x))i<m p , (h
p
j (x)) j<n p , idp(z)

)
the tuple of definable functions from (1), and similarly for q and p⊗q . By point (3)
of Lemma 6.13 we may take as ( f p⊗q

i )i<ω (a reindexing on ω of) the concatenation
of ( f p

i )i<ω with ( f q
i )i<ω. By the properties of ⊗, the concatenation of ( f p

i (a))i<m p

and ( f q
i (b))i<mq is a basis of the vector space

Q
〈
0(U)

(
v( f p

i (a))
)

i<ω

(
v( f q

i (b))
)

i<ω

〉
over Q0(U), and so as ( f p⊗q

i )i<m p⊗q we may take the concatenation of ( f p
i )i<m p

with ( f q
i )i<mq . Similarly, as (h p⊗q

j ) j<n p⊗q we may take the concatenation of the
respective tuples for p and q, and ultimately we obtain that as ρ p⊗q we may take
the concatenation of ρ p with ρq . By (1), we have p ⊗ q ∼D p′

⊗ q ′ and we are
done. □

For {k, 0}-expansions, we are in the setting of Section 4, so we may combine
the above with, e.g., Theorem C or Corollary 4.15. We spell out two nice cases; the
special subcases of ACVF and RCVF were previously known (see the introduction).

Corollary 6.19 (Theorem A). Let T be a complete {k}-{0}-expansion of a benign
theory of valued fields where, for all n > 1, the group k×/(k×)n is finite. There is
an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U)). If ⊗ respects ≥D in k
and 0, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. Apply Theorem 6.18. By Fact 6.2, if the extra structure on RV involves only
k and 0, and never both at the same time, then the sorts k and 0 are orthogonal.
As RV is an expanded pure short exact sequence, we conclude by Corollary 4.15. □

Corollary 6.20. Let T be a complete {k}-{0}-expansion of a benign theory of valued
fields, and let Ak denote the family of sorts (k×/(k×)n)n∈ω. For κ ≥ |L|, there is an
isomorphism of posets

∼

Invκ(U)∼=
∼

Invκ(Ak(U))×
∼

Invκ(0(U)). If ⊗ respects ≥D in
Ak and 0, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. As in Corollary 6.19, but using Corollary 4.9 instead of Corollary 4.15. □

In special cases, results such as the previous corollaries may also be obtained by
using domination by a family of sorts in the sense of [12, Definition 1.7] (see [23,
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Section 6]). This kind of domination was proven in the algebraically closed case
in [17], in the real closed case in [12], and in the equicharacteristic zero case in [31].

In algebraically or real closed valued fields, the decomposition
∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U))

remains valid after passing to T eq, as can be shown using resolutions [12; 17; 23].
A natural question is whether Theorem 6.18 generalises to T eq, or at least to T G ,
the expansion of T by the geometric sorts of [16].

Question 6.21. Let T be an RV-expansion of a theory of valued fields with enough
saturated maximal models eliminating K-quantifiers. Are there conditions guaran-
teeing that the isomorphism

∼

Inv(U) ∼=
∼

Inv(RV(U)) holds in T G , or even in T eq?
Does compatibility of ≥D with ⊗ transfer?

7. Mixed characteristic henselian valued fields

Let K be henselian of characteristic (0, p) for p ∈ P. For n ∈ ω, we define mn :=

{x ∈ K | v(x) > v(pn)}. Let RVn be the multiplicative monoid RVn := K/(1 +mn)

and RV×
n := RVn \ {0}. For each n, denote by rvn : K → RVn the quotient map. For

m > n, we have natural maps rvm,n : RVm → RVn , and the valuation v : K → 0

induces maps RVn → 0, still denoted by v. The kernel kn of v fits in a short exact
sequence 1 → kn → RVn

v
−→0→ 0. We have relations ⊕n , defined analogously to

⊕, and again well defined precisely when v(x + y)= min{v(x), v(y)}. For n = 0 we
recover the notions from the previous section. The following generalises Fact 6.5.

