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Background: Combination of a BRAF inhibitor (BRAFi) and an anti-epidermal growth factor receptor (EGFR), with or
without a MEK inhibitor (MEKi), improves survival in BRAF-V600E-mutant metastatic colorectal cancer (mCRC) over
standard chemotherapy. However, responses are heterogeneous and there are no available biomarkers to assess
patient prognosis or guide doublet- or triplet-based regimens. In order to better characterize the clinical
heterogeneity observed, we assessed the prognostic and predictive role of the plasmatic BRAF allele fraction (AF)
for these combinations.
Patients and methods: A prospective discovery cohort including 47 BRAF-V600E-mutant patients treated with BRAFi
eanti-EGFR � MEKi in clinical trials and real-world practice was evaluated. Results were validated in an
independent multicenter cohort (n ¼ 29). Plasmatic BRAF-V600E AF cut-off at baseline was defined in the discovery
cohort with droplet digital PCR (ddPCR). All patients had tissue-confirmed BRAF-V600E mutations.
Results: Patients with high AF have major frequency of liver metastases and more metastatic sites. In the discovery
cohort, median progression-free survival (PFS) and overall survival (OS) were 4.4 and 10.1 months, respectively.
Patients with high BRAF AF (�2%, n ¼ 23) showed worse PFS [hazard ratio (HR) 2.97, 95% confidence interval
(CI) 1.55-5.69; P ¼ 0.001] and worse OS (HR 3.28, 95% CI 1.58-6.81; P ¼ 0.001) than low-BRAF AF patients (<2%,
n ¼ 24). In the multivariable analysis, BRAF AF levels maintained independent significance. In the validation cohort,
high BRAF AF was associated with worse PFS (HR 3.83, 95% CI 1.60-9.17; P ¼ 0.002) and a trend toward worse OS
was observed (HR 1.86, 95% CI 0.80-4.34; P ¼ 0.15). An exploratory analysis of predictive value showed that high-
BRAF AF patients (n ¼ 35) benefited more from triplet therapy than low-BRAF AF patients (n ¼ 41; PFS and OS
interaction tests, P < 0.01).
Conclusions: Plasmatic BRAF AF determined by ddPCR is a reliable surrogate of tumor burden and aggressiveness in
BRAF-V600E-mutant mCRC treated with a BRAFi plus an anti-EGFR with or without a MEKi and identifies patients
who may benefit from treatment intensification. Our results warrant further validation of plasmatic BRAF AF to
refine clinical stratification and guide treatment strategies.
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INTRODUCTION

In colorectal cancer (CRC), the BRAF-600Emutation occurs in
up to 10% of patients.1-3 It encodes for a serine or threonine-
protein kinase associated with mitogen-activated protein
kinase (MAPK) pathway activation resulting in cellular pro-
liferation and metastases.1,4 This mutation is associated with
poor prognosis, with median overall survival (OS) of only 11
months, and poor response to standard chemotherapy.5,6

Unlike in BRAF-V600E-mutant melanoma, use of targeted
agents in BRAF-mutant metastatic CRC (mCRC) did not ach-
ieve clinical benefit,7,8 due to signaling up-regulation via the
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epidermal growth factor receptor (EGFR) with BRAF blockade
in monotherapy.9 This was addressed in subsequent trials by
combining an anti-EGFR with the BRAF inhibitor (BRAFi),
thereby improving the antitumoral effects. Furthermore,
some trials incorporated not only an anti-EGFR but a third
drug to enhance clinical activity, including MEK or PI3CA in-
hibitors.10,11 The development of targeted therapy for BRAF-
V600E-mutant mCRC culminated with the BEACON trial.12

This phase III trial evaluated encorafenibecetuximab with
or without binimetinib versus irinotecan plus cetuximab-
based chemotherapy. Confirmed overall response rates
(ORRs) were 26.8% for the triplet arm and 19.5% for the
doublet arm, versus 1.8% for the control arm, andmedian OS
was 9.3 months for both the triplet and the doublet arms,
versus 5.9 months for the control arm.13 Based on these re-
sults and the more favorable toxicity profile of the doublet
combination, in May 2020 both the Food and Drug Admin-
istration (FDA) and the European Medicines Agency (EMA)
approved encorafenib and cetuximab for patients with mCRC
whose tumors have the BRAF-V600E mutation and who have
received at least one prior treatment regimen.

