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Abstract: Patients with urolithiasis, and particularly those with hypercalciuria, frequently have
a marked reduction of bone mineral content up to the levels of osteoporosis, with a significant
increase in bone fracture risk. For these reasons, the indication to prescribe vitamin D and/or calcium
supplementations is very frequent in such patients. On the other hand, both calcium supplementation,
and even more vitamin D therapy, can worsen the risk of developing urolithiasis by increasing calcium,
phosphate, and oxalate urinary excretion. Despite the clinical and practical relevance of this issue,
the evidence on this topic is scarce and contradictory. Therefore, some concerns exist about how and
whether to prescribe such supplements to a patient with a history of kidney stones. In this narrative
review, we resume some pivotal pathophysiological concepts strictly related to the dealt topic, and
we draw some considerations and personal opinions on the pros and cons of such prescriptions.
Finally, we share with the reader our pragmatic algorithm for handling the urolithiasis risk in patients
who have strong indications to be prescribed vitamin D and calcium supplementations.
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1. Introduction

Urolithiasis (UL) is one of the most common diseases in the world and about one
of every 10–12 subjects of the general population experiences an episode of UL, with a
prevalence in males that is about double compared to females. Half or more of these subjects,
when untreated, undergo at least one urinary stone recurrence in their lifetime [1–4].

Urolithiasis, particularly when relapsing and/or complicated by obstructive nephropathy
or infection, can induce a renal damage which can evolve into chronic kidney disease (CKD)
and, eventually, though in a minority of patients, end stage kidney disease (ESKD) [5–9].
Moreover, UL episodes have a significant impact on the quality of life of patients and are
associated with a significant increase in health care costs, both direct (related to interventions)
and indirect (loss of working days) [2,10,11].

Although the etiology of UL is still far from being completely clarified, both genetic
and environmental factors have been claimed to contribute, at variable extent, to the
occurrence of kidney stone formation [12].

It is also well recognized that the main pathogenic mechanisms underlying this patho-
logical process are linked to the breakdown of the balance between the urinary concentra-
tion of substances promoting (e.g., calcium, oxalate, uric acid, cystine, drugs) and those
inhibiting (e.g., citrate, magnesium) the urinary stone forming process. In fact, an increase of
promoters and/or a reduction of inhibitors, often in association with a relatively low urine
volume or changes in hydrogen ion concentration, can increase the risk of crystal formation
in the urinary environment, the first step toward urinary stone occurrence [13–16].
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Although most urinary calculi are composed of multiple molecules, calcium salts are
by far the most represented among all components, since approximately 80% of urinary
stones contain a calcium salt (predominantly calcium oxalate and to a lesser extent cal-
cium phosphate) [17,18]. Furthermore, Hypercalciuria (HC) is the most frequently found
metabolic abnormality in the urine of kidney stone former (SF) subjects [19–21].

2. Hypercalciuria and Urolithiasis

The link between HC and UL has its roots in studies dated about one century ago.
In 1939, Flocks RH reported on increased levels of calcium in the urine of SF patients,
supporting a direct role of increased urinary calcium concentration in the pathogenesis of
UL [22]. From then onward, a growing interest in the research field has been witnessed to
better define the mechanisms and pathogenetic factors of HC, also suggesting diagnostic
methodologies, easily executable in the real world of clinical medicine.

The definition of which level of daily urinary calcium excretion should be considered
the threshold of “normality” above which one can make a reliable diagnosis of HC con-
tinues to be a matter of controversy and debate [23–26]. Due to the nature of the present
manuscript, mainly directed to discuss some clinical practical aspects, we do not think it
is appropriate to discuss this topic here. We decided to take, as a pragmatic threshold for
defining HC, a reference level of urinary calcium greater than 4 mg/Kg/d or 250 mg in
females and 300 mg in males, per day, in subjects consuming a diet with a daily calcium
content of 1000–1200 mg, which represents the recommendation of calcium intake for
general population.

Classically, HC has been grouped into three main categories: intestinal (or absorptive)
HC; renal leak HC; and bone resorptive HC [23–25]. However, the existence of clear
pathogenetic differences among the above-listed types of HC, and, even more, the clinical
relevance of this classification has been questioned. Although this topic might be of great
physio-pathological and clinical importance, we do not consider it useful to go into the
details in this discussion, limiting ourselves to dealing with some peculiar aspects which, in
our opinion, are of greater practical interest in relation to the main purpose of this review.