Fact 7.1. A basis (ai )i is separating if and only if, for each n ∈ ω, each sum
rvn(d0) rvn(ai0)⊕n . . .⊕n rvn(dℓ) rvn(aiℓ) is well defined, if and only if this happens
for n = 0. If this is the case, then the sum equals rvn

(∑
j≤ℓ d j ai j

)
.

In this section, L is a language as follows. We have sorts K, 0 and, for each
n ∈ ω, sorts kn,RVn . There are function symbols rvn : K → RVn , ι : kn → RVn ,
v : RVn → 0. The sort K carries a copy of the language of rings, while the sort
0 = 0 ∪ {∞} carries the (additive) language of ordered groups, together with an
absorbing element ∞ and an extra constant symbol v(p). Each RVn and kn carries
the (multiplicative) language of groups, together with an absorbing element 0 and a
ternary relation symbol ⊕n . We denote by RV∗ the reduct to the sorts kn,RVn, 0.
There may be other arbitrary symbols on RV∗, i.e., as long as they do not involve K.

An RV∗-expansion of a theory T ′ of henselian valued fields of characteristic
(0, p) is a complete L-theory T ⊇ T ′, with the sorts and symbols above interpreted
in the natural way. Until the end of the section, T denotes such a theory. We
will freely confuse the sort kn with the image of its embedding in RVn . By [4,
Theorem B] (see also [14, Proposition 4.3]) T eliminates K-quantifiers, so RV∗ is
fully embedded.
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Proposition 7.2. Suppose T eliminates K-quantifiers and has enough saturated
maximal models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω∗
(U) such that p ∼D q. More

precisely, let p(x, z)∈ Sinv(U,M0), where x is a tuple of K-variables and z a tuple of
RV∗-variables. Let (a, c)⊨ p(x, z), let M ≻ M0 be |M0|

+-saturated and maximally
complete, and let ( fi )i<ω be given by the ∗-type version of Lemma 6.13 applied
to a and M (see Remark 6.15). Then p ∼D q(y, t) := tp(rvn( fi (a))i,n<ω, c/U),
witnessed by

r(x, z, y, t) := tp(a, c, rvn( fi (a))i,n<ω, c/M).

If κ ≥ |L| is small, there is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(RV∗(U)). If ⊗

respects ≥D in RV∗(U), then the same holds in U, and the above is an isomorphism
of monoids.

Proof. Adapt the proofs of Lemma 6.13, Proposition 6.14 and Corollary 6.16,
replacing Facts 6.2 and 6.5 by [4, Theorem B] and Fact 7.1 respectively. □

The assumptions of Proposition 7.2 are satisfied in a number of cases of interest.
Besides the algebraically closed case, we note the following.

Remark 7.3. Every RV∗-expansion of a finitely ramified henselian valued field
has enough saturated maximal models.

Proof. Finite ramification ensures immediate extensions are precisely those where
RV∗ does not change. By this and [14, Proposition 4.3], maximal immediate
extensions are elementary, and by [10, Corollary 4.29] they are also unique. We
may therefore adapt the proof of Proposition 6.9, replacing RV with RV∗. □

Remark 7.4. RV∗ may be viewed as a short exact sequence of abelian structures,
each consisting of an inverse system of abelian groups. Since 0 is torsion-free, this
sequence is pure.6 Hence, the results from Section 4 apply to this setting, e.g., by
taking as F the family of all pp formulas.

If k eliminates imaginaries, we can get rid of those arising from F and obtain a
product decomposition. We state a special case as an example application of the
results above. We thank the referee for pointing out the “moreover” part.

Corollary 7.5. In the theory of the Witt vectors over F
alg
p , the domination monoid is

well defined. If κ is a small infinite cardinal, then

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼= κ̂ × P≤κ

(
CSinv(0(U))

)
.

Moreover,
∼

Inv(U)∼= ω̂× P<ω

(
CSinv(0(U))

)
.

