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Abstract. We consider the Dirichlet eigenvalues of the fractional Laplacian (−∆)s, with
s ∈ (0, 1), related to a smooth bounded domain Ω. We prove that there exists an arbitrarily

small perturbation Ω̃ = (I +ψ)(Ω) of the original domain such that all Dirichlet eigenvalues

of the fractional Laplacian associated to Ω̃ are simple. As a consequence we obtain that all
Dirichlet eigenvalues of the fractional Laplacian on an interval are simple. In addition, we
prove that for a generic choice of parameters all the eigenvalues of some non-local operators
are also simple.

1. Introduction and statement of the result

The present paper is concerned with the Dirichlet eigenvalue fractional problem

(−∆)sϕ = λϕ in Ω, ϕ = 0 in Rn r Ω. (1.1)

Here Ω is a bounded C1,1 domain in Rn with n ≥ 1 and (−∆)s with s ∈ (0, 1) is the
fractional Laplacian defined, for u ∈ C2

c (Rn), as

(−∆)su = Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dx = Cn,s lim

ε→0+

∫
RnrBε(x)

u(x)− u(y)

|x− y|n+2s
dx,

where Cn,s := s4s Γ(s+n/2)

πn/2Γ(1−s) is a renormalization constant and Bε(x) is the ball of radius ε

centered in x.
To avoid a priori regularity assumptions, we consider the eigenvalue problem in a weak

sense. We consider the space

Hs0(Ω) := {u ∈ Hs(Rn) : u ≡ 0 on Ωc} ,
where

Hs(Rn) :=

{
u ∈ L2(Rn) :

u(x)− u(y)

|x− y|
n
2

+s
∈ L2(Rn × Rn)

}
.

On Hs0(Ω) we consider the quadratic form

(u, v) 7→ EΩ
s (u, v) :=

Cn,s
2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

Then, we call ϕs ∈ Hs0(Ω) an eigenfunction corresponding to the eigenvalue λ if

EΩ
s (ϕs, v) = λ

∫
Rn
ϕsvdx ∀v ∈ Hs0(Ω).
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In the following, to simplify notation, we will omit the renormalization constant Cn,s.
It is well known (see e.g. [1] and the reference therein for an exhaustive introduction about

these topics) that (1.2) admits an ordered sequence of eigenvalues

0 < λ1,s < λ2,s ≤ λ3,s ≤ · · · ≤ λ1,s ≤ · · · → +∞.

Since the first eigenvalue is strictly positive, we can endow Hs0(Ω) with the norm

‖u‖2Hs0(Ω) = EΩ
s (u, u).

In the local case, i.e. s = 1, it is well known (see [8, 9]) that all the eigenvalues are simple
for generic domains Ω.

It is natural to ask if the same results hold true in the non-local case, i.e. s ∈ (0, 1). As
far as we know, there are only two results dealing with the simplicity issue. Very recently,
in [2] the authors prove the simplicity of radial eigenvalues in a ball or an annulus. In [5, 6],
the authors prove that all the eigenvalues of the fractional Laplacian (−∆)s with s ∈ [1/2, 1)
in the interval Ω = (−1, 1) are simple. However, to our knowledge, the simplicity eigenvalues
on an interval for all s ∈ (0, 1) remains an open problem. The present paper solves this open
question, as a consequence of our main result.

To study domain perturbations we will consider the space

C1(Rn,Rn) := {ψ : Rn → Rn : ψ, Dψ continuous and bounded}

endowed with the norm

‖ψ‖1 = sup
x∈Rn

(|ψ(x)|+ |Dψ(x)|) .

The first question is: if λ̄ is an eigenvalue of multiplicity ν > 1 of the operator (−∆)sΩ
associated with the domain Ω with Dirichlet boundary condition, and U is an interval such
that the intersection of the spectrum of (−∆)sΩ with U consist of the only number λ̄, there
exists a perturbation Ωψ = (I + ψ)(Ω) of the domain Ω such that the intersection of the
spectrum of (−∆)sΩψ with the interval U consists exactly of ν simple eigenvalues of (−∆)sΩψ?

Consequently, a second question arises: do there exist any perturbed domains Ωψ = (I+ψ)(Ω)
such that all the eigenvalues of (−∆)sΩψ are simple?

The answer is affirmative and our main result reads as follows.

Theorem 1. Let s ∈ (0, 1). Let Ω be a smooth bounded domain with C1,1 boundary. Then
for any ε > 0 there exists ψ ∈ C1(Rn,Rn), with ‖ψ‖C1 < ε, such that all the eigenvalues of
the problem

(−∆)sϕ = λϕ in Ωψ = (I + ψ)(Ω), ϕ = 0 in Rn r Ωψ

are simple.

In other words, it can be said that all the eigenvalues of the problem (1.1) are simple for
generic domains Ω, where with generic we mean that, given a domain Ω, there exists at least
an arbitrarily close domain Ω̃ = (I + ψ)Ω for which all eigenvalues of (1.1) are simple. As a
consequence of Theorem 1, we obtain the simplicity of eigenvalues of the fractional laplacian
on intervals.

Corollary 2. Let s ∈ (0, 1). Then all eigenvalues of the eigenvalue problem

(−∆)sϕ = λϕ in (−1, 1), ϕ = 0 in Rr (−1, 1)

are simple.
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Corollary 2 follows from Theorem 1 which implies that there exists an open interval Ω̃ (a
perturbation of an open bounded interval Ω) such that all its Dirichlet eigenvalues are simple.
Since the dimension of the eigenspaces are invariant under scaling and translation, Corollary
2 follows immediately.

