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Nowadays, hybrid QM/MM approaches are widely used to study (supra)molecular systems embedded
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in complex biological matrices. However, in their common formulation, mutual interactions between
the quantum and classical parts are neglected. To go beyond such a picture, a polarizable embedding
can be used. In this perspective, we focus on the induced point dipoles formulation of polarizable
QM/MM approaches and we show how efficient and linear scaling implementations have allowed their
application to the modeling of complex biosystems. In particular, we discuss their use in the prediction
of spectroscopies and in molecular dynamics simulations, including Born-Oppenheimer dynamics,
enhanced sampling techniques and nonadiabatic descriptions. We finally suggest the theoretical and

computational developments that still need to be achieved to overcome the limitations which have

prevented so far a larger diffusion of these methods.

1 Introduction

Hybrid approaches which integrate quantum chemistry and
molecular mechanics (MM) have an almost 45 year-long his-
tory being their first formulation published by Warshel and Levitt
in 1976.1 During the years many important developments have
been proposed. The main ones concern the accuracy and com-
pleteness of the coupling between the quantum and the classi-
cal subsystem, and the extension to describe properties and pro-
cesses beyond the energy of a ground state system. In parallel,
the same approaches have been largely reformulated in their nu-
merical and computational aspects so to achieve robust and high-
performing implementations. All these improvements have al-
lowed QM/MM methods to become one of the most successful
and popular strategies to describe complex systems especially of
biological interest. The latter in fact represent an optimal field
of study for a QM/MM formulation. In enzymatic reactivity or in
the many examples of light-activated biological functions, in fact,
the process of interest can be clearly localized in a limited part
of the whole system while the rest mostly acts as a perturbation
through both short-range and specific effects (mostly H-bonds)
and longer range electrostatic interactions. As a matter of fact,
enzymes and their catalytic activity have been the very first and
the most frequent application of QM/MM methods. T8 Another
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1 Electronic Supplementary Information (ESI) available: general treatment of the
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important field where QM/MM methods have reported important
successes is the interpretation and the simulation of spectroscopic
experiments in a variety of complex environments.”8 In particu-
lar, in recent years QM/MM methods have been successfully ap-
plied to the simulation of electronic spectroscopies of biological
systems.2"12 This has been made possible mostly thanks to the
extension of QM/MM to the Time Dependent Density Functional
Theory (TDDFT) description of excitation processes. The compu-
tational efficiency of TDDFT in describing electronic transitions
in medium-to-large molecular systems has in fact allowed to sim-
ulate the chromophoric unit present in photoresponsive proteins
without the need of introducing approximated model systems. Fi-
nally, QM/MM methods have been extended to molecular dynam-
ics (MD) simulations either using an adiabatic or a nonadiabatic
formulation.™3

This brief summary clearly shows that QM/MM methods rep-
resent an extremely powerful strategy which has permeated all
the main fields of application of quantum chemistry and, at the
same time, has largely extended the borders of its applicabil-
ity towards more and more complex systems. Once recognized
that, however, we have to add that most of the applications ap-
peared so far are based on a purely electrostatic formulation of
the QM-MM coupling. When we say QM/MM, in fact, we usually
indicate the so-called electrostatic embedding (EE) formulation
of the model. Namely, the QM subsystem "sees" the MM one as
a set of fixed point charges (or a fixed multipolar expansion).
Within this formulation any mutual polarization effects and/or
any nonelectrostatic interactions between the QM and MM sub-
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systems is completely neglected. In the case of nonelectrostatic
interactions (e.g. dispersion and repulsion), their effects on the
energy can be recovered in an uncoupled way by converting the
QM system into a set of MM parameters and calculating these in-
teractions through the common classical potentials used in MM
force fields. Due to the generally weaker effect of these interac-
tions when compared to electrostatics, this uncoupled formula-
tion is the standard in QM/MM descriptions and only very few
attempts to go beyond that have been proposed for water as sol-
vent, 14 and for more complex environments including biological
systems.2>"17 On the contrary, various methods have been pre-
sented so far to include mutual polarization effects. A strategy is
to introduce the effect of polarization using “ab initio” FFs which
are fully built on first principles and require no fitted parameters.
Very popular examples of this type are the Effective Fragment Po-
tential (EFP) method® and the X-Pol strategy. 19" An alternative
approach is to use MM but polarizable FFs22723 based either on
Drude oscillators, 2429 fluctuating charges®?34 or induced point
dipoles (IPD).1\3>744 We recall that within the latter framework,
the MM subsystem is represented via a set of fixed point charges,
and possibly higher order multipoles, and by endowing polariz-
able sites with atomic polarizabilities.