6Another way of seeing this is that, in a saturated enough model of T , the valuation map has a
section, inducing a compatible system of angular components, i.e., a splitting of RV∗.
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Proof. The residue field k is fully embedded. Moreover, kn = Wn(k)× for each n,
where Wn(k) is the truncated ring of Witt vectors over k, and kn is in definable
bijection with kn−1

× k× (see [30, Corollary 1.62 and Proposition 1.67]). The
computation of

∼

Invκ(U) follows. As for
∼

Inv(U), using discreteness of the value group
it is possible to build a prodefinable surjection K → kω [30, proof of Remark 3.23];
together with the argument above, this gives the “moreover” part. □

Remark 7.6. The product decomposition fails for finitary types: the surjection
K → kω yields a 1-type in K dominating the type of an infinite independent k-tuple.

However, finitisation is possible in the case of the p-adics.

Corollary 7.7 (Theorem E). Let T be a complete {0}-expansion of Th(Qp). There
is an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(0(U)). If ⊗ respects ≥D in 0(U), then the
same holds in U, and the above is also an isomorphism of monoids. In particular,
in Th(Qp), ⊗ respects ≥D, and (

∼

Inv(U),⊗,≥D)∼=
(
P<ω

(
CSinv(0(U))

)
,∪,⊇

)
.

Proof. By Remark 7.3 we may apply Proposition 7.2. Since each kn is finite,
each RVn is a finite cover of 0, so each element of RVn is interalgebraic with an
element of 0. Thus if p(x, z)∈ Sinv(U,M0), where x is a tuple of K-variables and z a
tuple of RV∗-variables, and if ac ⊨ p, then dimQ

(
Q0

(
dcl(U(ac))

)
/Q0(U)

)
≤ |xz|

by the Abhyankar inequality, so there is a finitary invariant type in 0 which is
interalgebraic with the type q(y, t)∼D p found in Proposition 7.2. We conclude
by Proposition 1.3. The “in particular” part then follows from Corollary 3.34. □

The infinite ramification case remains open.

Problem 7.8. Compute
∼

Inv(U) in an infinitely ramified mixed characteristic hensel-
ian valued field that is not algebraically closed.

8. D-henselian valued fields with many constants

Here we deal with certain differential valued fields. As the proofs are adaptations
of those in Section 6, we give sketches and leave it to the reader to fill in the details.

We let T be a complete theory with sorts K, k, 0,RV, as in Section 6, naturally
interpreted, and use the notation RV . The fields k and K have characteristic 0
and both carry a derivation ∂ (denoted by the same symbol), commuting with the
residue map. The valued differential field K is monotone, i.e., v(∂x)≥ v(x), has
many constants,7 i.e., for every γ ∈0 there is x ∈K with ∂x =0 and v(x)=γ , and is
D-henselian, i.e., the following holds. If P(X)∈O{X}=O[∂ i X ]i∈ω is a differential
polynomial over the valuation ring O, and a ∈ O is such that v(P(a)) > 0 and for
some i we have v(d P/d(∂ i X))(a) = 0, then there is b ∈ O such that P(b) = 0
and v(a − b) > 0. The family of sorts RV may carry additional structure.

7Here we follow the terminology of [1]. In [28], this condition is called having enough constants.
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The derivation ∂ on K induces a map ∂RV on RV which, for all γ ∈ 0, fixes
v−1(γ ) ∪ {0} setwise, defined by ∂RV(rv(x)) = rv(∂(x)) if v(∂(x)) = v(x), and
∂RV(rv(x))= 0 otherwise, which extends the derivation ∂ on k.

By [28, Theorem 6.4 and Corollary 5.8] (see also [1, Corollary 8.3.3]) the
theory T given by the list of properties above (in a fixed language) eliminates
K-quantifiers.

Proposition 8.1. The theory T has enough saturated maximal models.

Proof sketch. By [28, Remark 6.2], k is linearly surjective in the terminology
of [1], so by [1, Theorem 7.4.3] T has uniqueness of maximal immediate exten-
sions. The maximal immediate extension N of M is monotone and D-henselian
by [1, Lemma 6.3.5 and Theorem 7.4.3] with many constants. As T eliminates
K-quantifiers, M ≺ N , so the proofs of Proposition 6.9 and Corollary 6.11 may be
adapted. □

Theorem 8.2. Let κ be a small infinite cardinal. There is an isomorphism of posets
∼

Invκ(U) ∼=
∼

Invκ(RV(U)). If ⊗ respects ≥D in RV(U), then the same holds in U,
and the above is also an isomorphism of monoids.