Despite the overall poor prognosis associated with BRAF
mutations, there is nonetheless a high level of clinical het-
erogeneity in outcomes, with 10%-20% of patients surviving
>2 years whereas 10% of patients survive for <5 months.12

Various prognostic scores have been developed, based on
clinical and pathological data, identifying specific subgroups
with relevant differences in life expectancy.14-16 This clinical
heterogeneity has been confirmed in two transcriptomic
signatures. Among the four consensus molecular subtypes
(CMS) based on gene expression patterns, BRAF mutations
tend to be more prevalent in the CMS1 immune subtype.17

Furthermore, two transcriptional subtypes of BRAF-V600E-
mutant CRC (BM1 and BM2) have been described, with the
BM1 subtype associated with a poorer prognosis than the
BM2 subtype.2 Nevertheless, logistically, transcriptomic sig-
natures cannot be carried out easily in routine clinical practice
as they require a large amount of tumor tissue, are expensive,
and have high turnaround times and turnover requirements.
In several tumor types, the allele fraction (AF) of specific
mutations such as BRAF or KRAS has been associated with
clinical outcomes; the higher the AF the worse the prog-
nosis.18-22 The prognostic and predictive value of BRAF-
mutant AF has been evaluated in previous studies in patients
with CRC. Nonetheless, these cohorts included a small num-
ber of patients with BRAF-V600E-mutant tumors and they
were heterogeneously treated.23-25 However, a prospectively
validated AF cut-off has not been established. We therefore
aimed to evaluatewhether plasmatic BRAF AF determined by
droplet digital PCR (ddPCR) can be used to improve our un-
derstanding of the prognosis of BRAF-V600E-mutant mCRC
patients treated with BRAFi-based combination therapy.

MATERIALS AND METHODS

Patient population

This retrospective study was approved by the institutional
review board or independent ethics committee at each
544 https://doi.org/10.1016/j.annonc.2023.02.016
center and was conducted in accordance with the re-
quirements of the regulatory authorities of each country.
Consecutive patients with BRAF-V600E-mutated mCRC
treated with BRAFieanti-EGFR � MEK inhibitor (MEKi) at
the Vall d’Hebron University Hospital between 2015 and
2020 were evaluated in a discovery set. The Consolidated
Standards of Reporting Trials (CONSORT) diagram of pa-
tients included in the discovery set is represented in
Supplementary Figure S1, available at https://doi.org/10.
1016/j.annonc.2023.02.016. The external validation set
included data from consecutive eligible patients treated
between 2018 and 2021 in three additional centers from
Italy and Spain. Eligible patients had a tissue-confirmed
BRAF-V600E mutation [by ddPCR or next-generation
sequencing (NGS)], available clinicopathological data, and
an available plasma sample before initiating treatment with
a BRAFi-based combination. Clinicopathological data,
treatment type, response, and survival outcomes were
collected from patient medical records. Baseline tissue (or
plasma if no tissue was available) samples were analyzed by
NGS (FoundationOne, Guardant360). Evaluated genomic
alterations include: KRAS, NRAS, GNAS, ARAF, PTEN, ERBB2,
EGFR, MAP2K1, and AKT1 mutations and MET, BRAF, EGFR,
and IGF1R amplifications.
Droplet digital PCR

Analysis of BRAF-V600E mutation in the baseline plasma
sample was carried out by ddPCR using a Custom TaqMan
SNP genotyping assay. PCR primers and TaqMan probes
(FAM or VIC-labeled) were obtained from Thermo Fisher
Scientific. Cell-free DNA (cfDNA) extraction was carried out
with the QIAamp Circulating Nucleic Acid Kit according to
the manufacturer’s instructions (QIAGEN Inc.). The final
concentration was measured using a Qubit dsDNA HS assay
kit and the Qubit 4.0 fluorometer (Life Technologies)
following the manufacturer’s instructions. Primers (900 nM)
and probes (250 nM) [AF for the mutant and VIC for the
wild-type (WT) allele] were mixed with 2� Droplet PCR
Supermix (Thermo Fisher Scientific) to a final volume of 12
ml. Eight microliters of undiluted cfDNA (equivalent to
cfDNA from 1.5ml of plasma) was used for the ddPCR re-
action. Each assay was carried out in triplicate in indepen-
dent mixes and loaded on to different wells for
amplification. The 20-ml reaction mixture was applied to the
QX200 Droplet Generator Cartridge (Bio-Rad Laboratories,
Hercules, CA) with 70 ml of mineral oil to form droplets in
w35 ml of oil-in-water mixture. The mixture was transferred
to a 96-well PCR plate and heat-sealed. The plate was
placed in a C1000 Touch thermal cycler (Bio-Rad Labora-
tories) and amplified to the endpoint PCR. Thermal cycling
conditions were 95�C �10 min (1 cycle), 94�C for 30 s (1
cycle), 57�C �1 min (40 cycles), and 98�C �10 min (1 cycle),
with a ramp rate of 2�C per second.