In the spirit of Theorem 1, we obtain a similar result considering Dirichlet eigenvalue
fractional problem with nonconstant coefficients of the type

(−∆)sϕ+ a(x)ϕ = λϕ in Ω, ϕ = 0 in Rn r Ω (1.2)

and

(−∆)sϕ = λα(x)ϕ in Ω, ϕ = 0 in Rn r Ω, (1.3)

where a, α ∈ C0(Rn). Again, if (−∆)s + a(x)I is a positive operator (e.g. minΩ a > 0 or
‖a‖C0(Ω) is small enough) or minΩ α > 0, from a (fractional analogue) of Rellich’s compact-
ness lemma it is quite standard to deduce that there is an unbounded ordered sequence of
eigenvalues (λi)i∈N (see [1, 3] and the references therein) and that each eigenvalue has finite
multiplicity and the first one is simple.

In the local case, simplicity of the eigenvalues with respect to a perturbation of the coeffi-
cients where proved in [11] and we are able to show the nonlocal counterpart of this result. In
particular, we prove that all the eigenvalues of (1.2) and (1.3) are simple for generic functions
a and α, respectively, in this two results.

Theorem 3. Let a ∈ C0(Rn) such that minΩ a > 0 or ‖a‖C0(Ω) is small enough. For any

ε > 0 there exists b ∈ C0(Rn), with ‖b‖C0 < ε, such that all the eigenvalues of the problem

(−∆)sϕ+ (a(x) + b(x))ϕ = λϕ in Ω, ϕ = 0 in Rn r Ω

are simple.

Theorem 4. Let α ∈ C0(Rn) such that minΩ α > 0. For any ε > 0 there exists β ∈ C0(Rn),
with ‖β‖C0 < ε, such that all the eigenvalues of the problem

(−∆)sϕ = λ (α(x) + β(x))ϕ in Ω, ϕ = 0 in Rn r Ω

are simple.

Remark 1.1. It would be interesting to study eigenvalues problems associated with higher
order fractional laplacians (i.e. s > 1). However, a lot of work should be done starting from
the choice of the spaces and the boundary conditions. For example the bilaplacian operator
(i.e. s = 2) can be considered with both Navier (i.e. u = ∆u = 0 on ∂Ω) or Dirichlet (i.e.
u = ∂νu = 0 on ∂Ω) boundary conditions. Moreover, a suitable version of Lemma 15 which is
a key point in our proof would be needed and this is far from being avalaible and understood.

The strategy of the proofs of the above theorems relies on an abstract result which is
presented in Section 3. In particular, Theorem 13 provides us a so called splitting condition,
which is crucial to find the perturbation term ψ (or b,β) for which all eigenvalues are simple
as claimed in Theorem 1 (Th. 3 and Th. 4, respectively). We will give a detailed proof of
Theorem 1 from Section 2 to Section 5. In this part Lemma 15 plays a crucial role. In Section
6 and in Section 7 we will only describe the main steps to get Theorem 3 and Theorem 4.

Acknowledgments. The authors would like to thank Matteo Cozzi, Nicola Soave and En-
rico Valdinoci for some helpful discussions. The authors also wish to thank the referee for
the careful reading of the paper.
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2. Domain perturbations

In this section we study how a perturbation of the domain affects the multiplicity of
eigenvalues. The main point is, given a smooth perturbation of the domain of the form I+ψ,

to introduce, by a suitable change of variables, the bilinear form Bψs in (2.1) to which we
apply the splitting condition of Theorem 13. The problem of the splitting of the eigenvalues
with respect to domain perturbation was studied for the standard Laplacian in [4,7–9], from
which we derive this strategy and which we refer to for a bibliography on the subject.

For a function ψ ∈ C1(Rn,Rn), we define

Ωψ := (I + ψ)Ω.

If ‖ψ‖C1 ≤ L for some L < 1 then (I + ψ) is invertible on Ωψ with inverse mapping
(I + ψ)−1 = I + χ. In the following we always consider ψ ∈ C1(Rn,Rn) with ‖ψ‖C1 ≤ L.
Also, we denote JI+ψ as the Jacobian determinant of the mapping I + ψ. Whenever no
ambiguity is possible, we use also the short notation Jψ := JI+ψ.

Remark 5. It is well known that, if ψ is sufficiently regular, the following expansion holds for
ε small

JI+εψ = 1 + εdivψ + ε2a2 + · · ·+ εnan

for suitable ai.

By the change of variables given by the mapping (I+ψ), and denoted ũ(ξ) := u(ξ+ψ(ξ)),

we obtain the bilinear form Bψs on Hs0(Ω)

EΩψ
s (u, v) =

1

2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy

=
1

2

∫
Rn

∫
Rn

(ũ(ξ)− ũ(η))(ṽ(ξ)− ṽ(η))

|ξ − η + ψ(ξ)− ψ(η)|n+2s
Jψ(ξ)Jψ(η)dξdη

=: Bψs (ũ, ṽ), (2.1)

for ũ, ṽ ∈ Hs0(Ω). Notice that B0
s(ũ, ṽ) = EΩ

s (ũ, ṽ).
At this point, one can prove by direct computation the following result.

Lemma 6. Let ψ ∈ C1, and take ũ ∈ Hs0(Ω). Then

Bψs (ũ, ũ) = EΩψ
s (u, u) ≤ C1

[
EΩ
s (ũ, ũ) + ‖ũ‖L2(Ω)

]
≤ C2EΩ

s (ũ, ũ)

for some positive contants C1, C2.

Remark 7. Let us define the map

γψ : Hs0(Ωψ)→ Hs0(Ω);

γψ(u) := ũ(ξ) = u(ξ + ψ(ξ)).

By the previous lemma we have that, if ‖ψ‖C1 is sufficiently small the following maps are
continuous isomorphisms

γψ : Hs0(Ωψ)→ Hs0(Ω)

γ−1
ψ = γχ : Hs0(Ω)→ Hs0(Ωψ).