In this perspective, we will focus on the IPD formulation of po-
larizable embedding for different reasons. The first is that IPD
polarizable FFs have shown to be extremely accurate not only for
describing standard solvents but also for biomacromolecules such
as proteins.424% Secondly, the use of atomic induced dipoles al-
lows a clearer interpretation of the response of a biological envi-
ronment with respect to other types of polarizable FFs. Finally,
IPD polarizable FFs are a very active research field especially
within the group associated to the development of AMOEBA, 47448
which represents one of the most sophisticated polarizable FFs.
In the presentation, we start from the state of the art of the IPD
QM/MM formulation, outlining its main theoretical aspects and
how they have been translated into efficient and linear scaling
implementations for ground state and excited systems. Then we
proceed illustrating applications to spectroscopies and dynamic
processes thanks to their extension to molecular dynamics tech-
niques. Starting from a Born-Oppenheimer description, we will
show that polarizable QM/MM can be combined with enhanced
sampling techniques and reformulated for nonadiabatic dynam-
ics. We finally note that both the presentation of the method-
ological and computational aspects and the selection of possible
applications will be biased towards biosystems. Different types of
complex embedding have in fact different specificities which in
many cases require different solutions.42/>0

2 An induced point dipole formulation of polariz-
able embedding

In this section, we provide an overview of the IPD polarizable
QM/MM model for the description of molecular systems in their
ground and excited states. We then describe how the approach
can be used to perform Born-Oppenheimer (BO) molecular dy-
namics (MD) simulations, with particular emphasis on the com-
putational aspects of such simulations. All formal and mathemati-
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cal details are kept to a minimum. We refer the reader to the sup-
porting information and to previous work#24L51554 for 2 more
comprehensive description of the theory and implementation.

2.1 The theory

In a polarizable embedding model, each MM atom is endowed
with a point charge and a polarizability. In more sophisticated
polarizable force fields (FF), such as AMOEBA, %748l higher order
multipoles are considered as well. As such a generalization does
not alter the substance of the discussion while requiring a much
more complex and cumbersome notation, we limit our discussion
to point charges. A more general formalism and discussion can
be found in the Supporting Information. The polarizability allows
the MM atoms to respond to an electric field, generated by the
charges on the classical atoms and by the QM density, by creating
an induced dipole. The QM/MM electrostatic and polarization
interaction energy can be written as follows422165>
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In eq. |1} the first term is the interaction among the MM charges,
where ViMM is the potential generated by all other charges at site
i, the second term is the interaction between the MM charges
and the QM density, ViQM being the QM potential at site i. These
two terms are common to standard EE QM/MM. The third and
fourth terms are the self-interaction of the induced dipoles, which
can be understood as the work needed to induce the dipole it-
self, and the repulsion between all induced dipoles, where .7j; is
the effective dipole-field tensor that includes a damping function,
namely: 3955156
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where I is the unit matrix and f, and f; are distance dependent
damping functions originally introduced by Thole” to avoid the
so-called "polarization catastrophe", e.g. the divergence of the
Coulomb interaction between two point dipoles when they get
too close. More details can be found in the supporting informa-
tion. Several models have been proposed for the damping func-
tions=24227, A review of various possibilities can be found in ref.
58l Finally, the last two terms are the interaction energy of the in-
duced dipoles with the electric fields produced by the MM charges
and QM density, respectively. The last four terms do not appear
in EE QM/MM and are characteristic of polarizable embedding
models. The energy in eq. [1|is a variational functional®222100 of
the induced dipoles themselves. The minimum of the energy cor-
responds to the situation where the IPDs maximize the favorable
interaction energy with the MM charges and QM density, while at
the same time minimizing the repulsion among themselves. The
equations for the induced dipoles are obtained by differentiating
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Equations [1| and [3| are the main constituents of a polarizable
QM/MM implementation. Assuming the QM subsystem is de-
scribed at a Self-Consistent Field (SCF) level of theory, such as
Hartree-Fock (HF) or Kohn-Sham (KS) Density Functional The-
ory (DFT), the polarizable QM/MM energy can be computed by
assembling the energy in eq. [[]and adding to the Fock or KS ma-
trix the additional contributions, that are the derivatives of eq.