2.1. Intestinal Absorptive HC

An increased entry of calcium from the intestine into the intracorporeal pool can occur
through two different pathways: the first is mainly secondary to an increase in the amount
of calcium intake from dietary sources and/or supplements, which induces an increased
intestinal absorption through paracellular diffusive transport mechanisms mainly driven
by concentration gradient; the second one is mainly due to the increased transcellular
transfer of calcium through the enterocytes, by active saturable transport mechanisms
highly dependent on vitamin D availability and effectiveness [26].

Given the shortage of balance studies, a precise estimation of the net amount of calcium
absorbed through the intestinal route at the usual dietary intakes still remains only vaguely
defined [27]. Nevertheless, one can expect to have an increased net intestinal calcium
absorption either in the case of an increased absolute amount of its dietary content and/or
from a more active intestinal calcium transport due to increased levels of or an augmented
sensitivity to active vitamin D metabolites. There are, however, some unique differences
between these two different types of absorptive HC, particularly regarding the associated
risk of developing UL, which deserve to be specifically discussed.

First, given that a normal subject, under conditions of metabolic equilibrium, usually
absorbs 15–20% of the calcium content of a normal diet (800–1000 mg of calcium), it is
expected that the HC according to the pragmatic definition reported beforecan be observed
only if the calcium content of the diet exceeds 1200–1500 mg. On the other hand, if an
individual is exposed to higher levels of vitamin D and/or has increased sensitivity to
vitamin D activity, the resulting increase in calcium absorption, via the active absorption
pathway, may result in HC even with a dietary calcium content within or even below the
recommended range.
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Second, for the same amount of oral calcium introduced daily, the amount of calcium
absorbed is much lower when the oral calcium intake is introduced primarily through the
consumption of calcium-rich foods or beverages during meals compared to net calcium
absorption following the intake of calcium supplements or calcium-rich beverages outside
meals. This difference is secondary to the reduced bioavailability of calcium to be absorbed
when introduced with food. This occurs because calcium ions can bind to dietary anions,
namely phosphate, oxalate, sulphate, etc. This mechanism does not work when calcium is
taken away from meals. This difference is of great relevance regarding the risk of UL as
increasing calcium intake during meals could also play a protective role, given the potential
binding of oxalate by calcium in the intestine, resulting in reduced intestinal absorption
and urinary excretion of this potent lithiasis promoter (Figures 1 and 2). Indeed, several
decades ago, we demonstrated that SF patients who switched from a calcium-free diet
to a calcium-restricted diet (400 mg/day) experienced a marked increase in their urine
oxalate excretion and, despite a reduction in calcium excretion, the relative supersaturation
of calcium oxalate nearly doubled [28]. In the same direction, even more indicative are
the data of Curhan and collaborators who, through two prospective observational studies
conducted on two large cohorts of subjects without a history of UL, clearly showed that
the increase in calcium intake during meals was associated with a lower incidence of UL.
In contrast, the increased calcium intake from calcium supplements, mainly consumed
outside meals, appeared clearly associated with a higher incidence of kidney stones during
the follow-up period [29,30].
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Figure 1. Potential effects of Ca supplementation outside the meals on UL risk. The amount
of calcium absorbed is greater when calcium supplements are given outside meals, as calcium
cannot bind to dietary anions (phosphate, oxalate, sulphate, etc.), and this leaves room for intestinal
absorption an increased amount of both calcium and unbound anions, resulting in increased urinary
excretion of calcium, oxalate, and phosphate. F-Ca: filtered Calcium; PTH: Parathyroid Hormone.