After PCR, the 96-well PCR plate was read on a QX-200
Droplet Reader (Bio-Rad Laboratories). The data were
analyzed with Quantalife software. Briefly, a threshold line
was drawn for channel 1 and channel 2 to separate the two
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clusters of negative and positive droplets, respectively. The
threshold line for positive droplets was determined by the
control samples. Since samples were retrospective and
limited plasma was available for analysis, we set a cut-off of
a minimum 100 events per replicate in the sample to call a
genotype and corresponding AF (BRAF-V600E WT or
mutant).
Statistical analysis

Progression-free survival (PFS) was defined as the time from
anti-BRAF therapy initiation to disease progression or
death, whichever occurred first. OS was defined as the time
from anti-BRAF therapy initiation to death from any cause.
PFS and OS were estimated using the KaplaneMeier
method. Univariable Cox proportional hazards models
were used to obtain hazard ratios (HRs) with 95% confi-
dence intervals (CIs). To select variables with the highest
prognostic impact for OS, we carried out a least absolute
shrinkage and selection operator (LASSO) regression using
package ‘glmnet’ in R software to build the most parsimo-
nious multivariable model. Since there is not an optimal
BRAF AF cut-off using ddPCR (previous studies used NGS),
all possible cut-offs to dichotomize BRAF AF were explored
(in terms of OS HRs and the lower 95% CI) to better un-
derstand the behavior of the biomarker and to select a
clinically relevant cut-off to stratify patients’. To improve the
clinical utility, all possible cut-offs to dichotomize BRAF AF
were explored. To assess the predictive capacity of BRAF AF,
interaction tests were used to estimate if the benefit of
doublet or triplet therapy differed according to BRAF AF
group. No data imputation was carried out. The threshold
for statistical significance was defined as 0.05 (two-sided).
All statistical analyses were carried out using R statistical
software.

RESULTS

A total of 76 BRAF-V600E mCRC patients were included in
this study, 47 patients in the discovery cohort and 29 in the
validation cohort. Table 1 presents the patient characteris-
tics overall and according to AF levels (�2% versus <2%). In
the discovery and validation cohorts, 49% and 41% of the
patients had high baseline BRAF AF, respectively, based on
median AF in the discovery cohort. In both the discovery
and the validation cohorts, patients with high AF presented
more frequently with Eastern Cooperative Oncology Group
(ECOG) performance status (PS) �2 (17% versus 0% and
25% versus 0%; P ¼ 0.004), �2 tumor sites (43% versus 29%
and 67% versus 24%; P ¼ 0.05), liver metastasis (78% versus
17% and 59% versus 41%; P < 0.001), and had a higher rate
of progressive disease as the best response to BRAFi com-
binations (30% versus 0% and 50% versus 18%) compared
with patients with low AF, respectively. Regarding treat-
ment, 70% and 72% of patients received doublet therapy in
the discovery and validation cohorts, respectively. To eval-
uate whether the presence of subclonal co-mutations is
associated with clinical outcomes on targeted therapy, we
analyzed baseline NGS in 35/47 (75%) and 29/29 (100%)
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patients in the discovery and the validation cohorts,
respectively. In the discovery cohort the most frequent
genomic alterations at baseline were PTEN mutation (5.7%),
AKT1 mutation (2.9%), KRAS amplification (2.9%), and EGFR
amplification (2.9%), whereas in the validation cohort, the
most frequent alterations were GNAS mutation (14%), MET
amplification (6.9%), KRAS mutation (3.4%), ARAF mutation
(3.4%), ERBB2 mutation (3.4%), and EGFR mutation (3.4%).
The complete analysis of subclonal mutations can be found
in Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2023.02.016.

