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ABSTRACT
Steering torque constitutes the primary motorcycle control input for the lateral
dynamics; consequently, estimating it is important. Conventionally, this is done with
complete motorcycle models, requiring significant identification effort. The simplified
models in the literature only describe the steering torque under specific cases.

This work defined a steering assembly model with few parameters to estimate the
steering torque analytically for stationary and transient manoeuvres.

The model equations followed from existing motorcycle models through simplifying
hypotheses; transfer functions describing the roll response and the Lane Change
Roll Index (LCRI) were obtained from these equations. Measured steering torque
signals from different datasets, including diverse motorcycle classes, were used as the
reference for validation.

A good agreement resulted between the estimated and measured torques, in the
time and speed-acceleration domains and in terms of LCRI. When using the roll
as the motorcycle response, manoeuvrability was highest at lower frequencies. The
scooter was the most manoeuvrable; the sports and touring motorcycles were the least
manoeuvrable at low and high frequencies, respectively. Concerning design parameters,
the front-wheel spin inertia and front twist stiffness influenced manoeuvrability the
most.

The model allows recreating the steering torque signal for new and pre-existing
datasets using commonly measured signals; the signal can describe the riding style
and the effort required. Few parameters are required, facilitating its use and reducing
the computational burden, allowing its use for steering assistance systems.
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1. Introduction

The rider controls the motorcycle lateral dynamics mainly through steering inputs.
The steering torque input is the most effective way to control the motorcycle roll
(stabilisation task) and yaw rate (path-following task); in contrast, the vehicle has
a much smaller response to the upper body leaning [1]. Motorcycles, unlike cars,
cannot be simulated in open-loop [2] due to their general instability. Consequently,
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accurately describing the steering torque required to complete certain manoeuvres is
more important and demanding.

While it is clear that control occurs primarily through the steering, there are at
least two distinct aspects concerning vehicle behaviour: handling and manoeuvrability.
Handling is relative to the response properties of a motorcycle as perceived by the
human controller [3]; therefore, it depends on subjective rider perception, making a
rigorous evaluation difficult. In contrast, manoeuvrability is objective and linked to
the lateral vehicle response, for example, in terms of roll, yaw rate and corresponding
derivatives, when a specific steering torque is applied. Therefore, manoeuvrability can
be evaluated through different input-output responses, like the ratio of steering torque
to steering angle [1] or the steering torque peak per unit of roll rate peak response [4].

Cossalter shows that the steering torque results from several pairs of contributions
of similar magnitude but opposite sign [5]. This makes estimating the steering torque
required to complete a certain manoeuvre challenging. Notably, Cossalter derives a
straightforward expression to estimate the motorcycle manoeuvrability index called
Lane Change Roll Index from its caster and the front wheel radius and spin inertia [6].
The expression assumes that the gyroscopic torque generated by the front wheel in the
presence of roll rate constitutes the bulk of the steering torque during a lane change. The
assumption proved valid, albeit mostly in peak-to-peak values, in the experimental data
presented; however, no indication was given about this assumption’s validity domain
(e.g. concerning frequency and speed). A roll rate is only present during transients:
a lane change performed with a steering torque input having a spectrum dominated
by low enough frequencies could excite the motorcycle steady-state behaviour more
than the transient terms, increasing the estimation error. In contrast, another work [7]
defines a simplified expression for the steady-state torque contributions: the function
was employed to fit and extrapolate experimental data; however, a comparison between
the steering torque estimated from the motorcycle parameters and the measured one
was not conducted. Moreover, the implications of the various terms from a design point
of view were not discussed.

Biral [2] uses a more general approach, investigating the influence of frequency
through slalom tests. A contour plot shows the influence of manoeuvre frequency and
speed on the torque-to-roll transfer function. The dynamic behaviour represented is
obtained through the classic Sharp’s model [8]: although relatively simple, the model
still requires the many parameters describing a complete motorcycle. Moreover, it
considers lenticular tyres and neglects the tyre twisting torque due to camber: especially
the latter influences the steering torque significantly [5], and cannot be neglected. Biral
also uses a simplified version of the more sophisticated model by Lot [9] to calculate
some transfer functions of interest, but their analytical form is not shown or discussed.
This model requires more parameters than the one by Sharp.

This work aims to define a low-complexity model to estimate the steering torque re-
quired for both steady-state and transient manoeuvres to overcome the abovementioned
limitations. This result would also allow describing low-frequency transient manoeuvres
in addition to the two boundary cases. Moreover, it would also show concisely the
frequency over which the transient terms become appreciable or dominant. The model
should be simple so that the reduced number of parameters allows estimating the
motorcycle steering torque without time-consuming and expensive measurements. A
successful steering torque description would make it possible to study the implications
of its analytical expression, such as investigating the influence of the motorcycle and
manoeuvre parameters on the required steering torque. The article considers the case
of uncombined dynamics; this assumption holds when the longitudinal acceleration is
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Figure 1. The signs convention and the main physical quantities considered in the article, each shown
considering a positive value. The axes and the constant quantities are indicated in black, kinematic quantities

are in blue, and dynamical quantities (forces and moments) are in red.

modest, especially when front braking is limited.
The paper structure follows: Section 2 describes the general methodology, including

the approach used to estimate the steering torque, the instrumented motorcycle, the
manoeuvres conducted and the additional dataset taken from the literature. The results,
in terms of real and estimated steering torque, along with the transfer functions and
maps describing manoeuvrability, are presented in Section 3; then Section 4 discusses
results and their meaning. Lastly, Section 5 sums up these findings, their implications
and possible extensions and applications.

2. Estimation and experimental methods

The method follows: first, the equations for describing the steering torque are derived
from existing, complex dynamic models. Then, these equations are applied to different
experimental datasets: one specially created through our instrumented motorcycle and
then pre-existing datasets available in the literature to validate the method concerning
different motorcycle classes and experimental campaigns.

2.1. Reference frame and signs convention

In this work, the ISO 8855 [10] signs convention was used: the x-axis points forwards,
the z-axis upward, and consequently, the y-axis leftward. A steering torque is positive if
pointing upwards. A non-tilting reference frame (Figure 1) was considered to calculate
the motorcycle motion1. The convention used justifies the signs of Equation (12): when
the rider pushes (forward, positive) the right handlebar more than the left one, an
anti-clockwise (positive) torque is produced.