In addition Bψs (ũ, ṽ) is a scalar product on Hs0(Ω), and the norm induced by Bψs (·, ·) is
equivalent to the one induced by EΩ

s (·, ·).
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It is well known that the embedding i : Hs0(Ω) → L2(Ω) is compact, so we consider the
adjoint operator, with respect to EΩ

s ,

i∗ : L2(Ω)→ Hs0(Ω).

The composition EΩ := (i∗ ◦ i)Ω : Hs0(Ω) → Hs0(Ω) is selfadjoint, compact, injective with
dense image in Hs0(Ω) and it holds

EΩ
s ((i∗ ◦ i)Ωv, u) =

∫
Ω
uv. (2.2)

Remark 8. If ϕk ∈ Hs0(Ω) is an eigenfunction of the fractional Laplacian with eigenvalue λk,
then ϕk is an eigenfunction of (i∗ ◦ i)Ω with eigenvalue µΩ

k := 1/λk. In fact, it holds

EΩ
s (ϕk, v) = λk

∫
Rn
ϕkvdx =

∫
Rn
λkϕkvdx = EΩ

s (λk(i
∗ ◦ i)Ωϕk, v) ,

thus λk(i
∗ ◦ i)Ωϕk = ϕk.

We recall two min-max characterizations of eigenvalues µΩ
k . We have that

µΩ
1 := sup

u∈HsΩr{0}

∫
Ω u

2dx

EΩ
s (u, u)

; µΩ
ν := sup

u ∈ HsΩ r {0}
EΩ
s (u, et) = 0

t = 1, . . . ν − 1

∫
Ω u

2dx

EΩ
s (u, u)

;

where (i∗ ◦ i)Ωet = µΩ
t et; equivalently,

µΩ
ν := inf

V={v1,...,vν−1}
sup

u ∈ HsΩ r {0}
EΩ
s (u, vt) = 0

t = 1, . . . ν − 1

∫
Ω u

2dx

EΩ
s (u, u)

.

By this characterization, and by (2.1), it is easy to prove the following result

Lemma 9. Every eigenvalue µk of the operator Eψ := EΩψ is continuous at 0 with respect

to ψ ∈ C1(Rn,Rn).

Finally, since in Remark 8 we proved that if ϕk is an eigenfuntion of (−∆)s with Dirichlet
boundary conditions on Ωψ with eigenvalue λk, then ϕk is an eigenfunction of Eψ with
eigenvalue µk := 1/λk, to obtain the main result of this paper, we study the multiplicity of
the eigenvalues µk of the operator Eψ. For this purpose, in the next section we collect an
abstract result which we will apply to the operator Eψ.

3. An abstract result

We recall a series of abstract results which holds in general in a Hilbert space X endowed
with scalar product < ·, · >X . Later, in the paper, we will apply these abstract results to
derive a splitting condition for multiple eigenvalues. The proof of these results, are contained
in [9, Section 2]. However, to make this paper self contained, we recall them in the following.

Let

Fij := {A ∈ L(X,X) : codim ImA = i and dim kerA = j}
be the set of Fredholm operator with indices i and j in the Banach space L(X,X) :=
{A : X → X : A linear and continuous}.
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We show first that Fij is a smooth submanifold of codimension ij in L(X,X). It is well
known that if A ∈ Fij , there exist closed subspaces V,W ⊂ X such that

X = kerA⊕ V and X = W ⊕ ImA.

Let us call P,Q, P̄ and Q̄ the projector on kerA, V,W, ImA, respectively. It holds

Lemma 10. We have

L(X,X) = L⊕ V,
where

V := {T ∈ L(X,X) : T (kerA) ⊂ ImA}
L :=

{
P̄HP ∈ L(X,X) with H ∈ L(X,X)

}
.

Proof. The claim can be showed immediately noticing that T = P̄ TP + Q̄TQ+ P̄ TQ+ Q̄TP
and that Q̄TQ+ P̄ TQ+ Q̄TP ∈ V. �

Lemma 11. We have that Fij is an analytic submanifold of L(X,X). In addition, for any
A ∈ L(X,X), the tangent space in A to Fij, TAFij = V.

The proof of this result is postponed to appendix. Here we limit ourselves to give the main
idea. Given A0 ∈ Fij , and given H such that A0 + H still belongs to Fij , it is possible to
write H = P̄HP + f(V ) where V ∈ V and f is an analytic function. Then Fij near A0 is a
smooth graph on V.

Lemma 12. Let A ∈ Fij such that kerA 6⊂ ImA. Then

M = {A+H + λI ∈ L(X,X) : λ ∈ R, A+H ∈ Fij and H suff. small}
is an analytic manifold at A + λI, and TA+λIM = V ⊕ Span < I > where TA+λIM is the
tangent space in A+ λI to M .

Proof. By definition of V, we have that I ∈ V if and only if kerA ⊂ ImA, which is not possible
by our hypothesis on A. Thus, by Lemma 11 we have that M is a ruled manifold and the
thesis follows immediately. �

We can recast the previous result considering T : X → X a selfadjoint compact operator
with an eigenvalue λ̄ with multiplicity ν. By Riesz theorem we have that T − λ̄I ∈ Fνν and
that ker(T − λ̄I)∩ Im(T − λ̄I) = {0}. Moreover by Lemma 12 if U is a suitable neighborhood
of T − λ̄I we have that

M̃ =
{
T̃ + λI ∈ L(X,X) : λ ∈ R and T̃ ∈ Fνν ∩ U

}
is a smooth manifold and TT−λ̄IM̃ = Ṽ ⊕ Span < I > where

Ṽ =
{
H ∈ L(X,X) : H(ker(T − λ̄I)) ⊂ Im(T − λ̄I)

}
. (3.1)

At this point we are in position to enunciate the main result of this section.