Discovery cohort

In the discovery cohort, median OS was 10.1 months (95%
CI 6.5-17.5 months) and median PFS was 4.4 months (95%
CI 3.6-8.0 months) with a median follow-up of 24.1 months
(Figure 1A). Complete or partial response was observed in
30% of the patients, while 80% achieved disease control
(complete or partial response or stable disease). As a
continuous variable, BRAF AF baseline values were associ-
ated with OS (HR 10.27, 95% CI 1.79-59.1; P ¼ 0.009) and
PFS (HR 8.79, 95% CI 1.52-50.7; P ¼ 0.02). To better stratify
patients in clinical practice, different cut-offs to dichotomize
BRAF AF were explored. No relevant differences in the
lower 95% CI estimation for OS HR were obtained using cut-
offs from 0% to 20% (Figure 1B). Based on this, the median
value of the BRAF AF score in this cohort (2%) was selected
as the cut-off for group stratification. Plasma with unde-
tectable BRAF mutation was included in the low-BRAF AF
group. OS outcomes were significantly worse in patients
with high BRAF AF (�2%, n ¼ 23), with a median OS of 4.6
months, while patients with low BRAF AF (�2%, n ¼ 24)
had a median OS of 17.5 months (HR 3.28, 95% CI 1.58-
6.81; P ¼ 0.001). Median PFS was 3.3 months for high-BRAF
AF patients and 8.3 months for low-BRAF AF patients (HR
2.97, 95% CI 1.55-5.69; P ¼ 0.001) (Figure 1C and D).

In the univariable analysis, several clinicopathological
factors including ECOG PS, number of metastatic sites, liver
metastasis, carcinoembryonic antigen (CEA) levels, and al-
bumin levels were associated with OS (Figure 2). Among
them, ECOG PS, number of metastatic sites, CEA levels, and
BRAF AF (�2% versus<2%; HR 4.74, 95% CI 1.52-14.81; P¼
0.008) maintained statistical significance for OS in the
multivariable analysis. Consequently, BRAF AF baseline
levels maintained their independent statistical significance
after adjusting for clinicopathological factors.

Validation cohort

Findings from the discovery cohort were validated in an
external independent cohort of 29 BRAF-V600E-mutant
mCRC patients treated with a BRAFi plus an anti-EGFR with
or without a MEKi. Median OS in the validation cohort was
7.3 months (95% CI 6.3-11.3 months) and median PFS was
4.8 months (95% CI 4.0-6.4 months) with a median follow-
up of 21.8 months. Complete or partial response
was observed in 13% of the patients, and disease control
was achieved in 59%. The median BRAF-V600E AF value was
https://doi.org/10.1016/j.annonc.2023.02.016 545
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Table 1. Baseline characteristics of patients for the discovery and validation cohorts, according to AF levels

Discovery cohort, n [ 47 (%) Overall AF >2%, n [ 23 AF <2%, n [ 24
Sex, n (%)
Male 19 (40) 9 (39) 10 (42)
Female 28 (60) 14 (61) 14 (58)

Age (years, range) 61 (33-79) 62 (33-79) 61 (33-79)
ECOG, n (%)
0 23 (49) 8 (35) 15 (63)
1 20 (41) 11 (48) 9 (37)
>2 4 (10) 4 (17) 0

Sidedness, n (%)
Right 30 (64) 15 (65) 15 (63)
Left 17 (36) 8 (35) 9 (37)

CEA (ng/ml, range) 6.3 (0.5-7025) 8.85 (1.2-7025) 4.8 (0.5-1579)
NLR (range) 3.4 (1-16.14) 4.3 (1-16.14) 3.29 (1.26-6.15)
Albumin (g/dl, range) 3.9 (2.8-4.4) 3.7 (2.8-4.4) 4 (2.9-4.4)
LDH (UI/l, range) 331 (144-1501) 380 (202-1501) 320 (144-1126)
MSI, n (%)
MSI 8 (17) 4 (18) 4 (17)
MSS 36 (77) 18 (78) 18 (75)
NA 3 (6) 1 (4) 2 (8)

Previous lines, n (%)
1 22 (47) 13 (57) 9 (38)
2 19 (40) 9 (39) 10 (42)
>2 6 (13) 1 (4) 5 (20)

Tumor sites, n (%)
1 13 (28) 3 (14) 10 (42)
2 17 (36) 10 (43) 7 (29)
>2 17 (36) 10 (43) 7 (29)
Liver metastases, n (%) 20 (43) 18 (78) 4 (17)