1The yaw rate and lateral acceleration used can be calculated from the angular velocities and accelerations
measured by the IMU by applying the rotation matrices computed from the Euler Angles.
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2.2. Steering torque estimation

Euler’s second law of motion states, in its most general form:

M =
dL

dt
+ vO × p, (1)

where vO is the velocity of the pole O, M is the resulting torque about the pole,
L is the system’s angular momentum about that point, and p is the system’s linear
momentum. This law is applied to the steering assembly, considering the steering axis
as the pole. The steering assembly is a rigid body; therefore, its linear momentum
has the same direction as its Centre of Gravity (CoG) velocity. This velocity will be
approximately parallel to the velocity of the pole, as the tangential speed around the
axis due to the steering angular velocity δ̇ is much lower than the motorcycle velocity
vO. Therefore, vO × p ≈ 0. The steering axis is a principal axis of inertia, so L = Iδδ̇,
where δ is the steering angle, and Iδ is the front frame moment of inertia around the
steering axis. The following scalar equation is obtained:

n∑
i=1

τi = Iδ δ̈, (2)

where τi is the ith torque component acting around the steering axis. Given that the
band-pass of the rider feedback action is around 1-2 Hz [11], while higher frequencies
only concern passive oscillatory stability [12, p. 284], the derivative of the angular
momentum Iδ δ̈ can be neglected. Therefore:

n∑
i=1

τi ≈ 0. (3)

In steady-state, making the single steering torque contributions explicit gives:

τsteady + τg + τc + τFxf + τFyf + τFzf + τMzγf
+ τωψ̇f

= 0, (4)

where τsteady is the steady-state torque applied by the rider; τg and τc are the torques
produced by the weight and centrifugal forces acting on the front frame CoG; τFxf is
the effect of the front tyre longitudinal force; τFyf and τFzf are the torques produced
by the front tyre lateral and vertical forces; τMzγf

is the steering torque due to the
front tyre twisting torque; lastly, τωψ̇f

is the front wheel gyroscopic torque induced by

the vehicle yaw rate ψ̇. For this study, only the uncombined lateral dynamics is of
interest, so no braking force is present on the front tyre: consequently, if the small
steering torque produced by the rolling resistance when cambered is neglected, τFxf ≈ 0
holds. Then, the steady-state torque applied by the rider balances the sum of the other
contributions acting around the steering assembly:

τsteady = −τg − τc − τFyf − τFzf − τMzγf
− τωψ̇f

. (5)

For a simplified motorcycle model with lenticular wheels, neglecting the effect of the
gyroscopic torque on the roll angle, the moment equilibrium in the yz plane around
the front contact point shows that the sum of the weight and centrifugal forces acting
on the front frame CoG passes through the front contact patch, as ϕ = − arctan ay

g
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Figure 2. Scheme of the steering torque components and their generation, shows in the case of a right-hand
corner entry.

holds, where ϕ is the roll angle, ay is the lateral acceleration, and g is the gravity
acceleration. For small steering angles, this point lies in the symmetry plane of the
rear frame containing the steering axis, so these two forces do not produce a resulting
steering torque. These hypotheses do not hold in reality; however, τg and τc are close in
value and have opposite signs in the domain of interest [5]. So, they can be neglected
with minimal error.

The gyroscopic torque is equal to:

τωψ̇f
= −Iwfωfψ̇ cos γf︸ ︷︷ ︸

≈1

sin ε
∣∣∣
ωf=v/Rf, ψ̇=ay/v

≈ −Iwf sin ε

Rf
ay, (6)

where ε is the caster angle, Iwf is the front wheel spin inertia, Rf is its radius and
ωf is its angular speed. In steady conditions ay = vψ̇ holds, so the yaw rate can be

restated as ψ̇ = ay/v, where v is the vehicle’s speed. The front tyre camber angle
γf would make the wheel spin axis not perpendicular to the yaw rate: cos(γf) was
considered ≈ 1, leading to a modest error (5% when the angle is 18◦). One can avoid
this simplification without losing generality. The negative sign indicates that this torque
and the lateral acceleration have opposite signs: when ay is positive (leftward), τωψ̇f

is
negative (clockwise). In fact, the angular momentum of the front wheel would have
a positive projection on the y-axis; as the yaw rate would be upward, the gyroscopic
torque would point in the x direction, projecting on the steering axis through the sin ε
term. Therefore, this torque component is aligning2 and tends to reduce the steering
angle. Figure 2a shows the derivation of Equation (6), with its main terms drawn in
blue.

The effect of the front tyre twisting torque (First term on the right-hand side of

2One considers ‘aligning’ a steering torque that tends to reduce the angle between the wheel and motorcycle

midplanes.
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Equation (43) from Cossalter [13]) can be simplified as follows:

τMzγf
=Mzγf cos ( µ︸︷︷︸

≈0

+ε) cosϕ︸ ︷︷ ︸
≈1

∣∣∣
Mzγf=−ktfFzfγf

= −ktfFzfγf cos ε
∣∣∣
γf≈ϕ=− arctan

ay

g
≈− ay

g

=
ktfFzf cos ε

g
ay,

(7)

where ktf is the normalised twist stiffness, and Fzf is the front tyre load: their product
provides the tyre twist stiffness3, which is the tyre twisting moment Mzγf per unit
of camber angle; a linear tyre behaviour is assumed. The positive sign indicates that
τMzγf

and ay have the same sign, so the twisting torque τMzγf
acting on the steering is

misaligning. The pitch angle µ is neglected with minimal error. Figure 2a shows the
derivation of Equation (7), with its main terms in orange.

Lastly, the resulting steering torque due to tyre forces τFyf + τFzf (Equations (40,41)
from Cossalter [13]) is considered. The following simplifying hypotheses are taken:

• The total (front and rear) resulting tyre force is parallel to the rear frame plane
(and lies on it when no steering angle is present): tanϕ = −Fy/Fz → Fy = Fzay/g.

• By neglecting the impact of the yaw moment produced by the tyres on the front
and rear partition of the total lateral force, the previous equation holds for the
front tyre as well: Fyf = Fzfay/g.

• The slip angles are small. The kinematic steering angle can be calculated as
∆ = tan (l/R), where l is the wheelbase, and R is the curvature radius. Then, using
ay = v2/R and by considering small steering angles, one gets ∆ ≈ lay/v

2. Addi-
tionally, under these hypotheses, ∆ ≈ arctan (tan δ cos ε/ cosϕ) ≈ δ cos ε/ cosϕ
[15, p. 38] and the steering angle can finally be restated as δ ≈ lay cosϕ/

(
v2 cos ε

)
.