Finally, HC associated with increased vitamin D activity (due to both increased levels
and/or increased sensitivity to its action) could impact even more relevantly on the risk
of forming urinary stones. In fact, vitamin D not only enhances active intestinal calcium
transport, inducing HC even with calcium intake within the normal range, but, since the
vitamin D-mediated enhancement of calcium transport occurs predominantly, even if not
exclusively, in the proximal gastrointestinal tract, a lower amount of calcium reaches the dis-
tal gut. Since it represents the major site of oxalate absorption, a decrease in calcium-bound
oxalate and induces an increase in intestinal absorption and, thus, urinary excretion of
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oxalate. In addition, increased vitamin D activity induces decreased parathyroid hormone
(PTH) and increased production and secretion of fibroblast growth factor-23 (FGF-23) by
osteocytes, resulting in a decrease of calcium and phosphate re-absorption, respectively,
at the distal and proximal renal tubular level, which, in turn, leads to increased urinary
excretion of both calcium and phosphate. The overall final effect is an increase in the
relative supersaturations of both calcium oxalate and calcium phosphate, contributing to
an increased risk of calcium UL (Figure 3).
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Figure 2. Potential effects of Ca supplementation with meals on UL risk. When calcium supplements
are taken with meals, calcium can bind to dietary anions (phosphate, oxalate, sulphate, etc.), with a
reduced absorption of calcium itself and the associated anions. Within the normal range of dietary
calcium intake (800–1000 mg) and in the absence of elevated vitamin D levels, this could even translate
into a reduction of the urinary lithogenic risk. F-Ca: filtered Calcium; PTH: Parathyroid Hormone.
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Figure 3. Potential effects of vitamin D supplementation on UL risk. Vitamin D stimulates active
calcium transport, mainly in the proximal intestine, inducing HC even with calcium intake within the
normal range; since less calcium reaches the distal gut, an increased amount of oxalate remains free
for being absorbed in the distal tract; vitamin D also inhibits PTH production and stimulates FGF-23
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calcium oxalate and calcium phosphate. FGF-23: Fibroblast Growth Factor-23; F-Ca: filtered Calcium;
HC: Hypercalciuria; PTH: Parathyroid Hormone.
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2.2. Bone Resorptive HC

Classically, the prototypical form of HC secondary to increased bone resorption is that
associated with a primary increase in PTH secretion (namely, primary hyperparathyroidism,
PHP), where the increased urinary calcium excretion is due to an increase in filtered calcium
due to increased serum calcium concentration that is caused both by the increase in bone
resorption, stimulated directly by PTH, and by the increase in intestinal calcium absorption
secondary to the increase in calcitriol levels induced by PTH. The higher serum calcium
levels result in increased glomerular filtered calcium, which exceeds the tubular calcium
transport capacity, despite being potentiated by the action of PTH, and ultimately results
in HC, which contributes to increased incidence of UL in patients with PHP [31]. In fact,
this form of HC is of a mixed type, as both the absorption (intestinal) and the reabsorption
(skeletal) components contribute to its occurrence.

Indeed, a PTH-independent form of increased bone resorption has been suggested
as a frequent cause of HC in patients with urinary stones. This form of HC, often
characterized by a high level of fasting urine calcium excretion (fasting HC), also given
its many similarities to the calcium-losing form of HC, will be discussed in more detail
in the next section.

2.3. Renal Leak HC

A renal tubular calcium leak, the so-called renal HC, has long been considered
the second most common cause of HC, after intestinal HC [32,33]. Formerly, renal HC
had been defined by the contemporary presence of increased excretion of calcium in
fasting urine (fasting HC), normal to low calcium serum concentration, and normal
to high parathyroid hormone (PTH) levels. All these characteristics are well suited to
a condition of secondary hyperparathyroidism (SHP) as a compensation mechanism
for renal calcium loss [34,35]. Apart from the rare forms of genetic defects involving
renal tubular calcium transport [12,36,37], subsequent studies were not able to confirm
the obvious presence of defects in any type of tubular calcium transport and, even
less, the presence of SHP associated with fasting HC in SF subjects, suggesting that a
PTH-independent increase in bone resorption could be the mechanism underlying the
increase in urinary calcium excretion during fasting [38–40].

Among the pathogenetic mechanisms hypothesized to explain the PTH-independent
increase in bone resorption associated with fasting HC, some authors have suggested
that the increased production of some monocyte-derived cytokines could be implicated in
osteoclast activation, with a consequent increase in mineral bone resorption [40–43].

It has also been suggested that consuming a diet rich in animal proteins, which is
associated with an increased acid load mainly due to sulfate content, can directly increase
bone resorption, due to the stimulating effect of hydrogen ions on osteoclast activity [44–48].
Furthermore, increased consumption of animal proteins has been reported to induce an
increased production of prostaglandin E-2 (PGE-2) which is also a potent stimulator of
bone resorptive mechanisms [49,50].