BOR, n (%)
CR 1 (2) 0 1 (4)
PR 13 (28) 7 (30) 6 (25)
SD 24 (51) 8 (36) 16 (67)
PD 7 (15) 7 (30) 0
NA 2 (4) 1 (4) 1 (4)

BRAF inhibitor combination, n (%)
Doublet 33 (70) 16 (70) 17 (71)
Encorafenibecetuximab 26 (55) 11 (48) 15 (62)
Vemurafenibecetuximab 6 (13) 4 (18) 2 (9)
Vemurafenibeirinotecanecetuximab 1 (2) 1 (4) 0
Triplet 14 (28) 7 (30) 7 (29)
Encorafenibebinimetinibecetuximab 14 (28) 7 (30) 7 (29)

Validation cohort, n [ 29 (%) Overall AF >2%, n [ 12 AF <2%, n [ 17

Sex, n (%)
Male 12 (41) 4 (33) 8 (47)
Female 17 (59) 8 (67) 9 (53)

Age (years, range) 68 (36-82) 64 (36-82) 68 (38-81)
ECOG, n (%)
0 10 (34) 3 (25) 7 (41)
1 16 (55) 6 (50) 10 (59)
>2 3 (11) 3 (25) 0

Sidedness, n (%)
Right 18 (62) 7 (58) 11 (65)
Left 11 (38) 5 (42) 6 (35)

CEA (ng/ml, range) 7.05 (1.7-1489) 6.9 (1.26-1489) 7.2 (1.7-348)
NLR (range) 2.1 (0.28-15) 2.39 (0.8-9.57) 1.82 (0.28-8.1)
Albumin (g/dl, range) 4.4 (3.4-4.8) 4.4 (3.4-4.6) 4.1 (3.8-4.8)
LDH (UI/l, range) 220 (132-796) 290 (190-581) 192 (132-796)
MSI, n (%)
MSI 4 (14) 1 (8) 3 (18)
MSS 25 (86) 11 (92) 14 (82)
NA 0 0 0

Previous lines, n (%)
1 17 (59) 9 (75) 2 (12)
2 9 (31) 1 (8) 6 (35)
>2 3 (10) 2 (17) 9 (53)

Tumor sites, n (%)
1 9 (31) 3 (25) 6 (35)
2 8 (28) 1 (8) 7 (41)

Continued
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Table 1. Continued

Validation cohort, n [ 29 (%) Overall AF >2%, n [ 12 AF <2%, n [ 17

>2 12 (41) 8 (67) 4 (24)
Liver metastases, n (%) 14 (48) 7 (59) 7 (41)

BOR, n (%)
CR 1 (3) 0 1 (5)
PR 3(10) 3 (25) 0
SD 13 (46) 3 (25) 10 (59)
PD 9 (31) 6 (50) 3 (18)
NA 3 (10) 0 3 (18)

BRAF inhibitor combination, n (%)
Doublet 21 (72) 9 (75) 12 (71)
Encorafenibecetuximab 21 (72) 9 (75) 12 (71)
Vemurafenibecetuximab 0 0 0
Vemurafenibeirinotecanecetuximab 0 0 0
Triplet 8 (38) 3 (25) 5 (29)
Encorafenibebinimetinibecetuximab 8 (38) 3 (25) 5 (29)

AF, allele fraction; BOR, best overall response; CR, complete response; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; MSI, microsatellite instability;
MSS, microsatellite stability; NA, not available; PD, progression disease; PR, partial response; PS, performance status; SD, stable disease.

J. Ros et al. Annals of Oncology
0.9% (interquartile range 0.1%-5.0%), and using the pre-
defined cut-off of 2%, 41% of patients were classified as
high AF (n ¼ 12) and 59% as low AF (n ¼ 17). Consistent
with the results obtained in the discovery cohort, high AF
was significantly associated with worse PFS (HR 3.83, 95% CI
1.60-9.17; P ¼ 0.003) (Figure 3A). The median OS of 6.4
months in high-AF patients was numerically lower than in
patients with low AF (8.8 months), showing a trend toward
worse OS in the high-AF group, albeit not statistically sig-
nificant (HR 1.86, 95% CI 0.80-4.34; P ¼ 0.15) (Figure 3B).
The association between BRAF-V600E AF and survival out-
comes showed similar results after adjusting for MAPK
subclonal co-mutation status (Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2023.02.016).
Because of the low number of microsatellite instable (MSI)
patients, PFS and OS in this specific population were eval-
uated mixing both cohorts. Among MSI patients (n ¼ 12,
16%), those with low AF (n ¼ 7) had better PFS (6.4 versus
2.3 months) and OS (16.7 versus 2.6 months) than MSI
patients with high AF (n ¼ 5).
BRAF AF as a potential predictive factor for benefit with
triplet therapy