Theorem 13. Let Tb : X → X be a selfadjoint compact operator which depends smoothly
on a parameter b belonging to a real Banach space B. Let T0 = T and let Tb be Frechet
differentiable in b = 0. Let x0

1, . . . , x
0
ν be an orthonormal basis for the eigenspace relative

to the eigenvalue λ̄ of T . If Tb ∈ M̃ for all b with ‖b‖C0 small, then for all b there exist a
ρ = ρ(b) ∈ R such that 〈

T ′(0)[b]x0
j , x

0
i

〉
X

= ρδij for i, j = 1, . . . , ν. (3.2)
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Proof. By Lemma 12 we have that, if Tb ∈ M̃ for all b, then

T ′(0)[b] ∈ Ṽ ⊕ Span < I > .

So, by (3.1), for all b, there exists λ̄(b) ∈ R, such that[
T ′(0)[b]− λ̄(b)I

]
(ker(T − λ̄I)) ⊂ Im(T − λ̄I),

that is 〈[
T ′(0)[b]− λ̄(b)I

]
x0
j , x

0
i

〉
X

= 0

for all i, j = 1, . . . , ν, which implies (3.2). �

This theorem says that if condition (3.2) is fulfilled, then the eigenvalue λ̄(b) has still
multiplicity ν in a neighborhood of b = 0.

4. Splitting of a single eigenvalue

We recall that Eψ = (i∗ ◦ i)Ωψ . Also, by (2.2), and by the definition of ũ we have

EΩψ
s (Eψu, v) =< u, v >L2(Ωψ)=

∫
Ω
ũṽJψ.

By the definition of Bψs , we can rewrite the previous formula as

Bψs (γψEψu, ṽ) = EΩψ
s (Eψv, u) =

∫
Ω
ũṽJψ.

Set

Tψũ := γψEψγ
−1
ψ ũ, (4.1)

we get that Tψ : Hs0(Ω)→ Hs0(Ω) is a compact selfadjoint operator such that

Bψs (Tψũ, ṽ) =

∫
Ω
ũṽJψ

for all ψ.

Remark 14. One can prove that Tψ and Bψs are differentiable in the ψ variable at 0. Then it
holds (

Bψs
)′

(0)[ψ](T0ũ, ṽ) + B0
s(T

′
ψ(0)[ψ]ũ, ṽ) =

∫
Ω
ũṽdivψ. (4.2)

Lemma 15. Let ũ, ṽ ∈ Hs0(Ω) such that (−∆)sũ, (−∆)sṽ ∈ Cαloc(Ω) ∩ L∞(Ω) with α >
(1− 2s)+. Then(
Bψs
)′

(0)[ψ](ũ, ṽ) = −Γ2(1+s)

∫
∂Ω

ũ

δs
ṽ

δs
ψ ·Ndσ−

∫
Ω

[∇ũ·ψ(−∆)sṽ+∇ṽ ·ψ(−∆)sũ]dx (4.3)

where δ(x) = dist(x,Rn r Ω) and N is the exterior normal of Ω.

Proof. If ‖ψ‖C1 is small, by direct computation we have that(
Bψs
)′

(0)[ψ](ũ, ṽ) =

1

2

∫
Rn

∫
Rn

(ũ(η)− ũ(ξ))(ṽ(η)− ṽ(ξ))

|ξ − η|n+2s

{
divψ(ξ) + divψ(η)− (n+ 2s)(ξ − η) · (ψ(ξ)− ψ(η))

|ξ − η|2

}
dξdη

=

∫
Rn

∫
Rn

(ũ(η)− ũ(ξ))(ṽ(η)− ṽ(ξ))K(ξ, η)dξdη, (4.4)
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where

K(ξ, η) :=
1

2

{
divψ(ξ) + divψ(η)− (n+ 2s)(ξ − η) · (ψ(ξ)− ψ(η))

|ξ − η|2

}
1

|ξ − η|n+2s
.

At this point we use the result of Theorem 1.3 of [2] which allows to compute integrals of the
form of (4.4) and we obtain the conclusion. �

We want to apply the previous result to eigenfunctions of (−∆)s on Ω with Dirichlet bound-
ary conditions. We recall that, by Remark 8, this is equivalent to consider eigenfunctions of
the operator T0.

Corollary 16. Let u, v ∈ Hs0(Ω) satisfy T0u = 1
λ0
u, and T0v = 1

λ0
v. Then we have(

Bψs
)′

(0)[ψ](T0u, v) = −Γ2(1 + s)

λ0

∫
∂Ω

u

δs
v

δs
ψ ·N dσ +

∫
Ω
uvdiv(ψ)dx.

Proof. By elliptic regularity the eigenfunctions belongs to Cαloc(Ω)∩L∞(Ω) with α > (1−2s)+.
Then, by Lemma 15 we have(

Bψs
)′

(0)[ψ](T0u, v) =− Γ2(1 + s)

λ0

∫
∂Ω

u

δs
v

δs
ψ ·N dσ

− 1

λ0

∫
Ω
∇u · ψ(−∆)sv dx− 1

λ0

∫
Ω
∇v · ψ(−∆)su dx

Combining this with Remark 8 and integration by parts, we obtain(
Bψs
)′

(0)[ψ](T0u, v) = −Γ2(1 + s)

λ0

∫
∂Ω

u

δs
v

δs
ψ ·N dσ −

∫
Ω
∇u · ψv dx−

∫
Ω
∇v · ψudx

= −Γ2(1 + s)

λ0

∫
∂Ω

u

δs
v

δs
ψ ·N dσ +

∫
Ω
uvdiv(ψ)dx,

as desired. �

Now we apply Theorem 13 to the operator Tψ defined in (4.1). This is the fundamental
block to prove Theorem 1.