Other authors have suggested a role for some calcium sensor receptor (CaSR) poly-
morphic variants to explain the pathogenetic mechanism(s) of PTH-independent fasting
HC [51]. In the past, when CaSR was firstly discovered and characterized [52], it was
described as a G protein-coupled receptor, expressed on parathyroid cells, that acts mainly
as a specialized sensor for extracellular calcium levels, whose activation induced by the
increase in calcium concentration can effectively inhibit the secretion and synthesis of PTH.
However, it was soon realized that CaSR is also expressed by several cells in many tissues
other than the parathyroid glands, including renal tubular cells, where its activation is
followed by decreased calcium uptake and thus increased urinary excretion [53,54]. Since
the described CaSR polymorphic variant [51] was characterized by a gain of function of
the receptor, the authors hypothesized that it could be a factor involved in the pathogen-
esis of PTH-independent fasting HC of SF patients where the rate of occurrence of this
polymorphism was higher than in non-SF subjects.
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Other genetic factors, such as polymorphisms in the soluble adenylate cyclase gene
(ADCY10) or claudin-14 gene (CLDN14), have also been suggested to play a pathogenic
role in the bone loss observed in patients with SF [14].

In addition to all these possible factors, there has often been added the false belief that
it is considered appropriate and useful to advise all patients with urinary stones, especially
those with HC, to follow a diet with reduced consumption of foods containing calcium.

Although this belief has been definitively disavowed by the results of scientific studies,
it remains in the folds of popular cultures in many regions of the world, contributing to a
condition of calcium deficiency which, far from being useful for counteracting the lithiasis
process, certainly contributes to reducing bone mass.

In any case, whatever the pathogenic mechanism underlying the increase in fasting
urinary calcium excretion, whether PTH dependent or not, many studies have reported
that HC, particularly the fasting type of HC, is frequently associated with a reduced bone
mineral content and an increased risk of bone fractures [55–59].

3. Indication to Vitamin D and/or Calcium Supplementation in the General Population

Skeletal fractures are one of the main health and social problems in the general pop-
ulation and low bone mass, particularly in the degree of osteoporosis, and it represents
one of the main factors favoring and predisposing to skeletal fractures. Recent studies
reported that osteoporosis, defined according to WHO as the presence of a bone mineral
density (BMD) less than two and a half standard deviations (T ≤ −2.5) compared to val-
ues in young adults, is a pathological condition characterized by an increasing incidence
worldwide [60,61].

Vitamin D has a well-recognized role in maintaining the skeletal system in a good
health, thanks to its direct and indirect effects on mineral and bone metabolism, mediated
by the interaction with its specific receptor (Vitamin D Receptor, VDR) expressed on the
plasma membrane of the cells of some specific target organs. In fact, the interaction of
vitamin D with the VDR expressed in the cells of bone tissue results in a global anabolic
effect; vitamin D action at the intestinal level translates into an increased active transport of
calcium from the intestinal lumen toward the blood, with an increase of intestinal calcium
absorption and overall increased availability of this mineral for bone calcification process;
meanwhile, the interaction of vitamin D with VDR expressed in the parathyroid cells is
followed by the inhibition of the synthesis of PTH, downsizing the bone resorptive effects
induced by this hormone [62–64].

However, in the last decades, a lot of studies clearly showed that VDR is expressed not
only in the cells of the classic organs of vitamin D action (bone, intestine, parathyroid glands)
but also in many other tissues [63]. As a consequence, in addition to the canonical effects
of vitamin D on mineral and bone metabolism, it has also been suggested that vitamin D
might have beneficial effects regards a number of other general pathological conditions. In
fact, it has been widely reported by observational studies that low levels of vitamin D are
associated with an increased risk of developing cardiovascular diseases, cancer, diabetes
mellitus, infections, autoimmune and immune-related disorders, cardiovascular diseases
(CVD), and even an increased mortality rate for any cause [65–68].

Furthermore, it has also been reported by a vast number of studies that vitamin D
serum levels are often below the threshold of the concentration which has been defined by
the Institute of Medicine as sufficient to avoid any related pathological effects [69,70].