We next evaluated the potential role of liquid biopsy to
identify a subgroup of patients that could benefit from
triplet combination including a MEKi. We used the pooled
cohort (n ¼ 76) to estimate the benefit of the doublet and
triplet combinations in patients with low and high BRAF AF
levels. In the OS analysis, patients with low BRAF AF (n ¼
41) showed similar outcomes with the triplet and the
doublet treatment (HR 0.90, 95% CI 0.38-2.14). However,
high-BRAF AF patients (n ¼ 35) obtained better OS out-
comes with the triplet combination compared to the
doublet (HR 0.17, 95% CI 0.06-0.53; interaction test ¼
0.002) (Figure 4A). Similarly, no PFS differences were
observed regarding the treatment combination in low-BRAF
AF patients (HR 1.12, 95% CI 0.47-2.68) but a greater
benefit from the triplet was observed in high-BRAF AF pa-
tients (HR 0.27, 95% CI 0.11-0.68; interaction test ¼ 0.005)
Volume 34 - Issue 6 - 2023
(Figure 4B). KaplaneMeier curves are presented in
Supplementary Figure S2, available at https://doi.org/10.
1016/j.annonc.2023.02.016.
DISCUSSION

Unlike the success observed in treating BRAF-V600E-mutant
melanoma with BRAFi as single agents, the path toward
successful targeted blockade in BRAF-V600E-mutant mCRC
has proved considerably more challenging. It has taken
some time since the disappointing results with the BRAFi
vemurafenib treatment in BRAF-mutant mCRC7 to identify
the EGFR loop as the main mechanism of resistance,9,26

along with the subsequent successful development of the
doublet and triplet BRAFi combinations. The BEACON trial is
the largest phase III trial enrolling patients with BRAF-V600E
mCRC worldwide. Based on the results of this trial, the
encorafenibecetuximab doublet became the new standard
of care for patients with refractory mCRC harboring a BRAF-
V600E mutation. Nonetheless, the high degree of hetero-
geneity in clinical responses12 raised the need to identify
prognostic and predictive biomarkers that optimize the
clinical management of patients, which included assessing
the prognostic role of BRAF AF in cfDNA. Although the
prognostic significance of BRAF AF has been assessed in
plasma and tissue samples in two other previous cohorts
that included colorectal tumors, the number of patients
with BRAF-V600E colon cancer in these cohorts was limited,
with only five and six patients, respectively.23,24 A retro-
spective correlative biomarker study using data from the
BEACON trial demonstrated longer OS among patients with
low AF compared with those with high AF, by treatment
arm (14.8 versus 7.2 months, 14.8 versus 5.4 months, and
9.3 versus 4.2 months for the triplet, doublet, and
chemotherapy arms, with low AF and high AF, respec-
tively).13 However, these results come from a highly
selected clinical trial population, which does not accurately
reflect the real-world population given that only patients
considered fit enough are enrolled in a clinical trial. The
correlative analyses from the BEACON trial using circulating
https://doi.org/10.1016/j.annonc.2023.02.016 547
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tumor DNA genomic profiling (GuardantOMNI) demon-
strated the prognostic role of BRAF AF.13 In all treatment
arms, OS was significantly longer in patients with low BRAF
AF (<2%) than in those with high AF (P < 0.0001). Patients
in the triplet and doublet arms had improved ORR and OS
regardless of BRAF AF, compared with those in the
chemotherapy arm. In our cohort, clinical outcomes were
similar to those reported in the BEACON trial, with a me-
dian PFS of 4.4 months and a median OS of 10.1 months in
the overall cohort. Our study was carried out using ddPCR,
which is highly sensitive and easy to implement in routine
clinical practice in the real-world setting. Although NGS
offers many advantages and will likely be widely adopted in
the mid to long term, we consider it important to validate a
technique that could easily fill in the gap during the coming
years and in settings where NGS will be difficult to
implement.