The expression reduces to:

τFyf + τFzf = −Fzfan sin ε cos ε
g2

ay|ay|+ Fzflan sin ε
ay
v2

− Fzflan sin
2 ε

g

ay|ay|
v2

, (8)

where an is the nominal4 normal trail. For low enough ay values, the τFyf + τFzf
component has the same sign of lateral acceleration and is misaligning. For high enough
ay values, the sign of the torque component becomes opposite to that of the lateral
acceleration: the steering torque contribution becomes aligning. The second term on
the right side of Equation (8) is the steering moment generated by the front tyre
load due to the steering angle: Fzflan sin εay/v

2 ≈ Fzfan sin∆ sin ε. The first and third
terms on the right-hand side of Equation (8) are relative to the normal trail variation
induced by the motorcycle roll and the steering angle. In the absence of a steering
angle and due to the lenticular wheels assumption, the moment equilibrium in the yz
plane around the vehicle CoG would cause the resulting force acting on the tyre to
pass through the CoG. This fact would eliminate the steering component relative to
Equation (8): the effect is analogous to the one discussed concerning the combined
effect of the weight and centrifugal forces acting on the front frame. However, while
the latter two produce much smaller torques having similar magnitude and opposite
signs in the domain of interest [5], the torques produced by the lateral and vertical

3The tyre twist stiffness is positive, as the twisting torque is produced by the asymmetric longitudinal shear

stress generated by the tyre camber and tends to self-steer the wheel [14].
4The one measured when the motorcycle is running straight.
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tyre forces have much higher magnitudes. While still opposite in sign, their modules
tend to become different for higher lateral accelerations [5] (higher roll) or for lower
speeds (higher steering angle). Figure 2b shows the derivation of Equation (8). Due
to the kinematic steering angle, the lateral tyre force also projects in the longitudinal
direction. Due to the caster and roll angles, the unit vector e of the steering axis has
a component in each direction of the motorcycle frame. For each tyre force, only the
component perpendicular to the steering axis produces a steering torque. The moment
arm is the effective normal trail a∗n, which is different from the nominal normal trail an
when the motorcycle is cornering [15, p. 44].

The total steering torque applied by the rider in steady-state is, therefore:

τsteady (ay, v) = −τMzγf
− τωψ̇f

−
(
τFyf + τFzf

)
= −ktfFzf cos ε

g
ay +

Iwf sin ε

Rf
ay +

Fzfan sin ε cos ε

g2
ay|ay|

− Fzflan sin ε
ay
v2

+
Fzflan sin

2 ε

g

ay|ay|
v2

= −c1ay + c2ay|ay| − c3
ay
v2

+ c4
ay|ay|
v2

.

(9)

The expression is analogous5 to that shown by Cossalter [7]. a2y is replaced by ay|ay|:
the torque applied by the rider is now an odd function of the lateral acceleration,
allowing the description of right and left corners with the correct sign. The absolute
value operation does not influence the continuity and smoothness of the function6. The
positive coefficients ci are determined by a limited set of motorcycle parameters; only c1
could, in theory, be negative, but in practice, its positive portion relative to the twisting
torque is significantly higher than the negative one due to the gyroscopic moment.
Consequently, the steady-state torque linearly depends on the lateral acceleration
(through coefficients c1,3), with opposite signs: for small to medium lateral acceleration
values, the torque applied by the rider is aligning (counter-steer). The applied torque
also depends on the second power of the lateral acceleration (through coefficients c2,4),
with the same signs: this reduces the aligning torque described by the linear terms
and makes the applied torque misaligning for sufficiently high lateral acceleration
values. Lastly, for a given lateral acceleration, the speed influences the steering torque
(through coefficients c3,4), especially at lower speeds (limv→0+ τsteady = ∞)7, while the
dependency is lost at higher speeds (limv→+∞ τsteady = −c1ay + c2ay|ay| = τsteady(ay)).
This fact is due to the steering angle: reaching a specific lateral acceleration at lower
speeds requires a larger steering angle so that its effect on the torque becomes perceivable
under a certain speed.

During transients, additional steering torques act on the steering, for example, the
apparent, inertial moment −Iδ δ̈, the moment due to the steering damper (if present)
and the moment generated by the component of the front tyre lateral force required to
generate the yaw acceleration. Cossalter [6] investigated the lane change manoeuvre
and showed that the gyroscopic torque τωϕ̇f due to the front-wheel spin velocity and
the roll rate of the motorcycle is the most significant transient torque contribution.

5The signs are different due to the different coordinates system (SAE J670 was used in [7]).
6The absolute value of the independent variable ay is always multiplied by the variable itself. y = x|x| is a

continuous and smooth function passing through the origin with a null slope.
7Notice that Equation (9) was derived assuming small steering angles, which may not hold for v → 0+.
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Consequently, one can neglect all the remaining transient torques so that:

τtrans

(
v, ϕ̇

)
= −τωϕ̇f = Iwfωfϕ̇ cos δ︸︷︷︸

≈1

cos ε
∣∣∣
ωf=v/Rf

=
Iwf cos ε

Rf
vϕ̇ = c5vϕ̇, (10)

where the angle (the steering angle δ) between the spin axis and the roll direction
is assumed to be small. The gyroscopic torque and the roll rate have opposite signs:
when entering a right corner (ϕ̇ > 0), the torque is negative; thus, it tends to rotate
the steering clockwise in the direction of the corner. This stabilising effect tends to
reduce the curvature radius, leading to a higher centripetal force that reduces the roll.
The rider will have to prevent it with an opposite, aligning torque. Figure 2a shows
the derivation of Equation (10), with its main terms drawn in green.

Therefore, the total torque applied by the rider is estimated as:

τest

(
ay, v, ϕ̇

)
= τsteadyest

(ay, v) + τtransest

(
v, ϕ̇

)
= −c1ay + c2ay|ay| − c3

ay
v2

+ c4
ay|ay|
v2

+ c5vϕ̇.
(11)

The previous equation can estimate the steering torque applied from the measured
signals using the known motorcycle parameters. The parameters values are given for
each motorcycle considered in this study in Appendix A.

2.3. Instrumented motorcycle

Figure 3 shows the sports, naked motorcycle used. A tank-mounted inertial measurement
unit (XSens 680 Gi) provided the vehicle’s orientation and position and their derivatives.
Two strain gauges on each side of the handlebar measured the deformation due to
the forces applied by the rider on the handles. A calibration procedure allowed the
calculation of the applied horizontal force F ; the difference between the right and left
measurement, multiplied by half the distance whand between the two knobs midpoints,
provided a torque which, projected on the steering axis through the caster angle ε,
constituted the measured steering torque τmeas:

τmeas = (Fright − Fleft)
whand

2
cos ε. (12)

The motorcycle was also equipped with outriggers8, allowing testing demanding
conditions safely.

2.4. Experimental dataset

The dataset consisted of nineteen laps of a cone course, closed to traffic and approxi-
mately 260m long. Each lap started with a leftward corner followed by a slalom leading
to another bend to the left. A double lane change, with the two lane-changes having
different geometries, completed the lap. Table 1 describes the manoeuvres. The rider
avoided using the throttle and brake excessively at a lean angle (uncombined dynamics).

8The additional weight amounted to 25 kg (9% increase), while the roll and yaw inertia increased by around
5 kgm2 and 9 kgm2 respectively (around 15% and 20% increase). The rider did not notice a significant impact

on the roll and yaw dynamics compared to a conventional motorcycle.
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Figure 3. The instrumented motorcycle with outriggers, as used in the experiment. The positions of the

inertial platform and strain gauges are shown.

Table 1. List of dataset manoeuvres.

Type Geometry

Steady Corner Centreline Radius 15m
Steady Corner Centreline Radius 12.5m
Lane Change 3m×14m
Lane Change 2.75m×5.5m
Slalom Cone Spacing 7m

The maximum roll reached was 38◦, during a 2.5m×5.5m lane change9, while the
speed remained in the 7m s−1 to 14m s−1 range.