For all these reasons, vitamin D, associated or not with calcium supplementation, has
been more and more frequently prescribed to patients with low BMD, particularly in the
osteoporosis range, and an increasing number of foods and/or beverages are enriched with
vitamin D [71,72].

However, it is necessary to point out that, despite this widespread enthusiasm in sug-
gesting an ever-wider use of vitamin D, motivated by these presumed positive pleiotropic
effects, there is a complete lack of evidence to support these hypothetical advantages [73–78].
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More importantly, the actual role of vitamin D and calcium supplementation on
bone health and, in particular, on the possible reduction of the risk of fractures has long
been the subject of controversy, given the very contradictory results of the data available
so far [79–83]. Recently, a large-scale multicenter study questioned the usefulness of
supplementation with vitamin D and/or calcium salts in preventing the risk of bone
fractures in people with osteoporosis [84].

Anyway, as far as it concerns the UL risk, most of the clinical trials did not show any
significant association between vitamin D and calcium supplementation and the risk of
developing the urinary stone disease, at least in the general population. (This aspect will
be discussed below).

4. Suggestions for Vitamin D and/or Calcium Supplementation in UL Patients

As previously discussed, the finding of low bone mass is particularly frequent in SF
patients, particularly those presenting with HC [40,43,50,55–57,59]. Furthermore, it has
been reported that subjects with a history of UL are particularly prone to sustaining bone
fractures, with a fracture incidence reported over an observation period of up to 30 years
almost four times higher than that observed in subjects without UL, matched for age and
sex [58]. Additionally, vitamin D deficiency or insufficiency has been reported to be more
frequent in UL patients than in the general population, with nearly 90% to 30% of SF
patients having 25-OH-vit D3 levels lower than 30 and 12 ng/mL, respectively [85].

Since SF patients are also more prone to develop CV disease, it has also been claimed
that vitamin D administration, thanks to its alleged CVD protective effects, could play a
preventing role against this type of complication [86].

In addition, as if that were not enough, some experimental data suggested that in-
flammation, oxidative stress, and angiogenesis are involved in the development of the UL
process. Hence, the putative anti-inflammatory, antioxidant, and antiangiogenetic activity
of vitamin D could even help in preventing the lithogenic process itself [87,88].

Based on all these considerations, we can argue that SF subjects may be easily expected
to be an ideal target for the prescription of vitamin D.

On the other hand, we cannot forget that SF subjects, as previously discussed, are often
characterized by increased calcium and oxalate excretion in their urine and that vitamin D
and/or calcium supplementations can also concur to increase urinary calcium.

However, most, though not all, of the few randomized controlled trials reporting on
the occurrence of UL events in subjects exposed to vitamin D and calcium supplementations
gave an apparently reassuring message (Table 1): they claim no substantial difference in
the occurrence of UL in the treated as compared with the untreated patients.

However, it is worth making substantial considerations about some specific limitations
of these studies [89–92].

First, most of these studies have been carried out in elderly, mainly female subjects
and these are not the hallmarks of a typical population of patients with UL who are usually
young or middle-aged adults and more frequently males.

Second, the duration of all the studies that reported no difference in UL occurrence
was lower than 3 years, so it cannot be excluded that with a longer observation period,
some difference between treated and untreated cohorts could have been observed.

Finally, it is not clear how many of the included patients had a history of previous
UL events; so, it is quite arbitrary to draw any conclusion on what could be the
risk of UL occurrence when such supplementations are prescribed to patients who
already had one or more UL event, which represents the real medical problem in this
clinical scenario.
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Table 1. Characteristics and results of the main studies reporting on the effects of vitamin D, with or without calcium supplementation, on UL events.