with respect to the density matrix. In the atomic orbitals (AO)
basis: 40141151
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The first term in eq. [4]is independent of the QM charge density
and can be summed with the one-electron Hamiltonian, as it is
commonly done in EE QM/MM. The second term, on the other
hand, represents at the same time the main advantage and the
main complication introduced by a polarizable model. The IPDs,
that are computed by solving the linear system [3} depend on the
QM density, as the QM electric field appears in the right-hand
side. Therefore, the Fock matrix contribution that stems from
the induced dipoles is density dependent. This reflects the fact
that the QM density and the IPDs are mutually polarized, i.e.,
the classical environment is able to adapt to changes in the QM
density, which is the main strength of polarizable models. On the
other hand, this mutual polarization introduces a non-linearity
in the QM/MM interaction, which means that the QM and IPD
equations need to be solved iteratively. This is, in practice, not a
problem for SCF-based levels of theory, as the SCF procedure is
iterative itself. At each SCF iteration, given the density matrix,
the QM field has to be assembled. Then, eq. [3|is solved and the
dipoles are used to update the Fock or KS matrix. The coupled
procedure is schematized in figure
A specific note concerns the integration of a polarizable em-
bedding within a post-HF description for the QM subsystem. The
non-linear term introduced by the coupling in the Hamiltonian
poses in fact a problem. Mutuating the terminology from Contin-
uum Solvation models, three different coupling schemes are pos-
sible. 61768/ The first, called PTE (perturbation to the energy), uses
the QM/MM HF orbitals to compute the amplitudes and correla-
tion energy, decoupling therefore correlation from the response

of the environment. The second, called PTD (perturbation to the
density), computes a correlated relaxed density matrix without
contributions from the environment and then uses it to compute
the IPD. The last, called PTED!02-04167069I701 (perturbation to the
energy and density), is the synthesis of PTE and PTD: a correlated
density is computed starting from the PTE amplitudes and used
to update the response of the environment; the procedure is then
iterated until self-consistency of the relaxed density is reached.
The PTE scheme has been proven to be consistent with second-
order perturbation theory®* and, given its simplicity, is the most
commonly employed strategyZt"73 even though PTED implemen-
tations have been presented.©2/00/71172

2.2 The implementation

Once presented the main theoretical aspects of the model, some
considerations of computational nature are mandatory. The vari-
ous operations required to perform a polarizable QM/MM calcu-
lation can be grouped into three categories: i) computing various
one-electron integrals, ii) computing the interaction between the
classical electrostatic distributions (charges and dipoles), and iii)
solving the polarization equations. Operations in the first group
can be performed at a cost that scales as &'(NomNwvm), where
Nowm and Ny are the number of QM and MM atoms, respectively.
This is in general not a source of major overheads and the differ-
ence between electrostatic and polarizable embeddings is simply
that field integrals are also required. Therefore, neither major
implementation complications nor computational bottlenecks are
introduced in this respect. The operations in groups ii) and iii)
are, on the other hand, much more delicate from a computational
point of view, as they exhibit a formal scaling of &'(Ngy,), or even
of ﬁ(NﬁdM) if the linear system in eq. is solved using stan-
dard dense linear-algebra methods. While this burden is shared
with EE QM/MM, in the latter case only charge-charge interac-
tion need to be computed. In IPD embeddings, besides having
to compute charge-dipole and dipole-dipole interactions, the po-
larization equations |3| need to be solved at each SCF iteration,
severely aggravating the overall computation. Here, it should be
mentioned that using an advanced polarizable force field such as
AMOEBA#758! introduces further complications due to the pres-
ence of higher order multipoles (up to quadrupoles) and two sets
of induced dipoles.>® Without going into detail, this last aspect
makes a QM/AMOEBA calculation about twice as expensive as a
charge and dipoles polarizable embedding one.