Let µ0 be an eigenvalue of T0 = EΩ = (i∗ ◦ i)Ω which has multiplicity ν > 1. If for all ψ
with ‖ψ‖C1 small, the operator Tψ has an eigenvalue µ(ψ) with multiplicity ν for all ψ and
such that µ(ψ)→ µ0 while ψ → 0, then Theorem 13 yields

B0
s(T

′
ψ(0)[ψ]ϕi, ϕj) = ρδij

for some ρ = ρ(ψ) ∈ R. Here {ϕi}i=1,...,ν is an orthonormal basis for the eigenspace µ(0).

This, in light of (4.2) and Corollary 16 can be recast as

ρδij = −
(
Bψs
)′

(0)[ψ](T0ϕi, ϕj) +

∫
Ω
ϕiϕjdivψdx

= Γ2(1 + s)µ0

∫
∂Ω

ϕi
δs
ϕj
δs
ψ ·N dσ. (4.5)

So, for all ψ with ‖ψ‖C1 small,∫
∂Ω

ϕi
δs
ϕj
δs
ψ ·N dσ = 0 for i 6= j;

∫
∂Ω

(ϕ1

δs

)2
ψ ·N dσ = · · · =

∫
∂Ω

(ϕν
δs

)2
ψ ·N dσ.
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This implies that (ϕiδs )2 ≡ 0 on ∂Ω for i = 1, . . . , ν. On the other hand, by the fractional
Pohozaev identity (see [10] and [2, formula (1.6)]),

Γ2(1 + s)

∫
∂Ω

(ϕi
δs

)2
x ·N dσ =

2s

µ0

∫
Ω
ϕ2
i dx =

2s

µ0
6= 0.

This leads to a contradiction and thus µ(ψ) cannot have multiplicity ν for all ψ with ‖ψ‖C1

small. This fact can be summarized in the next proposition, which is the main tool to prove
Theorem 1.

Proposition 17. Let λ̄ an eigenvalue of the operator (−∆)sΩ with Dirichlet boundary condi-
tion which has multiplicity ν > 1. Let U and open bounded interval such that

Ū ∩ σ ((−∆)sΩ) =
{
λ̄
}
,

where σ ((−∆)sΩ) is the spectrum of (−∆)sΩ.
Then, there exists ψ ∈ C1(Rn,Rn) with ‖ψ‖1 small enough such that for Ωψ = (I +ψ)Ω it

holds

Ū ∩ σ
(

(−∆)sΩψ

)
=
{
λ

Ωψ
1 , . . . , λ

Ωψ
k

}
,

where λ
Ωψ
i is an eigenvalue of the operator (−∆)sΩψ associated to the set Ωψ with Dirichlet

boundary condition. Here k > 1 and the multiplicity of λ
Ωψ
i is νi < ν with

∑k
i=1 νi = ν.

We recall that if ‖ψ‖C1 is small, the multiplicity of an eigenvalue λΩψ near λ̄ can only be
equal or smaller than the multiplicity of λ̄. Here, in Proposition 17, we proved the existence
of perturbations for which the multiplicity is strictly smaller.

The next corollary follows from Proposition 17, composing a finite number of perturbations.

Corollary 18. There exists ψ ∈ C1(Rn,Rn) with ‖ψ‖1 small enough such that for Ωψ =
(I + ψ)Ω it holds

Ū ∩ σ
(

(−∆)sΩψ

)
=
{
λ

Ωψ
1 , . . . , λ

Ωψ
ν

}
,

where λ
Ωψ
i is a simple eigenvalue of the operator (−∆)sΩψ associated to the set Ωψ with

Dirichlet boundary condition.

At this point we are in position to prove the main result of this paper.

5. Proof of Theorem 1

We start proving the following splitting property for a finite number of multiple eigenvalues.

Lemma 19. Given a sequence {σl} of positive real numbers there exists

• a sequence of bijective map {Fl} ∈ C1(Rn,Rn), Fl = (I + ψl) with ‖ψl‖C1 ≤ σl
• a sequence of open bounded C1 sets with Ω0 = Ω and Ωl = Fl(Ωl−1)
• a sequence of increasing integer numbers {ql} with ql ↗ +∞
• a sequence of open bounded intervals {Ut}t=1,...,ql

with Ūi ∩ Ūj = ∅ for i 6= j

such that the eigenvalues λΩl
i of the operator (−∆)sΩl are simple for i = 1, . . . , ql and λΩl

i ∈ Ui
for all i = 1, . . . , ql.

Proof. Take q ∈ N such that that λ1, . . . , λq are simple eigenvalues for (−∆)sΩ and that λq+1

is the first eigenvalue with multiplicity νq+1 > 1. For t = 1, . . . , q let Ut be open intervals
such that Ūi ∩ Ūj = ∅ for i 6= j and λt ∈ Ut. Let us take W an open interval such that
W̄ ∩ Ūt = ∅ for all t = 1, . . . , q and W̄ ∩ σ((−∆)sΩ) = {λq+1}. At this point, by Corollary 18
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we can choose ψ̄ such that W̄ ∩ σ((−∆)sΩψ̄
) contains exactly νq+1 simple eigenvalues. Also,

we can choose a number σq+1 sufficiently small, with ‖ψ̄‖C1 ≤ σq+1 so that λψ̄t ∈ Ut for all
t = 1, . . . , q, since the eigenvalues depends continuously on ψ. At this point, by iterating this
procedure a finite number of times we get the proof. �

Proof of Theorem 1. Let us take a sequence {σl} with 0 < σl <
1
4l

, and a sequence Fl =
(1 + ψl) associated to σl as in the previous theorem. We set

Fl = Fl ◦ Fl−1 ◦ · · · ◦ F1.