Authors Type of Study Number and Characteristics of
Patients Type of Intervention Study Duration Bone-Related Outcomes UL Events

Jackson RD New Eng J Med
2006 [92]

Wallace RB et al. Am J Clin
Nutr 2011 [93]

RCT 36,282 postmenopausal
women aged 50–79 y

500 mg calcium carbonate plus
200 IU vitamin D3 twice daily

(1000 mg and 400 IU daily,
respectively), vs. a
matching placebo

84 months No significant difference
in fracture rate

Significantly higher number
of UL events in trated group

Malihi Z, et al. Am J Clin
Nutr 2016 [84] RCT

5108 participants; age
65.9 ± 8.3 y; females 41.9%;

no history of UL

monthly 100,000 IU vitamin D3
supplementation vs. placebo 39 months Not reported

No statistically significant
difference in UL events

between treated and
placebo groups

Ferraro PM et al. J Urol
2017 [85]

Observational
prospective study

HPFS: 51,529 male health
professional; age 40–75 y Divided into categories

according to
dietary vitamin D intake (<100,

100–199, 200–399, 400–599,
600–999, ≥1000 IU/day)

and
supplemental vitamin D (none,

<400, 400–599, 600–999,
≥1000 IU/day)

HPFS: from 1986 to 2012

Not reported

HPFS: no association of
dietary, or supplemental, or
total vitamin D intake with

UL occurrence

NHS I: 121,700 female nurses;
age 30–55 y NHS I: from 1986 to 2012

NHS I: no association of
dietary, or supplemental, or
total vitamin D intake with

UL occurrence

NHS II: 116,430 female nurses;
age 25–42 y NHS II: from 1991 to 2011

NHS II: supplemental vitamin
D intake, but not dietary, or
total vitamin D intake, was
associated to UL occurrence

Aspray TJ et al.
Am J Clin Nutr 2019 [86] RCT 379 adults aged ≥70 y

(48% women; mean age:75 y)

randomly allocated to 1 of 3
doses of vitamin D3

[12,000 international units (IU),
24,000 IU, or 48,000 IU] given

once a month

12 months

Marginal changes in BMD
at hip and FN; no

difference between
treatment groups

No UL event

Johnson KC et al. Eur J Clin
Nutr 2022 [87] RCT

2423 overweight/obese persons
with prediabetes; age 60 ± 10 y

women 44.8%

Daily 4000 IU of vitamin
D3 vs. placebo 36 months Not reported

No statistically significant
difference in UL events

between treated and
placebo groups

Notes: BMD, bone mineral density; FN, femoral neck; HPFS, health professional follow-up study; IU, international unit; NHS, nurses’ health study; RCT, randomized controlled trial;
UL, urolithiasis.
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5. Risks for Vitamin D and/or Calcium Supplementation in UL Patients

Based on the previous reported data, the rationale for fearing an increase in the risk of
UL when vitamin D and/or calcium supplementations are prescribed to a patient with a
history of kidney stones is quite strong, particularly in those patients with HC of any type.

In fact, calcium supplementation, particularly when given outside the meals, can
increase the amount of calcium absorbed in the intestine, leaving more oxalate free for
being absorbed. This results in both increased urinary excretion of calcium and a possible
increased urinary oxalate (Figure 2). On the other hand, vitamin D supplementation can
increase either calcium, oxalate, and phosphate intestinal absorption, with the consequent
increased urinary excretion of all these three components and, hence, a potential increase
in the relative saturation of both calcium-oxalate and calcium-phosphate salts (Figure 3).

This is reinforced by many experimental and observational data. We will limit our-
selves to quoting just some more recent findings supporting the concept of the potential
increased lithogenic risk associated with vitamin D and/or calcium supplementation.

An elegant experimental study was carried out in mice KO for the ABCC6 gene, which
codifies for a transporter protein that increases the extracellular availability of pyrophos-
phate, one of the most potent inhibitors of ectopic calcification. The authors concluded
that vitamin D and calcium supplementation accelerates the formation of Randall’s Plaque,
which represent the starting point of the lithiasis process for calcium oxalate [93,94].

In an experimental study performed on 33 SF patients, who had 25(OH)D levels lower
than 20 ng/mL, the supplementation with cholecalciferol, directed to effectively normalize
25(OH)VitD serum levels (form 11.8 ± 5.5 to 40.2 ± 12.2 ng/mL), resulted in a striking
increase of urine supersaturation of both calcium oxalate and brushite [95].

A recent review and meta-analysis, which included 32 observational studies involving
23,228 participants, reported that SF subjects with HC have increased levels of circulating
1,25(OH)VitD3 and 25(OH)VitD3 compared with controls and SF subjects without HC [96].