In order to use polarizable QM/MM for large systems, an ef-
ficient implementation is therefore of paramount importance.
First, the polarization linear system is symmetric and positive def-
inite and can therefore be efficiently solved iteratively using the
preconditioned conjugate gradient method.”>> The preconditioner
proposed by Wang and Skeel”# is particularly effective in reduc-
ing the number of iterations, which, in our experience, is usually
as little as 10-12. Second, one can easily realize that the matrix-
vector products needed to solve such a linear system can be re-
cast as the computation of the electric field generated by the in-
duced dipoles, making the distinction between groups ii) and iii)
inessential. Electrostatic properties can be computed at a compu-
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tational cost that scales linearly with the number of MM atoms
by using a suitable fast summation technique, such as the Fast
Multipole Method (FMM).Z2 Recently, we have presented a gen-
eral, FMM based implementation for polarizable QM/MM?>=2>4
that allows one to compute the interaction between multipoles
of, in principle, arbitrary order. Thanks to this implementation,
all the computations required by the polarizable model can be
performed at a cost that scales as &'(Nyv ). In reference 54, we
showed that systems comprising as many as one million polar-
izable atoms can be easily treated on standard computer nodes
with minimal computational overhead. The same machinery can
be extended to the complex electrostatics present in the AMOEBA
force field, so that also QM/AMOEBA calculations can be per-
formed efficiently, 482425174

To summarize, polarizable QM/MM computations can be af-
fordably performed also for very large systems. However, there is
a price to pay. Their implementations are complex and cumber-
some and require substantial modifications of a QM code. Fur-
thermore, in order to get a substantial improvement of the perfor-
mance, the use of complex fast summation techniques is manda-
tory, further adding to the complexity of the implementation.
For our implementation, which aims at maximizing efficiency, we
therefore choose a fully integrated approach, using both the Gaus-
sian 16 electronic structure program® and its current develop-
ment version.”Z The implementation is entangled with Gaussian
both in terms of I/0 and memory management, and in terms of
code structure. It also makes use of Gaussian’s internal FMM li-
brary.

At the the cost of reducing to some extent the efficiency, it
is possible to achieve a code-independent, modular implemen-
tation. The strategies proposed so far can be grouped into two
main approaches. The first one resembles as much as possible
a fully integrated implementation, but reduces the modifications
that one needs to implement in the QM software by creating an
external library that performs all the calculations implied by a
polarizable scheme. Such a library consists of all the MM spe-
cific routines, that deal with input processing, computing MM in-
teractions and inducing fields, solving the polarization equations
and handling the contractions between MM quantities and QM
integrals. In order to couple such a library to an existing QM
package, the user needs to take care of high-level driver routines,
that handle the interface between the QM package, mainly call-
ing its internal integrals routines, and the library itself, updating
then the energy, the Fock matrix, or other QM quantities for cou-
pling with post-SCF treatments. This strategy is implemented in
the CPPE library”Z® and is very promising, as it allows one to add
the capability to treat a polarizable embedding to any QM soft-
ware without the need to deal with the cumbersome details of
the electrostatics involved. Moreover, the open source nature of
the project makes this interface very appealing and could actually
help to make polarizable QM/MM much more broadly available
in QM software packages. Furthermore, an external library can
in principle achieve an efficient implementation and full mutual
polarization with a non trivial, but minimal implementation.

A second option is to write software that exploits existing fea-
tures of QM and MM programs without modifying them, but im-
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plementing the QM/MM coupling externally. This is in princi-
ple very appealing, however, it implies certain approximations.
In particular, the solution to the QM and polarization equations
is uncoupled, and therefore no fully self-consistent mutual po-
larization can be achieved, if not at the price of performing the
SCF calculation many times. In this framework, the coupling is
handled relying on the fact that most QM package offer electro-
static embedding capabilities based on point charges. The elec-
trostatic field obtained from the MM engine, which can include
contributions from both static and induced multipoles, is applied
to the QM density by approximating all the MM sources as point
charges, the values and coordinates of which are then provided to
the QM software for the electrostatic embedding. This is a second
approximation introduced by the scheme. For polarizable em-
bedding, a correction to the polarization and interaction energy
can be further applied using the field generated by the converged
SCF density to recompute the polarization degrees of freedom.
The approximations introduced by such a coupling schemes are
counterbalanced by a substantially reduced computational cost.
The Lichem'” and Chem Shell®? implementations of polarizable
embedding are representative of this second philosophy.