2.5. Additional dataset from the literature

In addition to the dataset above, the data from Cossalter [6] were used. The article
presents the time signals relative to a 125cc scooter performing a 2.75m×5.5m lane
change and to a heavy Touring motorcycle performing a less demanding 3m×20m
lane change. The time signals were extracted from the figures through sampling and
a cubic spline interpolation and provided data relative to additional vehicle classes
compared to the motorcycle used in this study.

3. Results

3.1. Sports motorcycle

3.1.1. Steering torque estimation

Figure 4 compares the measured and estimated steering torques for our sports motorcy-
cle during two course laps. The two signals agreed throughout the different manoeuvres;
these are, starting from left: a wider steady corner (red), a slalom (green), a narrower
steady corner (blue) and a double lane change (yellow). Although the rider performed
the two laps slightly differently, no appreciable difference in the error was noticed.
Subsection 3.1.3 will show a detailed view of the lane change section, while the reader

9The numbers indicate the lateral offset and the longitudinal transition distance.
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Figure 4. Comparison of the measured and estimated steering torque signals during two course laps. The
manoeuvres are, starting from the left: a wider steady corner (red), a slalom (green), a narrower steady corner

(blue) and a double lane change (yellow). The second lap starts at around 63 seconds.
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Figure 5. Steady torque maps calculated from the vehicle parameters and using the coefficients obtained

from the regression. The difference between the two is shown as the ‘Error’ on the right subfigure. The dots
indicate the states effectively reached by the motorcycle.

interested in cornering and slalom can find a zoom and a discussion in the Appendix
B.

To further check the model’s accuracy, the comparison was repeated in the speed-
acceleration domain. The estimated transient steering torque τtransest was subtracted
to the measured steering torque τmeas for each time instant:

τsteadymeas
(t) = τmeas (t)− τtransest (t) . (13)

The steady-state component of the measured steering torque was then fitted, as a
function of speed and lateral acceleration, using Equation (9), obtaining the new
coefficients ĉ1,2,3,4. Only the intervals relative to the two corners were considered,
starting and ending with zero roll and yaw rate. In these manoeuvres, the transient
steering torque was small but present. In fact, when removed, the quality of the fit
improved. Figure 5 compares the steady torque maps computed with the coefficients
calculated from vehicle parameters and with coefficients from the regression. In Figure
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5a, the maps showed similar behaviour in the whole speed-acceleration domain. The
speed influence on the applied torque was lost at higher speeds. For a given speed, the
steering torque initially increased in magnitude with the lateral acceleration, starting
from zero and reaching a maximum. For low to medium lateral acceleration values,
the applied torque was discordant with the lateral acceleration (counter-steering). A
further increase in lateral acceleration made the steering torque decrease in magnitude,
changing sign (positive-steering) for very high lateral acceleration values. For a given
speed, the lateral acceleration corresponding to maximum and zero steering torque
values are:

∂τsteady (ay, v)

∂ay
= 0 → ay

∣∣
τ=τmax

=
c1v

2 + c3
2 (c2v2 + c4)

, (14)

τsteady = 0 → ay
∣∣
τ=0

=
c1v

2 + c3
c2v2 + c4

= 2ay
∣∣
τ=τmax

. (15)

The speed-acceleration couples reached by the motorcycle during the test are indicated
by dots and spanned a wide lateral acceleration range relative to lower speed values.
Given that this region was only a fraction of the possible operating conditions, Figure
5a shows the agreement between the map calculated from motorcycle parameters and
that extrapolated from measured values. Figure 5b shows the difference between the
two: the error was lower than 1Nm in the reached motion conditions, confirming the
agreement during steady corners shown in Figure 4.

3.1.2. Manoeuvrability transfer function and sensitivity analysis

After assessing the steering torque estimation, both as a time signal and as a function of
the speed and acceleration, a transfer function was derived from the model. This function
would describe motorcycle manoeuvrability as a function of frequency, investigating
the influence of the manoeuvre and the motorcycle parameters.

Under the assumption of negligible variation of steering angular momentum (Equation
(3)), the rider balances the torques acting on the steering. Concerning manoeuvrability,
the steering torque variation ∆τ experienced at the handlebar following a roll variation
∆ϕ is of interest. Equation (11) is rewritten in terms of roll, using ay = −g tanϕ, and
linearised concerning small roll perturbation around the generic ϕ = ϕ0 equilibrium
condition:

τest (t) ≈ τsteady
∣∣
ϕ=ϕ0

+
∂τest
∂ϕ

∣∣∣
ϕ=ϕ0

∆ϕ (t)

:= τ0 + L−1
(
∆Test (s) = Hϕ→τ

∣∣
v,ϕ0

(s)∆Φ (s)
)
,

(16)

where Hϕ→τ (s) is the roll-to-torque transfer function, L is the Laplace tranform, s
is the Laplace variable, Φ (s) = L (ϕ (t)) and T (s) = L (τ (t)). The partial derivative

becomes, considering that ∂ tanx
∂x = 1

cos2 x and ∂|f(x)|
∂x = f(x)

|f(x)|
∂f(x)
∂x , and by grouping

terms:

Hϕ→τ

∣∣
v,ϕ0

(s) =
g

cos2 ϕ0

[
c1 +

c3
v2

−
(
c2 +

c4
v2

)
2g |tanϕ0|

]
+ c5vs. (17)
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Figure 6. Amplitude and phase of the roll-to-torque transfer function (v = 10m s−1, ϕ0 = 0 rad).

The transfer function, computed from the motorcycle parameters, consists of a
single zero. Figure 6 shows it for v = 10m s−1, ϕ0 = 0 rad, corresponding to the slalom
manoeuvre of the dataset. When ϕ0 = 0 rad, the zero is negative, as evident by Equation
(17). Hϕ→τ (s) = K(s − z), where K is the static gain, and z is the zero. Therefore,
at lower frequencies, its amplitude is minimum and equal to the static gain, and the
phase is null. Around the frequency equal to the zero, the amplitude increases, with a
20 dB per decade slope. The phase increases approximately one decade before the zero
and reaches π/2 approximately one decade after. The higher the frequency, the higher
the steering torque required following a roll variation. Alternatively, if one considers
the torque as the input, there will be a smaller roll response for a given torque applied.
Moreover, the phase increases: the steering torque perceived by the rider anticipates
the motorcycle roll, or alternatively, the roll response is delayed compared to the rider
input.