We can prove that, by the choice of σl, the sequence {Fl − I}l converges to some function ψ̄
in C1(Rn,Rn). In fact, by the previous lemma we have

‖Fi+1 −Fi‖∞ ≤ ‖ψi+1‖C1 <

(
1

4

)i+1

(5.1)

‖F ′i+1 −F ′i‖∞ ≤ ‖ψi+1‖C1‖F ′i‖∞ ≤
(

1

4

)i+1

‖F ′i‖∞. (5.2)

By induction, using 5.2, we can prove that

‖F ′i‖∞ ≤
(

1 +
1

4

)i
≤
(

5

4

)i
(5.3)

and, combining all these equation, that

‖Fi+1 −Fi‖C1 ≤ ‖ψi+1‖C1 ≤
(

1

4

)i+1(5

4

)i
(5.4)

and, by iterating, that, for all p ∈ N

‖Fi+p −Fi‖C1 ≤ ‖ψi‖C1 ≤
p∑
t=0

(
1

4

)i+t+1(5

4

)i+t
≤ 1

4

(
5

16

)i p∑
t=0

(
5

16

)t
→ 0 as i→∞. (5.5)

Thus the sequence {Fi − I} converges in C1 to some ψ̄ = F̄ − I and, by (5.5), ‖ψ̄‖C1 ≤ 1/2,
so F̄ is invertible.

We claim that all the eigenvalues (−∆)sΩψ̄
are simple. By contradiction, suppose that

there exists a q̄ such that λψ̄q̄ is the first multiple eigenvalue. Let us call Ωl = Fl(Ω) and

{λΩl
i }i the eigenvalues of (−∆)sΩl on Ωl with Dirichlet boundary conditions. By Theorem 19

we have that there exists an l ∈ N such that (−∆)sΩl has the first q̄ + 1 eigenvalues simple,

and that there exists U1, . . . , Uq̄+1 open intervals, with disjoint closure, such that λΩl
t ∈ Ut

for t = 1, . . . , q̄ + 1. On the one hand, λΩN
q̄ → λψ̄q̄ as well as λΩN

q̄+1 → λψ̄q̄ when N → ∞ by

continuity of the eigenvalues. On the other hand, λΩN
q̄ ∈ Uq̄ and λΩN

q̄+1 ∈ Uq̄+1 for all N , by

Theorem 19. So λψ̄q̄ = λψ̄q̄+1 ∈ Ūq̄ ∩ Ūq̄+1 which leads us to a contradiction, and the theorem
is proved. �
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6. Proof of Theorem 3

In this case we call

Ba(u, v) = E(u, v) +

∫
Rn
au2dx.

and, since min
Ω
a > 0 or ‖a‖C0(Ω) is small enough, we can endow Hs0(Ω) with the norm

‖u‖2Hs0(Ω) = Ba(u, u) = E(u, u) +

∫
Rn
au2dx.

We call ϕa ∈ Hs0(Ω) an eigenfunction of ((−∆)s + a) corresponding to the eigenvalue λa.
Given the embedding i : Hs0(Ω) → L2(Ω) we consider its adjoint operator, with respect to
the scalar product Ba,

i∗ : L2(Ω)→ Hs0(Ω).

It holds

Ba ((i∗ ◦ i)au, v) = E ((i∗ ◦ i)au, v) +

∫
Ω
au(i∗ ◦ i)av =

∫
Ω
uv, (6.1)

and, as before, if ϕak ∈ Hs0(Ω) is an eigenfunction of the fractional Laplacian with eigenvalue
λak, then ϕak is an eigenfunction of (i∗ ◦ i)a with eigenvalue µak := 1/λak.

In addiction (1.2) admits an ordered sequence of eigenvalues

0 < λa1 < λa2 ≤ λa3 ≤ · · · ≤ λak ≤ · · · → +∞

and all the eigenvalues λak depends continuously on a.

In the following, for b ∈ C0(Ω) with ‖b‖L∞ small enough we consider Ba+b and (i∗ ◦ i)a+b

and we put

Bb := Ba+b and Eb := (i∗ ◦ i)a+b. (6.2)

Similarly to what we proved in Section 4 we have the following lemma.

Lemma 20. The maps b 7→ Bb and b 7→ Eb are differentiable at 0 and it holds

(B′(0)[b]u, v) =

∫
Ω
buv,

0 =
(
B′(0)[b]E0u, v

)
+B0

(
E′(0)[b]u, v

)
. (6.3)

for all u, v ∈ Hs0(Ω).

Remark 21. Notice that, by Lemma 20 and by (6.3), it holds

−B0

(
E′(0)[b]u, v

)
=
(
B′(0)[b]E0u, v

)
=

∫
Ω
b(E0u)v =

∫
Ω
b [(i∗ ◦ i)au] v.

Remark 22. If µa = µ is an eigenvalue of the map E0 = (i∗ ◦ i)a with multiplicity ν > 1,
and ϕa1, . . . , ϕ

a
ν are orthonormal eigenvectors associated to µ, then, by the previous remark

we have (
B′(0)[b]E0ϕ

a
i , ϕ

a
j

)
=

∫
Ω
bE0(ϕai )ϕ

a
j = −µ

∫
Ω
bϕaiϕ

a
j ,

for all i, j = 1, . . . , ν.

Now we apply the condition (3.2) to prove the splitting property for a chosen multiple
eigenvalue.
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Proposition 23. Let a ∈ C0(Rn) be positive on Ω or with ‖a‖C0(Ω) sufficiently small. Let

λ̄ an eigenvalue of the operator (−∆)sΩ + aI on Hs0 with Dirichlet boundary condition with
multiplicity ν > 1. Let U be an open bounded interval such that

Ū ∩ σ ((−∆)sΩ + aI) =
{
λ̄
}
,

where σ ((−∆)sΩ + aI) is the spectrum of (−∆)sΩ + aI.
Then, there exists b ∈ C0(Rn) such that for

Ū ∩ σ ((−∆)sΩ + (a+ b)I) =
{
λb1, . . . , λ

b
k

}
,

where λbi is an eigenvalue of the operator (−∆)sΩ + (a+ b)I. Here k > 1 and the multiplicity

of λbi is νi with
∑k

i=1 νi = ν.