2.3 The extension to excited states

One of the most attractive features of polarizable QM/MM models
is that they are particularly suited for the description of electronic
excitations. This can be explained in two equivalent ways. From
a physical point of view, an excitation process causes a sizeable
rearrangement of the electronic density, which in turn modifies
the interaction between the excited molecule and the environ-
ment. Polarizable embeddings have the flexibility to respond to
such a change, which is lacking in EE schemes. Equivalently, the
non-linearity introduced by the former in the Hamiltonian im-
plies an explicit contribution to the electric response function of
the molecule, which is absent in EE schemes. In the framework
of SCF-based linear response (LR) theory, excitation energies @
and transition densities X, Y are obtained by solving the so called
time-dependent SCF equations, given here in Casida’s formula-

B R AT

where the A and B matrices are given by
Aia,jb = 0ij0ub(€a — &) + (ial jb) — cx(ablij) +c1 foip; + Vigip
Big ji = (ia| jb) — cx(ajlib) +ci fai; + Viagp 6)

where i, j are the indices of occupied molecular orbitals, and a,
b of virtual molecular orbitals, g; are the molecular orbital ener-
gies, (ai|bj) is a bielectronic integral in the Mulliken notation, and

e ; is the exchange—correlation kernel. The coefficients ¢, and
¢; control the amount of exact exchange for hybrid functionals
by interpolating between HF (cx = 1, ¢; = 0) and pure functionals

(cx =0, ¢; = 1). The last term is the response of the polarizable



embedding, 10140141182
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Ujpx is the induced dipole at site k created by the field arising
from orbitals ¢;¢,, and E;, is the field computed at the k-th site
arising from ¢;¢,.

Polarizable models are naturally adapted to the LR treatment
of excitation and response processes, however, a LR description
might not be enough to fully account for the interaction of an
excited system with the environment. The LR response, in fact,
can be interpreted as the instantaneous response of the MM po-
larizable sites to the transition density of the electronic excita-
tion. What instead is missing in this formulation is the effect
due to the (instantaneous) polarization of the environment to the
different electronic charge densities of the ground and excited
states. Analogously to what is observed with Continuum Solva-
tion Models, 8384 this poses the problem of how to introduce a
state-specific (SS) polarizable QM/MM response.

Unfortunately, there is no unique way to introduce SS couplings
or corrections within a LR theory, nor strong theoretical argument
to choose among different schemes. If one is interested in correct-
ing the transition energy for a particular excitation, an approach
based on first-order perturbation theory, known as corrected LR
(cLR), can be effectively used. This was originally formulated
for Continuum Solvation Models® but later it has been extended
to polarizable QM/MM models. 48 However, this does not cor-
rect the state’s density, in some analogy with what done by PTE
scheme to the correlation amplitudes. A possible solution is to
iterate the cLR procedure, i.e., recompute the LR amplitude in
the presence of a field produced by the environment polarized
by the excited-state density, iterating the procedure until self-
consistency is reached, in close analogy to what is done in PTED
schemes. Such a procedure has been proposed for continuum sol-
vation models®Z88 but it is very expensive from a computational
point of view, and introduces terms in the excitation energy that
are not consistent with a first-order, LR approach. Even if a state-
specific QM method is used, for instance CASSCF, the introduc-
tion of a state-specific response term is problematic, especially
if state-average formulations have to be used to get reliable re-
sults. 8221