Of note, our cohort includes not only patients from
clinical trials (42% of the cohort) but also patients who
received BRAFi combinations as compassionate use (48% of
the cohort). In both of our cohorts (discovery and valida-
tion), patients with high AF tended to have worse PS, were
548 https://doi.org/10.1016/j.annonc.2023.02.016
more heavily pretreated, had more metastatic sites
including more frequent liver involvement, and poorer
response to the BRAFi combination than patients with low
AF, suggesting that plasmatic BRAF AF might be a surrogate
of tumor load with potential prognostic value. Among pa-
tients from the discovery cohort, those patients with low AF
had significantly longer OS than those with high AF. In the
validation cohort, the same tendency was observed; how-
ever, it did not reach statistical significance.

These results suggest that plasmatic BRAF AF has a sur-
vival impact and can be used to identify potentially longer
survivors. While our analysis did not validate the results in
the validation cohort in terms of OS, there is a clear ten-
dency toward shorter OS among patients with high AF in
our population. The added value of our study is the use of
the reliable and highly reproducible technique ddPCR.
Furthermore, patients were also included outside the
context of a clinical trial, suggesting that this approach may
be of interest in a real-world population.

Although the doublet combination was approved by both
FDA and EMA, data suggest that selected patients can
benefit from the addition of a MEKi. In the BEACON trial, to
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identify molecular correlates of clinical outcome, tissue
samples were analyzed using whole-exome sequencing and
whole-transcriptome sequencing.27 In their study, OS ac-
cording to genetic subtype (CMS or BM classifications)2,17

was similar between the doublet and the triplet arms.
However, a trend favoring treatment with the triplet was
observed in CMS4 and BM1 tumors (HR 0.73, 95% CI 0.44-
1.21 and HR 0.71, 95% CI 0.43-1.19, respectively). ORR was
higher in the triplet arm versus the doublet arm for CMS4
and BM1 tumor groups (33.3% versus 19.2% and 33.3%
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versus 14.9%, respectively). Regarding liquid biopsy results,
ORR was higher among patients from the BEACON trial,
independent of BRAF AF, in both the triplet and doublet
arms compared with the chemotherapy arm. However, in
the pooled cohort of our study, among 14 patients treated
with the triplet therapy, a longer OS was seen for patients
with high AF (HR 0.17, 95% CI 0.06-0.53) compared with
patients with low AF (HR 0.90, 95% CI 0.38-2.14) suggesting
that there is a subgroup of BRAF-mutant tumors that may
obtain benefit from the triplet.
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Finally, patients with BRAF-V600E mCRC receiving BRAFi-
based combinations may present many different alterations
in the MAPK pathway leading to acquired resistance.28,29

Previous evidence demonstrated that some BRAF-V600E
colorectal tumors may harbor subclonal MAPK pathway
alterations detectable at trace levels before treatment that
likely are responsible for the development of acquired
resistance.30 To confirm the prognostic value of BRAF AF
regardless of the presence of those co-mutations, we car-
ried out a baseline tissue NGS and found that subclonal
mutation status was not associated with survival outcomes,
but more importantly, BRAF-V600E AF remained statistically
significant in the multivariable analysis after adjusting for
these subclonal mutations.

The main limitations of our study were the relatively
small sample size of the validation cohort and the retro-
spective nature of the study. Differences between the two
cohorts due to the modest sample size should also be taken
into consideration, such as a higher number of previous
lines and metastatic sites in the validation cohort. Never-
theless, the baseline clinical characteristics did not impact
the validation of the prognostic and potentially predictive
value of the BRAF AF. Furthermore, 17% and 14% of the
patients presented with microsatellite instability and 3%
and 6% of them received subsequent immunotherapy in the
discovery and validation cohorts, respectively. These pa-
tients have longer OS compared with their BRAF-mutant
microsatellite stable counterparts, potentially hampering
550 https://doi.org/10.1016/j.annonc.2023.02.016
interpretation of the OS results. Nevertheless, the low fre-
quency of patients with microsatellite instability in these
two cohorts would not affect the prognostic concept of the
BRAF AF.

The identification of robust prognostic factors in BRAF-
mutant mCRC is of critical importance to guide treatment
strategies and modulate patient expectations. Moreover,
the current study suggests the existence of a subgroup of
patients that can potentially obtain benefit from more
intensive treatment including a MEKi. Overall, our results
highlight the utility of plasmatic BRAF AF using ddPCR,
particularly considering the difficulties of obtaining tissue
samples in this specific population. Furthermore, the
incorporation of plasmatic BRAF AF data could support
better patient stratification in prospective clinical trials.
Prospective validation in a large cohort is needed.
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