The next corollary follows from the previous proposition, after composing a finite number
of perturbations.

Corollary 24. There exists b ∈ C0(Rn) with ‖b‖C0 small enough such that

Ū ∩ σ ((−∆)sΩ + (a+ b)I) =
{
λb1, . . . , λ

b
ν

}
,

where λbi is a simple eigenvalue of the operator (−∆)sΩ + (a + b)I with Dirichlet boundary
condition.

Proof of Proposition 23. We apply Theorem 13 to the operator Eb = (i∗ ◦ i)a+b introduced
in (6.2).

If µa+b is an eigenvalue of Eb which has multiplicity ν at b = 0 and at any b with ‖b‖C0

small, then by condition (3.2) of Theorem 13 we have

B0(E′(0)[b]ϕi, ϕj) = ρδij for some ρ ∈ R,
where {ϕi}i=1,...,ν is an L2-orthonormal basis for the eigenspace relative to µa. Then, in light

of Remark 22, we should have that for any b ∈ C0 small, there exists ρ = ρ(b) such that

µa
∫

Ω
bϕiϕj = ρ(b)δij .

Then, in particular, we deduce that∫
Ω
bϕ1ϕ2 = 0 and

∫
Ω
bϕ2

1 =

∫
Ω
bϕ2

2 for all b ∈ C0.

Thus ϕ1ϕ2 ≡ 0 and ϕ2
1 ≡ ϕ2

2 almost everywhere in Ω. Thus ϕ1 ≡ ϕ2 ≡ 0 a.e. in Ω, which
leads us to a contradiction. Then there exists b ∈ C0 small such that the multiplicity of µa+b

is smaller that ν. Since the eigenvalue µa+b depends continuosly on b, given a neighborhood

U of µa, for ‖b‖C0 small we have that Ū ∩ σ(Eb) =
{
µa+b

1 , . . . , µa+b
k

}
with νi the multiplicity

of µa+b
i , and where

∑k
i=1 νi = ν, and k > 1. Remebering the definition of Eb and that

µa+b = 1/λa+b we have the claim. �

We proceed similarly as the proof of Theorem 1 to obtain Theorem 3

Lemma 25. Given a ∈ C0(Rn) as in the hypotesis of Theorem 3, and a sequence {σl} of
positive real numbers there esists

• a sequence of functions {bl} ∈ C0(Rn) with ‖bl‖C0 ≤ σl
• a sequence of increasing integer numbers {ql} with ql ↗ +∞
• a sequence of open bounded intervals {Ut}t=1,...,ql

with Ūi ∩ Ūj = ∅ for i 6= j
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such that the eigenvalues λ
a+

∑l
j=i bj

i of the operator (−∆)sΩ + (a +
∑l

j=i bj)I are simple for

i = 1, . . . , ql and λ
a+

∑l
j=i bj

i ∈ Ui for all i = 1, . . . , ql.

Proof. Take q ∈ N such that that λa1, . . . , λ
a
q are simple eigenvalues for (−∆)sΩ + aI and that

λaq+1 is the first eigenvalue with multiplicity νq+1. For t = 1, . . . , q let {Ut} open intervals such

that Ūi ∩ Ūj = ∅ for i 6= j and λat ∈ Ut. Let us take W an open interval such that W̄ ∩ Ūt = ∅
for all t = 1, . . . , q and W̄ ∩ σ((−∆)sΩ + aI) =

{
λaq+1

}
. At this point, by Corollary 24 we can

choose b̄ such that W̄ ∩ σ((−∆)sΩ + (a+ b̄)I contains exactly νq+1 simple eigenvalues. Also,

we can choose a number σq+1 sufficiently small, with ‖bq+1‖C0 ≤ σq+1 so that λa+b̄
t ∈ Ut for

all t = 1, . . . , q, since the eigenvalues depends continuosly on b. At this point, by iterating
this procedure a finite number of times we get the proof. �

At this point we can conclude.

Proof of Theorem 3. Let us take a sequence {σl} with 0 < σl <
1
2l

, and a sequence bl asso-
ciated to σl as in the previous theorem. By the choice of σl, we have that

∑
l bl converge to

some function b in C0(Rn). We claim that all the eigenvalues (−∆)sΩ +(a+b)I are simple. By

contradiction, suppose that there exists a q̄ such that λa+b
q̄ is the first multiple eigenvalue. By

Theorem 19 we have that (−∆)sΩ + (a+
∑q̄+1

l=1 bl)I has the first q̄+ 1 eigenvalues simple, and

that there exists U1, . . . , Uq̄+1 open intervals, with disjoint closure, such that λ
a+

∑q̄+1
l=1 bl

t ∈ Ut
for t = 1, . . . , q̄ + 1. On the one hand, λ

a+
∑N
l=1 bl

q̄ → λa+b
q̄ as well as λ

a+
∑N
l=1 bl

q̄+1 → λa+b
q̄

when N → ∞ by continuity of the eigenvalues. On the other and, λ
a+

∑N
l=1 bl

q̄ ∈ Uq̄ and

λ
a+

∑N
l=1 bl

q̄+1 ∈ Uq̄+1 for all N , by Theorem 19. So λa+b
q̄ = λa+b

q̄+1 ∈ Ūq̄ ∩ Ūq̄+1 which lead as to a
contradiction, and the theorem is proved. �

7. Sketch of the proof of Theorem 4.

In this section we adapt the abstract scheme to the last result of this paper. Since the
proof is very similar to the one of Theorem 3, we provide only the main tools.