From this discussion it should come out clearly that the exten-
sion of polarizable QM/MM approaches to excitation processes
remain challenging and no definitive theoretical solution has been
found for the problem. What is clear is that LR and SS responses
correspond to different physical contributions to the excited-state
energy, and, in principle, both have to be taken into account. On
a positive note, we can say that the use of a LR response when
combined with cLR corrections is usually more than adequate to
correctly predict the excitation energies. In more difficult cases
where this strategy is not enough because of the intrinsic limits of
the LR QM description in accurately describing the change in the
state density, an integration of LR and SS QM methods (mostly
CASSCF) has been proposed and successfully applied to various
photoresponsive proteins. 2223

To conclude the extension of polarizable QM/MM approaches

to excitation processes, it is worth recalling a particular class of
complex systems that have largely benefited from such a multi-
scale description, namely multichromophoric systems, in which
an electronic excitation can be delocalized over several chro-
mophoric units. A very important example of these systems are
the pigment-protein complexes (also called antenna complexes)
used in photosynthetic organisms to harvest light and transfer the
excitation energy to the reaction centers for further transforma-
tion. In this kind of systems, the usual partitioning into a QM
and a MM part is not necessarily an optimal choice, as a correct
description of the excited state requires extending the QM part
to multiple molecules. In order to overcome this limitation, the
multichromophoric excited states can be described on the basis of
the single chromophores’ excited states, in the so-called Frenkel
exciton model. In this model, the excited states (excitons) are
obtained by diagonalization of the exciton matrix, whose diag-
onal elements are the excitation energies of the noninteracting
chromophores (site energies), whereas the off-diagonal elements,
the exciton couplings, represent the interaction between excita-
tions in different chromophores. This model can be coupled to
an ab initio description of both the site energies and the cou-
plings. 122425/ The environment plays a major role in determining
the nature and the behavior of excitonic systems: this is particu-
larly true for the antenna complexes where the protein embed-
ding the multichromophoric aggregate is not only necessary to
keep the different chromophores in "optimal" relative positions
but also to tune the energy and the nature of the excitons. This
"tuning" is mainly realized through electrostatic and polarization
effects of the protein residues which can significantly affect both
site energies and exciton couplings.22"28 For such complexes, but
also for other types of excitonic systems, combining a Frenkel ex-
citon model with a polarizable embedding is a very effective strat-
egy. This combination has been developed and implemented by
our group in collaboration with Dr. C. Curutchet in Barcelona
using the IPD formulation of the polarizable embedding.4? In
particular, within such a formulation, a new term appears in the
exciton coupling definition, which represents the Coulomb inter-
action between chromophores mediated by the environment po-
larization. This term generalizes a concept originally introduced
within continuum solvation models??19U to atomistic models
thus allowing a more accurate description for heterogeneous and
anisotropic environments like a protein matrix.102

3 Molecular dynamics

When the interest is mainly on the simulation of complex biolog-
ical systems, any model, even if very accurate, is not sufficient if
it cannot be extended to describe dynamics. While such an ex-
tension is now almost routine for the EE QM/MM approach, only
few examples have been proposed so far for polarizable embed-
dings. The main reasons are two: the extension of polarizable
QM/MM methods to the analytical derivatives needed for molec-
ular dynamics simulations is neither automatic nor straightfor-
ward, and the computational cost is generally much higher than
for the electrostatic embedding counterpart. This latter limitation
is being overcome, as we have described in the previous section,
and, if the implementations will become available in more and
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Fig. 2 Example of a coupled QM/MM implementation able to perform
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more computational codes, polarizable QM/MM MD simulations
will rapidly spread. In this section, we present what is already
possible within a Born-Oppenheimer approximation eventually in
combination with enhanced sampling techniques.

3.1 Born-Oppenheimer Molecular dynamics
Polarizable QM/MM Born-Oppenheimer molecular dynamics
(BOMD) implementations have been presented both within the
Drude oscillator?® and the IPD formulations of the polarizable
embedding.>3"1031104 Here we focus on the implementation that
our group has done in collaboration with the group of J.-P. Pique-
mal in Paris, 23193 coupling the Gaussian implementation of the
IPD QM/MM described in the previous section and the Tinker
software 106107 The latter handles the propagation of the tra-
jectory, as well as the computation of all the contributions to
the energy and forces that do not involve the QM density, the
electrostatic distribution and the polarization. In particular, Tin-
ker computes all the Van der Waals interactions, including the
QM/MM ones, and all the bonded interactions among MM atoms
and, if present, across links between the MM and QM subsystems,
that can be handled either using pseudo-bonds1%* or link atoms.
Gaussian, instead, deals with the QM subsystem and computes all
the electrostatic and polarization contributions to the energy and
forces, including both QM/MM and purely MM ones. This allows
us to exploit the very efficient FMM-based machinery described in
section[2.2] so that we can achieve linear scaling in computational
cost with respect to the number of MM atoms. A representation
of the steps required to perform BOMD is provided in figure 2]