Figure 7 shows the influence of the manoeuvre parameters on the transfer function,
with the transfer function already shown in Figure 6 plotted in red. Figure 7a shows the
influence of speed: increasing the speed decreased the low-frequency amplitude, with
progressively less impact. Instead, increasing the speed increased the high-frequency
amplitude proportionally10. The greater the speed, the greater the influence of frequency.
A speed increase lowered the frequency of the amplitude knee and shifted the phase-
change to lower frequencies. Figure 7b shows the influence of the equilibrium roll angle
ϕ0, which had no effect at higher frequencies. When increasing up to ϕ0 = 24◦, the
low-frequency amplitude decreased, and the phase-change shifted to lower frequencies.
This trend interrupted concerning the highest roll value (ϕ0 = 36◦, in green): the static
gain crossed the zero and became negative and with higher magnitude; therefore, the
amplitude at low frequencies increased. As the static gain was negative, the phase

10As evidenced by the constant vertical spacing, in the log-log plot, of lines relative to different values of the

logarithmically-spaced speed.
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(a) Influence of the speed (ϕ0 = 0 rad).
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(b) Influence of the equilibrium roll
(
v = 10m s−1

)
.

Figure 7. Influence of the manoeuvre parameters on the amplitude and phase of the roll-to-torque transfer

function.

at lower frequencies became π; the zero turned negative, so increasing the frequency
decreased the phase, reaching π/2.

Figure 8 summarises these effects. In particular, Figure 8a shows the influence of
the speed and equilibrium roll on the static gain: its value was high and positive at
low speeds and for an upright equilibrium condition and became high and negative
for high roll angle values. The static gain lost the speed dependency for high-speed
values. Figure 8b shows the zero value, significantly dependent on both speed and
roll. Its sign mainly depended on the equilibrium roll value and became positive for
sufficiently high roll angle values. A speed increase reduced its absolute value: the
change in behaviour of the transfer function between low- and high-frequency behaviour
shifted to lower frequencies. Equation (14) states, in terms of lateral acceleration, the
singular conditions corresponding to the sign change of the static gain and the zero.

The previous figures showed the influence of the manoeuvre parameters on the
roll-to-torque transfer function. The design choices influence manoeuvrability, too: this
impact can be quantified and understood by analysing the sensitivity of the transfer
function to motorcycle parameters. This analysis also quantifies the effect of an error
on one parameter on the estimated transfer function. Figure 9 shows this for the most
significant motorcycle parameters influencing the estimated torque (Equation (11)).
Figure 9a shows that increasing the front tyre normalised twist stiffness increased the
static gain of the transfer function while not influencing the high-frequency amplitude.
The phase-shift moved to higher frequencies. Increasing the front-wheel spin inertia
(Figure 9b) decreases the transfer function amplitude at lower frequencies and increases
it at higher frequencies. Moreover, increasing the inertia increased the delay between the
applied torque and the resulting roll at medium frequencies. Increasing the front tyre
load (Figure 9c) increases the static gain modestly, with no effect at higher frequencies.
The phase reduced slightly at medium frequencies. Interestingly, the caster (Figure
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Figure 8. Influence of the manoeuvre parameters on the roll-to-torque transfer function properties.

9d) influenced the transfer function marginally11. Lastly, increasing the normal trail
increased the low-frequency amplitude slightly, with no effect on higher frequencies
(Figure 9e). The phase was reduced at medium frequencies.

3.1.3. Lane change roll index estimation and transfer function

The lane change manoeuvre is commonly employed to assess vehicle behaviour and
manoeuvrability. It consists of two very brief pseudo-stationary cornering phases,
corresponding to the maximum roll absolute value, each preceded and followed by a
demanding transient manoeuvre, in which the roll rate can reach significant values.
The Lane Change Roll Index (LCRI) [6] describes the manoeuvrability during this
manoeuvre as:

LCRI :=
τp-p

ϕ̇p-pvavg
, (18)

where ‘p-p’ stands for peak-to-peak values and ‘avg’ stands for ‘average’ through the
manoeuvre. The Index evaluates the steering torque necessary to achieve a unitary
roll rate response, normalised by the vehicle’s speed. It captures a comprehensive
manoeuvre perspective by utilising peak-to-peak values instead of the absolute peak
value, decreasing the impact of riding style on its value [6].

Table 2 presents the LCRI values calculated using the measured and estimated
torque. Additionally, the value of the analytical, simplified expression for the LCRI
by Cossalter [6], based on the transient term only, is provided. Only the 3m×14m
lane change was considered, as the 2.75m×5.5m lane change exit was very close to the
following corner, and the rider did not have the time to fully stabilise the bike before
entering it. Moreover, the 3m×14m lane change runs where the motorcycle was not
straight at the beginning or end of the manoeuvre, also due to limited space available,
were excluded too. The measured LCRI ranged from a minimum of 1.49N rad−1 s2 to
a maximum of 1.91N rad−1 s2, with a 1.68N rad−1 s2 mean value and a 0.14N rad−1 s2

standard deviation. The LCRI from the estimated torque had a 1.70N rad−1 s2 mean,
very close to that of the measured LCRI, and its 0.12N rad−1 s2 standard deviation

11This assumes that the caster changes without influencing the other parameters: in reality changing the caster

requires changes to the fork offset, for example, to keep the same normal trail.
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(a) Normalised front twist stiffness.
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(b) Front-wheel spin inertia.
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(c) Front static load.
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(d) Caster angle.

10-2 10-1 100 101

Frequency (Hz)

101

102

103

104

A
m

pl
itu

de
 (

N
m

/r
ad

)

0.045
0.065
0.085
0.105
0.125

10-2 10-1 100 101

Frequency (Hz)

0

/4

/2

P
ha

se
 (

ra
d)

(e) Normal trail.

Figure 9. Influence of the motorcycle design parameters on the amplitude and phase of the roll-to-torque

transfer function. The black arrows indicate the increase in the parameter considered.
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Table 2. Lane Change Roll Index calculated

using the measured and the estimated steering
torque for each suitable run of the 3m×14m lane
change. The simplified formula that only considers

the transient steering torque predicts a value equal

to Iwf cos ε/Rf=1.31N rad−1 s2

Run Number LCRI
(
Nrad−1 s2

)
Using τmeas Using τest

1 1.68 1.66
2 1.91 1.76
6 1.58 1.70
7 1.57 1.61
8 1.64 1.76
9 1.84 1.69
10 1.69 1.89
12 1.49 1.46
14 1.85 1.82
15 1.80 1.74
17 1.53 1.58
18 1.62 1.63
Mean 1.68 1.70
SD 0.14 0.12

indicated a metric variability similar to that obtained with the measured signal. The
measured and estimated values were strongly correlated: the estimated steering torque
value is lower when the measured value is lower. The LCRI calculated using the
simplified expression equalled 1.31N rad−1 s2, lower than the lowest measured value.

Figure 10 shows the measured and estimated torque signals, along with its compo-
nents, for two Lane Change runs. Figure 10a is relative to lap six: the measured and
estimated torque signals were very close in the middle section, between the two steering
torque peaks. Here the motorcycle went from a small leftward roll to its maximum value
to zero to change direction. Before the first peak, the estimated steering torque lagged
the measured one, while after the last peak, the estimated signal did not capture12 the
oscillations of the measured one. The error on the LCRI is 0.12N rad−1 s2, higher than
in many other runs (Table 2). Nonetheless, there was good agreement between the
estimated and the measured signal. The transient term alone underestimated the first
peak and misses the dynamics of the manoeuvre exit. Figure 10b shows the signals
during lap 14, where the error on the LCRI was lower (0.03N rad−1 s2). As before, the
transient term underestimated the first peak while correctly reproducing the instant of
each peak.