Proof sketch. By elimination of K-quantifiers, RV(M) is fully embedded in M . If
we replace “polynomial” by “differential polynomial”, K(M)[a] by K(M){a}, and
so on, in the statements of Lemma 6.13 and Proposition 6.14, essentially the same
proofs go through. We can then conclude as in the proof of Corollary 6.16. □

Lemma 8.3. ∂RV is definable from the short exact sequence structure, the differential
field structure on k, and a predicate for C := {c ∈ RV | ∂RV(c)= 0}.

Proof. Suppose a ∈ RV and v(a) /∈ {0,∞}. Since K has many constants, there
is c ∈ RV(M) with ∂RV(c) = 0 and v(c) = v(a). Then we have a/c ∈ k(U)
and ∂RV(a) = c∂(a/c). Because this does not depend on the choice of c, the
function y = ∂RV(x) is ∅-definable by the formula

ϕ(x, y) := ∃z ∈ C
(
(v(z)= v(x))∧ (y = z∂(x/z))

)
. □

If L had a section of the valuation, or an angular component compatible with ∂ ,
we could recover C from the constant field of k, and conclude by (the ∗-type version
of) Remark 4.5. Yet, the absence of definable splitting is not a serious obstacle. For
simplicity, we only give a result in the model companion VDFEC .

Theorem 8.4 (Theorem F). In VDFEC , for every small infinite cardinal κ , the
monoid

∼

Invκ(U) is well defined, and we have isomorphisms

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼=

≤κ∏
δ(U)

κ̂ × P≤κ

(
CSinv(0(U))

)
,
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where δ(U) is a cardinal, and
∏

≤κ
δ(U)κ̂ denotes the submonoid of

∏
δ(U)κ̂ consisting

of δ(U)-sequences with support of size at most κ .

Proof. By Theorem 8.2 we reduce to RV . Let LC := Lab ∪ {C}, with C a unary
predicate. Expand the language of RV by a predicate C on each sort, interpreted
as the constants in both k and RV and as the full 0 in 0, obtaining a short exact
sequence of LC -abelian structures (to be precise, of abelian structures augmented by
an absorbing element, see Remark 4.10) expanded by the differential field structure
on k and the order on 0. By Lemma 8.3, we may apply the material from Section 4,
say, by taking as a fundamental family that of all pp LC -formulas, provided we
show that RV is pure. If M ⊨ VDFEC is ℵ1-saturated then, since M has many
constants, we may find a section s : 0(M)→ RV(M) of the valuation with image
included in C(RV(M)). Hence the short exact sequence RV(M) of LC -abelian
structures splits, so is pure by Remark 4.5. Since k is a model of DCF0, which
eliminates imaginaries, we may get rid of the auxiliary sorts Aϕ . We conclude
by Corollary 3.33 and the fact that DCF0 is ω-stable multidimensional (see [22,
Section 5] for the relation between our setting and that of domination via forking
in stable theories). □

Remark 8.5. In VDFEC , finitisation is not to be expected (e.g., by [26, Propo-
sition 4.2]), and in fact not possible: one may construct a 1-type p ∈ Sinv

K (U)

with ((v ◦ ∂n)∗ p)n∈ω nonalgebraic and pairwise weakly orthogonal, and hence not
domination-equivalent.

Computing the image of the home sort in finitely many variables seems difficult.

Remark 8.6. Most arguments in this section may be adapted to σ -henselian valued
difference fields of residue characteristic 0. An analogue of Theorem 8.2 goes
through, using quantifier reduction to RV and a σ -Kaplansky theory yielding
uniqueness and elementarity of maximal immediate extensions [11, Theorems 5.8
and 7.3]. In every completion of the model companion of the isometric case
(see [6]), in sufficiently saturated models there is a section of the valuation with
values in the fixed field, and hence one may obtain the decomposition

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U)), by regarding RV as a pure short exact sequence of Z[σ ]-
modules, and using elimination of imaginaries in ACFA0. The same goes through in
the multiplicative setting, provided that, in the notation of [25], ρ is transcendental.
This applies, e.g., to the model companion of the contractive case (see [3]).
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