The IPD QM/MM gradients can be obtained by differentiating
eq. |1 with respect to the coordinates and their implementation
has been already extensively presented for both ground and ex-
cited states232411081109 3 q are derived in more detail in the Sup-
porting Information. Here, it suffices to say that they can be as-
sembled by computing contributions of the same kinds discussed
for energy computations, namely, electrostatic properties due to
the MM charges and dipoles and one-electron integrals, again,
at a cost that scales linearly with respect to the number of MM
atoms.24 The latter aspect is of fundamental importance if one
wants to use polarizable QM/MM BOMD simulations for model-
ing all but the smallest systems, as due to the very large number
of energy and forces evaluations needed to compute a sufficiently
long trajectory, it is paramount that each single force computation
is performed in the most efficient way possible.

In our implementation, even for very large systems, the cost is

6
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completely dominated by the cost of the QM calculation alone,
with the polarizable embedding part causing overall only a very
small increase in computational cost - in the order of a few per-
cents. To give an idea of the efficiency achieved with the herein
presented implementation we recall two cases. All the timings
were obtained using a single cluster node equipped with two In-
tel Xeon Gold 5120 processors (28 cores) and 128 GB of memory.
The two systems are reported in fig. [3| (i) the BOMD of a small
molecule (28 atoms) in an explicit solvent box (13500 atoms).
We performed both a ground state MD equilibration in the NVT
ensamble and an excited state MD simulation in the NVE ensam-
ble. We used an AMOEBA description for the environment com-
bined with DFT for the ground and TDDFT for the excited state
(wB97X-D/6-31+G(d), 194 basis functions). With this setup we
were able to perform about 2250 steps of MD per day on the
ground state and about 500 steps per day on the excited state,
which considered the 0.5 fs integration step translate respectively
into 1.1 and 0.25 ps/day. (ii) an excited state NVT BOMD simu-
lation of a large chromophore (94 atoms) in an fully polarizable
solvated protein environment (5900 atoms). Again, we employed
AMOEBA as polarizable FF and TDDFT (CAM-B3LYP/6-31G(d),
734 basis functions) for the QM region. For this system, we were
able to perform about 200 steps of MD per day, which considered
the 0.5 fs integration step translates into 0.1 ps/day. These ex-
amples show that several ps of trajectory can be easily obtained
in both ground and excited state simulations in a reasonable wall
clock time.

A final important note about MD simulations is the definition
of boundary conditions. Due to the great efficiency of fast sum-
mation techniques, in MM MD this is normally done through pe-
riodic boundary conditions (PBC). When a part of the system is
treated with a QM method and the wave function is approximated
as an expansion on atom-centered basis functions, a correct treat-
ment of the interactions between the images of the system re-
quires evaluation of non-trivial terms in the QM code and this
is normally inconvenient both to develop and apply. In order to
mitigate this problem one can introduce approximations that al-
low to calculate the PBC terms in a easier way (eg. model the
electron density function and/or the field of the neighbour im-
ages as a set of point charges). 11U Despite these approaches
have been developed in a general way, their integration with po-
larizable models was never tested and it is not easy to foresee if
numerical issues can arise from the combination of these approx-
imate models. Moreover it was shown that for QM/MM calcu-
lation PBC give results that are in quantitative agreement with
easier to implement non-periodic approaches.' ' Non periodic
boundary conditions must provide a mechanical embedding po-
tential to prevent the "evaporation" of the MM molecules, and
possibly an electrostatic embedding to reproduce the bulk prop-
erties. If only a mechanical embedding is employed, there should
be enough MM molecules such that the QM molecule is prop-
erly solvated, i.e. its properties should correspond to the ones
calculated in bulk. This can be a harder requirement if the QM
molecule is charged. An overview of different approaches involv-
ing non periodic boundary conditions as well as a historical per-
spective is given in ref. [112l Among the approaches presented,