The LCRI can be expressed as the amplitude of a transfer function:

LCRI (s) =

∣∣∣∣Test (s)

Φ̇ (s) v

∣∣∣∣ = ∣∣∣∣Test (s)

Φ (s) sv

∣∣∣∣ = ∣∣∣∣Hϕ→τ (s)

sv

∣∣∣∣
ϕ0=0

=

∣∣∣∣∣g
(
c1
v + c3

v3

)
+ c5s

s

∣∣∣∣∣ , (19)

where the roll equilibrium was set to zero because, during a lane change, the motorcycle
rolls around its vertical configuration. The transfer function describing the LCRI is a
single, negative zero with an integrator term.

During the middle section of a Lane Change manoeuvre, all the motorcycle signals
have an approximately sinusoidal shape [6], with a frequency influenced by the motor-
cycle speed and by the lane change transition distance. Although the different signals

12The difference between the measured and the estimated steering torque, compared to Figure 4, is magnified

by the different time scales. The same point stands for Figure 12.
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Figure 10. Measured (solid, grey line) and estimated (solid, black line) steering torque during a lane change
with the sports motorcycle. The steady (dash-dot, black line) and transient (dotted, black line) contributions of
the estimated torque are also shown. The dashed, red line indicates the roll.

have different phases, their frequency is similar and can be approximated by:

f =
v

2d
, d =

√
(∆x)2 + (∆y)2, (20)

where ∆x and ∆y are the lane change effective13 transition distance and offset, respec-
tively, so that d approximates the distance travelled. For the lane change considered,
(∆y)2 ≪ (∆x)2 and d ≈ ∆x. The ‘two’ at the denominator of the estimated frequency
is because, while riding along the transition distance, the signals go from one peak to
that having the opposite sign; therefore, this length corresponds to half the period.

Figure 11 shows the amplitude of the transfer function approximating the LCRI as
a function of speed and frequency, which are linked by Equation (20) (dashed lines).
The index increased at lower speeds (limv→0 LCRI (ω) = +∞) and lower frequencies
(limω→0 LCRI (ω) = +∞). The three dashed lines are relative to half, equal to and
double the distance covered in the lane change considered. For a specific lane change,
decreasing the speed decreased the frequency, and both made the index increase.
Considering the average speed (between all runs), equal to 11.7m s−1, the intersection
with the 14m dashed line provided a frequency of 0.41Hz, and a 1.98N rad−1 s2 LCRI
value, higher than the measured one. However, from the GNSS data, the effective lane
change distance turned out to be 12.4m. Using this value, the estimated LCRI becomes
1.79N rad−1 s2, much closer to the measured value. The frequency calculated using this
distance was 0.47Hz. Notice that limω→∞ LCRI (ω) = c5 = Iwf cos ε/Rf, obtaining the
expression used by Cossalter to approximate the LCRI value [6].

3.2. Scooter and touring motorcycle lane change

For each motorcycle in Cossalter’s article [6], the steady-state and transient steering
torque signals were calculated with equations (9) and (10) and summed to obtain the
total steering torque, which was then compared with that measured.

Figure 12a shows the scooter signals: the estimated torque had approximately the
same shape and amplitude as that measured, which anticipated it. The gyroscopic
moment alone gave a reasonable description of the total steering torque with a lower

13‘Effective’ means that it is relative to the manoeuvre actually performed. The rider could start and end the

manoeuvre sooner or later than indicated by the cones.
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Figure 11. Magnitude of the transfer function approximating the LCRI as a function of speed and frequency
for the sports motorcycle. The three dashed lines are relative to half, equal to and double the distance covered

in the lane change considered.
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Figure 12. Measured (solid, grey line) and estimated (solid, black line) steering torque during a lane change
with the scooter and touring motorcycle. The steady (dash-dot, black line) and transient (dotted, black line)
contributions of the estimated torque are also shown. The dashed, red line indicates the roll.

amplitude. Adding τsteady increased the steering torque amplitude, as the linear, domi-
nant term of the steady contribution is π/2 out of phase to the transient contribution.
Figure 12b shows the same signals for the touring motorcycle: again, the transient
steering torque component constitutes the bulk of the total steering torque. Adding the
steady-state component made the estimated steering torques closer to the measured
one, committing a modest error for most of the manoeuvre.

Table 3 reports the LCRI values obtained: the measured LCRI for the touring
motorcycle was significantly higher than that for the scooter. For the scooter, using
the estimated torque, a 0.97N rad−1 s2 LCRI value was obtained, very close to the
measured 1.01N rad−1 s2. The simplified expression by Cossalter underestimated its
value by around one-fourth. For the touring motorcycle, the estimated torque provided
a 2.29N rad−1 s2 LCRI value, slightly higher than the 2.14N rad−1 s2 value from the
measured torque. The value estimated through the simplified formula was close to the
measured value and again lower. The values reflect the different masses of the three
vehicles, with the sports motorcycle used in this study being in the middle.
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Table 3. Lane Change Roll Index calculated using the

measured steering torque, the estimated steering torque and
through the simplified formula that only considers the tran-
sient steering torque, for the scooter and the touring motor-

cycle.

Motorcycle LCRI
(
Nrad−1 s2

)
Using τmeas Using τest Iwf cos ε/Rf

Scooter 1.01 0.97 0.75
Touring 2.14 2.29 2.09
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Figure 13. Lane Change Roll Index transfer function for each motorcycle considered in this study. The
transfer function is relative to the average speed of the runs depicted in Figures 10b, 12a and 12b, respectively.

Frequencies calculated through Equation (20).

3.3. Lane Change Roll Index transfer function comparison

Figure 13 shows the transfer function describing the LCRI for the sports, scooter and
touring motorcycles. The transfer functions are relative to the average speed of the runs
depicted in Figures 10b, 12a and 12b, respectively. The general trend was the same,
with a 20 dB per decade slope on the left and an asymptotic value for higher frequencies,
but some quantitative differences emerged. The scooter was the most manoeuvrable
at all frequencies. The sports motorcycle was less manoeuvrable, with a 60% higher
LCRI at 0.1Hz and a 75% higher right asymptote. The transfer function predicted
the touring motorcycle to require slightly less steering torque at lower frequencies
than the sports motorcycle but significantly more at higher frequencies. The frequency
calculated through Equation (20) is also shown in the plot for each motorcycle, as the
lane change geometry was chosen to be appropriate for the vehicle class.

4. Discussion

Results globally showed a good agreement between the measured and estimated steering
torque. Consequently, the simplifying hypotheses discussed in Subsection 2.5 proved
valid, introducing a reasonable error.