Since α > 0 on Ω̄, we endow the space L2(Ω) with scalar product and norm given, respec-
tively, by

〈u, v〉L2 =

∫
Ω
αuv; ‖u‖2L2 =

∫
Ω
αu2,

while on Hs0 we consider the usual scalar product E(u, v). We consider the embedding i :
Hs0 → L2 and its adjoint operator i∗ : L2 → Hs0. Then we have

E((i∗ ◦ i)αv, u) =

∫
Ω
αuv ∀u, v ∈ Hs0.

As before, the map (i∗◦i)α is selfadjoint, compact and injective form Hs0 in itself. In addition,
is ϕα is an eigenfunction associated to the eigenvalue µα for (i∗ ◦ i)α, then

µa(−∆)sϕ = α(x)ϕs in Ω, ϕ = 0 in Rn r Ω,

thus λα = 1/µα is an eigenvalue with ϕα as eigenvector for Problem (1.3).
We want to prove that there exists β ∈ C0(Ω), with ‖β‖L∞ sufficiently small, such that

(i∗ ◦ i)α+β has all eigenvalues simple.
Set

Eβ := (i∗ ◦ i)α+β,
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we have the following Lemma

Lemma 26. The map β 7→ Eβ from a neighborhood of 0 in C0(Ω) to the space of linear
maps from Hs0(Ω) to Hs0(Ω) is continuous and differentiable at 0 and it holds

E(E′(0)[β]u, v) =

∫
Ω
βuv.

Proof. Since Λ1

∫
Ω u

2 ≤ E(u, u), and Λ1 > 0, where Λ1 is the first eigenvalue of (−∆)s, we
have ‖Eβu‖L2 ≤ c‖u‖L2 . Indeed

Λ1

∫
Ω

(Eβu)2 ≤ E(Eβu,Eβu) =

∫
Ω

(α+ β)uEbu ≤ c‖u‖L2‖Eβu‖L2 .

We can show now that E ((Eβ − E0)u, (Eβ − E0)u)→ 0 as ‖β‖L∞ → 0, proving the continuity
of β → Eβ at b = 0, in fact E ((Eβ − E0)u,w) =

∫
Ω βuw, so

E ((Eβ − E0)u, (Eβ − E0)u) =

∫
Ω
βu(Eβ−E0)u ≤ c‖β‖L∞‖u‖L2E ((Eβ − E0)u, (Eβ − E0)u)

1
2

which proves the claim.
Finally, given β ∈ C0(Ω) and u ∈ Hs0, there exists L(β, u) ∈ Hs0 such that∫

Ω
βuw = E (L(β, u), w) .

Thus, for any w ∈ Hs0 it holds

E ((Eβu− E0u− L(β, u)) , w) =

∫
Ω

(α+ β)uw −
∫

Ω
αuw −

∫
Ω
βuw ≡ 0.

Thus L(β, u) = E′(0)[β]u and E(E′(0)[β]u, v) =
∫

Ω βuv, as claimed. �

It remains to us to apply Theorem 13 to conclude the proof of Theorem 4.

Proof of Theorem 4. If µα is an eigenvalue of multiplicity ν > 1 of the operator (i∗ ◦ i)α = E0

and ϕα1 , . . . , ϕ
α
ν are orthonormal eigenfunctions associated to µα, the condition of non splitting

is that for any b with ‖β‖C0 small there exists ρ = ρ(β) ∈ R such that∫
Ω
βϕiϕj = ρδij , for all i, j = 1, . . . , ν.

At this point, the proof can be achieved as the proof of Theorem 3. �

8. Appendix

Proof of Lemma 11. It is known that the Fredholm operator of a given index is open in
L(X,X). So, if A0 ∈ Fij , then A0+H ∈ Fij (if H is small) if and only if dim (ker(A0 +H)) =
dim (ker(A0)), that is, if there exists j linearly independent solutions of (A0 +H)x = 0. By
means of the projections P,Q, P̄ , Q̄, this is equivalent to solve{

P̄Hx = 0
Q̄A0x+ Q̄Hx = 0

; (8.1)

Furthermore by Lemma 10, we can decompose H = Y + S + Z + T where Y = P̄HP ,
S = Q̄HP , Z = P̄HQ and T = Q̄HQ. Set x = u + v where u ∈ kerA0 and v ∈ V, we can
recast (8.1) as {

Y u+ Zv = 0
Q̄A0v + Su+ Tv = 0

. (8.2)
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Now, Q̄A0 : V → ImA is invertible, and let us call R its inverse. Then the second equation
of (8.2) becomes

v = −RSu−RTv.

If H is sufficiently small, then the operator w 7→ −RSu−RTw is a contraction from V to V.
Then we can find v as

v = −RSu−
∞∑
i=0

(−1)i (RT )iRSu.

Plugging this expression in (8.2) we obtain[
Y + Z

(
−RS −

∞∑
i=0

(−1)i (RT )iRS

)]
u = 0.

Recalling that u ∈ kerA0, we have that this equation has j linearly independent solutions if
and only if

Y = Z

(
RS +

∞∑
i=0

(−1)i (RT )iRS

)
.

Then, when H is small, the set {A0 +H ∈ Fij} is a graph of an analytic function with domain
V, and the claim follows easily. �
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(Angela Pistoia) Dipartimento SBAI, Università di Roma “La Sapienza”, via Antonio Scarpa 16,
00161 Roma, Italy

Email address: angela.pistoia@uniroma1.it


	1. Introduction and statement of the result
	Acknowledgments

	2. Domain perturbations
	3. An abstract result
	4. Splitting of a single eigenvalue
	5. Proof of Theorem 1
	6. Proof of Theorem 3
	7. Sketch of the proof of Theorem 4.
	8. Appendix
	References