Even more importantly, a large randomized controlled trial was designed for exploring
the long-term (follow-up of 7 years) effects of vitamin D and calcium supplementations
and carried out in 36,282 post-menopausal women. The results showed that the number of
UL episodes was significantly higher in the group who received vitamin D and calcium
supplementations as compared with the placebo-treated patients (Table 1) [80,97].

Another point that deserves particular attention is the reported susceptibility of some
subjects to the toxic effects of vitamin D due to some genetic variants of genes involved in
vitamin D metabolism or activity.

In their seminal study, Schlingmann and co-workers found recessive mutations in
CYP24A1, the gene encoding 25-hydroxyvitamin D 24-hydroxylase, the key enzyme
involved in the degradation of 1,25-dihydroxy vitamin D3, in six children with sponta-
neous hypercalcemia and also in a cohort of neonates in whom severe hypercalcemia
developed after vitamin D administration [98]. Since then, many studies have reported a
strong association between an increased risk of forming urinary stones and some genetic
variants in the CYP24A1 gene, VDR gene polymorphisms, or other genetic variants of
some specific solute transporters (SLC34A1, SLC34A3), suggesting that some individ-
uals may be more prone than others to suffer from pro-lithogenic effects of vitamin D
administration [99–105].

These new findings have prompted some colleagues to suggest that it could be appro-
priate to apply a nutrigenetic and nutrigenomics approach when prescribing a diet and/or
supplements in UL patients [106].

Based on this pathophysiological background, many authors expressed their concern
about prescribing such supplementations to SF patients, particularly for those who are also
hypercalciuric [107–109].

6. Conclusive Remarks

Trying to draw some definitive conclusions on the safety of vitamin D and/or calcium
supplementation within the cohort of kidney stone formers, we should first premise that
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there is no clear evidence that vitamin D and calcium supplementations are responsible for
or free from potential negative effects on the risk of promoting the occurrence of UL in the
general population.

The shortage of consistent and solid information on such a critical issue is even
greater dealing with patients who have a history of UL, since these patients have been
only occasionally included in most of the largest controlled trials carried out, despite
their being frequent recipients of such prescriptions, given their high propensity to suffer
from osteoporosis.

One should also consider that, even if recent studies cast some doubt on the efficacy
of vitamin D and calcium supplementation on bone health, it is not easy to accept not
correcting severe deficiency of vitamin D, even in subjects with a history of UL and with a
contemporary high risk for bone fractures.

In these cases, it is a hard job for any doctor to balance the potential risk for the bone
on the one hand and the risk for kidney stone formation on the other hand. Consequently,
the question already raised by Sundeep Khosla more than ten years ago [110] on what the
practical approach for these patients should be remains unanswered.

Without any presumption of wanting to give any guideline on this topic, we will limit
ourselves to sharing with the reader our pragmatic approach to this issue.

First, we consider the strength of the indications for prescribing vitamin D and calcium
supplementation, which, in our opinion, are represented by a severe reduction of BMD
(T-score < −2.5) and/or vitamin D levels lower than 15 ng/mL and/or chronic and severe
malabsorptive diseases.

If there are indications for treatment, we should evaluate in each subject the risk of
developing UL or, if the patient is already a SF, his/her risk of recurrence, with the aid of
the nomogram published by Rule and collaborators a few years ago [111].

Figure 4 illustrates our model of UL risk stratification of subjects in whom there is a
strong indication to prescribe vitamin D and/or calcium supplements and the actions we
suggest being taken.
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Given the questionability of that pragmatic algorithm, we also suggest repeating this
evaluation in each individual case over time, weighing the benefit–risk ratio. Namely, the
effectiveness of the treatment on bone health parameters should be compared to safety
parameters, in particular regarding the lithiasis risk, evaluating the changes in urinary
calcium excretion and/or the appearance of hypercalcemia or a de novo occurrence or the
relapse of lithiasis event.

Usually, at the end of most of the reviews on controversial topics, the authors suggest
and wish for the start of dedicated trials. However, since we are well aware of the difficulties
existing today for such studies to begin, we hope that a more systematic and shared
collection of clinical follow-up data of patients with UL, submitted to treatments with
supplementations of vitamin D and/or calcium, could be put into action, possibly sharing
some preventive protocols.

This could improve the knowledge of physicians in this field of clinical practice,
hopefully improving, also, the efficacy of care of such patients.
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