Figure 4 showed that the estimated steering torque signal had dynamics and ampli-
tude similar to that measured for the various manoeuvres considered. Figure 5 showed
an alternative and more general view, albeit limited to the steady-state domain. The
modest difference between the estimated torque and that obtained through regression
implied that the motorcycle parameters used agree with those obtained through the
best-fit of the measured torque when using the proposed formulation. The speed de-
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pendency was lost at higher speeds: the same lateral acceleration is obtained with a
small steering angle that cannot influence the resulting steady-state steering torque,
which becomes uniquely determined by the lateral acceleration.

Subsection 3.1.2 presents the roll-to-torque transfer function Hϕ→τ (s): as Figure
6 showed, its static value is the absolute minimum, maintained in a wide frequency
range. This result agrees with what Lot shows [12, p. 306]. Therefore manoeuvrability
is highest at lower frequencies when considering the roll as the motorcycle response,
independently of motorcycle parameters. Beyond the frequency of the zero, the transfer
function amplitude increases with a 20 dB per decade slope: the motorcycle becomes
progressively less manoeuvrable. The frequency of the zero for a specific motorcycle is a
function of both the speed and the equilibrium roll (Figure 8b). Although the transient
term influences the amplitude starting from a frequency between 0.1Hz and 1Hz, its
influence on the phase starts from a decade earlier. Consequently, a slow, transient
manoeuvre should not require more steering torque than a steady corner having the
same roll, but the transient, gyroscopic effect would induce a delayed roll response. An
increased steering input required for the same roll amplitude and a higher response
delay are indicators of worse handling [2].
Hϕ→τ (s) is a single zero, which is negative for low to moderate roll angle values,

so the torque-to-roll transfer function would have a single, negative pole. The poles
directly define the homogeneous response components. As the only pole is real and
negative, this transfer function would predict a stable, non-oscillatory free evolution of
the roll angle. Moreover, as the pole (or zero) becomes more negative at lower speeds
(Figure 8b), it would predict higher hands-off stability when travelling slowly. This
conclusion clearly contrasts with simple models for a two-wheeled vehicle [16] and
experimental evidence [17]. The reason for this apparent contradiction is that all the
equations presented follow the initial hypothesis that the derivative of the angular
momentum of the front frame is negligible. Under this hypothesis, the steering torque
applied by the rider balances all the other torques acting on the steering: in a hands-off
situation, this assumption is clearly no longer valid, manifesting as rapid movements
of the steering assembly. So, the proposed transfer functions inform about the forced
response, but are not sufficient for the homogeneous response.

The influence of the manoeuvre and motorcycle parameters reflects on the transfer
function. For manoeuvres around small roll values, Equation (17) becomes:

Hϕ→τ

∣∣
ϕ0≈0

(s) ≈ c1g + c3
g

v2
+ c5vs, (21)

which, except for very low speeds, is equivalent to:

Hϕ→τ

∣∣
ϕ0≈0,v≫0

(s) ≈ c1g + c5vs, (22)

as shown by the static gain of Figure 7a becoming constant with speed over a specific
speed value. Consequently, in many common driving conditions (e.g. highway lane
change), the transfer function describing the manoeuvrability has a static term, which
takes into account the twisting moment and the gyroscopic moment of the front wheel
linked to the yaw rate, and a dynamic term linked to the gyroscopic moment due
to the roll rate. While the former is constant, the latter is proportional to speed in
addition to the manoeuvre frequency: at higher speeds, the transient term is perceived
starting from lower frequencies, as confirmed by Figure 7a. For very high speeds, the
transient, gyroscopic term would make the most of the transfer function amplitude even
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at lower frequencies, defining the motorcycle manoeuvrability. This fact could explain
why the rider acts as a position servo at low speeds and a torque servo at higher speeds
[18]: at lower speeds, the zero is higher than the rider input frequencies, so the roll
response does not depend on how rapidly the torque is applied, and consequently how
fast the steering turns. The opposite holds at higher speeds, with the input frequency
influencing the torque to be applied. For motorcycles frequently used at high speeds
and frequencies, e.g. for track riding, reducing the front-wheel spin inertia is crucial
to improve manoeuvrability, while intervening on other parameters should have more
limited effects. Lower spin inertia would also reduce the influence of speed and frequency
on the required torque, possibly making motorcycle behaviour more intuitive.

The sensitivity analysis concerning the design parameters shows that the front
nondimensionalised twisting stiffness, its vertical load and the normal trail only influence
the steady behaviour, while the front-wheel spin inertia and the caster influence the
manoeuvrability in the whole frequency domain; however, the latter seemed to have a
marginal effect. The twisting moment is misaligning, so increasing the twisting stiffness
made the torque required to the rider even more aligning, increasing the steady torque.
This sign is coherent with the results of the much more complex motorcycle model
by Cossalter [13]. The same was true for the front tyre load and the normal trail, in
agreement with the model above. Therefore, increasing the twisting stiffness reduces
manoeuvrability during gradual manoeuvres but leads to a less delayed response at
medium frequencies. Notice that a front load increase also increases the dimensional
twisting stiffness. If the caster increased, the steady-state amplitude reduced; Cossalter
[13] confirms this but shows a much more significant impact. That study considers a
motorcycle in a curve with a 5m s−2 lateral acceleration, while Figure 9d is relative
to ϕ0 = 0, so it does not consider some terms of Equation (17) and most of the
caster influence with them. Lastly, a front-wheel spin inertia increase increases both
(yaw- and roll-related) gyroscopic torques, slightly increasing manoeuvrability at lower
frequencies while making the motorcycle significantly more demanding to steer at
higher frequencies, leading to more frequency-sensitive manoeuvrability. Therefore, one
specific frequency exists where this parameter change does not influence the amplitude
while still impacting the phase.

Table 2 confirms the robustness of the LCRI: the measured value had a 0.083 coeffi-
cient of variation, much smaller than the variability of the individual signals forming
the index. While the input steering torque and the output roll and roll rate are subject
to variation, these are linked by the physical behaviour of the motorcycle. The mean
LCRI value was approximately the same whether the measured or the estimated torque
was used, whose estimation error was limited even under transient conditions. The
approximate formula proposed by Cossalter, although easy to calculate, underestimates
the index value. The transfer function approximating the LCRI (Equation (19)) shows
why: limω→∞ LCRI = limv→∞ LCRI = c5 = Iwf cos ε/Rf. Consequently, the approxi-
mated expression is only valid for high speed or frequencies: as shown by Figure 11, the
transfer function has a minimum in the upper-right corner, taking on greater values
elsewhere. The higher the speed, the lower the minimum frequency required to avoid
significant estimation errors. At lower frequencies, especially if the speed is also low,
as in the case of these lane changes, the stationary term increases the steering torque
required and, therefore, the index value14. Consequently, the simplified expression
by Cossalter gives a lower limit for the LCRI. In fact, in the original article [6], the

14For very low frequencies, the index value approaches infinity because the steering torque tends to the steady-
state value while the roll rate approaches zero. Using roll as the motorcycle response is more appropriate to

assess low-frequency manoeuvrability, as in the roll-to-torque transfer function.
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measured LCRI matches or exceeds that obtained through the simplified formula for
various motorcycle classes.

Figures 10,12 showed that the steering torque signal could be estimated for motorcy-
cles of differing characteristics performing lane changes with vastly different geometries.
The transient, gyroscopic term underestimated the peak values, and the total estimated
torque was closer to that measured in the entry and cornering phase than in the exit
phase. Adding the steady-state term postponed the peaks, especially the second one: in
fact, the dominant, linear steady contribution is delayed π/2 compared to the transient
term. For the sports motorcycle, τsteady(t) had an approximately-sinusoidal trend:
the second-degree steady term had a limited influence, and the steady contribution
remained clearly counter-steering. Conversely, for the scooter and touring motorcycle,
τsteady(t) has a hump when the roll is highest. Therefore, the sports motorcycle did
not reach the ay

∣∣
τ=τmax

lateral acceleration value. Instead, the other two motorcy-

cles exceeded it, without reaching the ay
∣∣
τ=0

value: the steady-state torque remained
counter-steering throughout the manoeuvre. The accuracy of the reconstructed steering
torque signal is somewhat higher in Figure 10 than Figure 12, partly due to the limited
knowledge of the parameters of the motorcycles found in the literature.

Lastly, Figure 13 compared the predicted manoeuvrability of the three motorcycles.
The scooter requires relatively small torque inputs at all frequencies. The lower load on
the front tyre reduces most steady-state torque contributions, and the narrow front tyre
further reduces the misaligning twisting torque. The small front tyre has a lower mass
and radius of gyration, reducing the high-frequency torque too. The transfer function
for the touring motorcycle predicts better low-frequency manoeuvrability than the
sports motorcycle, despite the higher mass and size. The higher front tyre spin inertia
and normal trail reduce the stationary steering torque (Figures 9b,9e). However, the
higher spin inertia increases the steering torque required at higher frequencies (Figure
9b), making quick manoeuvres more demanding than for the sports motorcycle. These
transfer functions were relative to the speed of the specific manoeuvre, the effect of
which overlaps with the intrinsic characteristics of the vehicles. However, the three
manoeuvres were performed at similar speeds, so this effect is tiny. The frequency of
each manoeuvre was slightly lower than the value over which the LCRI reaches its
asymptotic value: this explains the underestimation made by the simplified formula by
Cossalter and shows that the lane change geometry was chosen appropriately for each
vehicle’s class15.

Future development could focus on extending the experimental dataset. For example,
it may include a comparison of the estimated and the measured torque for faster
manoeuvres, as this work considered low and medium-speed manoeuvres; this would
allow testing the accuracy of the steering torque map shown in Figure 5a on a broader
speed range. Peculiar motorcycle classes, such as supersport or off-road motorcycles,
could be added to validate the approach further. The estimation equations could be
generalised to cover combined dynamics conditions. This could be done by adding the
load transfer, estimated from the longitudinal acceleration signal, to the front tyre
static load in Equation (9). The brake-steering torque could be estimated from the front
braking force through the front tyre radius, caster angle and instantaneous roll angle.
Lastly, the correlation between the manoeuvrability estimated by a transfer function
for different manoeuvres and motorcycles and the subjective handling perceived by

15For example, if the manoeuvres of the scooter and the touring motorcycle were inverted, the transfer function

of the former would be evaluated at a relatively low frequency with a significant influence of the steady term. On
the contrary, the latter would be excited at a frequency such that the asymptotic behaviour would be achieved,

provided the rider can perform such a tight manoeuvre.
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the rider during the corresponding run could be investigated to determine whether the
approach and the results shown in this paper could also predict riding feel.

5. Conclusion

This work proposed a motorcycle steering torque estimation methodology based on a
simplified steering assembly model. The model only requires a limited set of readily
available or easily measurable motorcycle parameters; this also allowed the estimation
of the steering torque of motorcycles from other datasets. The estimation equation
was employed to define transfer functions describing motorcycle manoeuvrability: the
influence of the manoeuvre and motorcycle parameters was shown and discussed. The
results extend what was found by Cossalter regarding the lane change manoeuvre: they
confirm that estimating the Lane Change Roll Index by only considering the gyroscopic
torque is feasible, but only as long as the manoeuvre frequency is sufficiently high,
with the frequency threshold dependent on the speed and motorcycle properties. If this
threshold is not exceeded, the transfer function for the LCRI proposed in this article
provides a more accurate value.

This work allows recreating the steering torque signal for new and pre-existing
datasets for which the torque measurement was not feasible or of interest, describing
the rider effort required during previous tests. The signals required16 for estimation are
commonly measured in experimental tests. The simplicity of the estimation equation
reduces the computational cost compared to more complex models, potentially making
it an ideal candidate for developing steering assistance systems.
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Appendix A. Motorcycle parameters

Table A1 contains the values of each parameter required to estimate the steering torque
for each motorcycle considered in this study. For the sports motorcycle, the caster,
normal trail, front tyre radius and wheelbase were obtained from the OEM spec sheet.
The front-wheel spin inertia was set equal to the value of another motorcycle of similar
characteristics; the nondimensionalised twisting stiffness was set equal to the mean of
the values relative to front tyres having the same size and similar characteristics, from
the available literature [19]. Most of the values relative to the other two vehicles were
taken from the original paper [6]; those not available in the article were taken from
motorcycles of similar characteristics.
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Figure B1. Measured (solid, grey line) and estimated (solid, black line) steering torque during a left corner
and slalom with the sports motorcycle. The steady (dash-dot, black line) and transient (dotted, black line)
contributions of the estimated torque are also shown. The dashed, red line indicates the roll.

Appendix B. Left corner and slalom manoeuvres

Figure B1 insights the estimation of steering torque during a left-hand bend (Figure
B1a) and a slalom (Figure B1b).

For the corner, the roll increased, reaching the maximum around 346 s, which is
maintained for around 2 s and then reduced again to zero. Around 351 s, the rider
applied a correction to align the motorcycle for the successive lane change. The measured
steering torque monotonically increased with the motorcycle roll; the estimated torque
agreed with the measured one. For this manoeuvre, the steady-state contribution made
up most of the estimated torque: the low frequency of the manoeuvre limited the
effect of the roll-related gyroscopic torque. Still, in the most abrupt sections of this
manoeuvre (345 s, 351 s), the roll rate was significant, and considering the roll-related
gyroscopic torque made the estimated torque much closer to the measured one. Lastly,
while the steady component of the estimated torque is in phase with the roll, both the
measured and the total estimated torque are anticipated slightly due to the roll-induced
gyroscopic torque.

The estimated and measured steering torque also agreed during the slalom. The
peaks had similar values, except for the first part of the manoeuvre when the estimated
torque tended to lag the measured one.
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