Fig. 3 Examples of systems studied with polarizable QM /MM BOMD. Panel (a) shows a QM molecule of 3-hydroxyflavone in MM acetonitrile (drawn
in blue). The outcome of the excited state BOMD is an excited state proton transfer, which is highlighted by the white arrow. Panel (b) shows the
orange carotenoid protein: the QM part is the carotenoid, the MM part comprises the protein and the solvent molecules (water), which are not drawn

for clarity.

two are particularly suited for QM/MM MD, and involve the use
of an external potential or of a layer of frozen solvent molecules.
The frozen layer is a simple solution, available in most MD codes,
but it can create some bias at the interface, thus requiring more
MM molecules. On the other hand, external potentials provide
more reliable boundary conditions, and attractive-repulsive po-
tentials have been used in combination with a spherical cavity.113
Mechanical embedding potentials have been used in combina-
tion with a polarizable continuum model to provide non periodic
boundary conditions for EE QM/MM MD.114-116 The extension
of this approach to polarizable MM requires all the components
of the system to be mutually polarized which clearly introduces
additional computational cost. 2432511521117

3.2 Enhanced sampling and free energy methods

When dealing with complex chemical and biological systems, en-
semble sampling with MD is slowed down by the presence of high
free energy barriers. As such, obtaining a correct sampling with
conventional MD (cMD) requires to simulate the system for very
long time (up to ms), which is only affordable with specific hard-
ware and with fully classical potentials.118119 Numerous meth-
ods, called enhanced sampling techniques, have been developed
in order to face these problems at a much lower computational
cost. 120 These methods can be divided into two subcategories:
unconstrained methods and collective variable ones.

Among unconstrained methods, replica exchange MD (REMD)
exploits simultaneous simulations at different temperatures, or
with parametrically scaled Hamiltonians, to cross the high energy
barriers of the system.12! The most widely used formulations al-
low to preserve the correct canonical sampling of the system in
each replica. The main advantage is that no a priori knowledge
of the free energy surface is needed, and that the massively par-
allel infrastructures of super-computing centers can be exploited
in their full potential. On the other hand, these are rather expen-
sive methods for systems that have a large number of degrees of
freedom. Another unconstrained enhanced sampling technique is
accelerated MD (aMD),122123 and the closely related Gaussian
accelerated MD (GaMD).12% In these techniques the potential is
modified in such a way that the barriers are lowered, while con-
serving the most significant features of the free energy surface

(FES). Then, a single MD trajectory is propagated with the new
Hamiltonian, and the resulting ensemble is reweighted to match
the one that is obtained in the canonical sampling of the original
FES.[123

Collective variable (CV) methods, such as umbrella sampling
(US), (well-tempered) metadynamics ((wt-)MetaD), 122127 and
temperature accelerated MD (TAMD)228l can be considered as a
combination of dimensionality reduction techniques with acceler-
ated MD. They leverage an a priori knowledge of the free energy
landscape through the definition of a CV, a function of the coor-
dinates of the system that can be interpreted as an approximation
of a reaction coordinate, and should ideally collect all the slow
degrees of freedom of the system. Then a bias is applied only
along the CV direction in the phase space, while all the other
degrees of freedom are unbiased and are therefore sampled in a
cMD framework. To obtain a proper sampling with these meth-
ods it is necessary to simulate the system long enough to allow
the remaining unbiased degrees of freedom to relax. When this
is achieved, the reconstruction of the free energy landscape along
the collective variable is obtained. Since the bias is only applied
in a one- (or low-) dimensional projection of the phase-space, all
these methods can conveniently be applied to highly dimensional
systems without particular disadvantages, provided that a good
CV is defined.

A detailed discussion of the theoretical aspects of enhanced
sampling methods and their applications is beyond the scope of
this perspective, and the reader should refer to specific reviews
on the topic. 1201231129 Here  instead, we focus on the extension
of enhanced sampling methods to QM/MM Hamiltonians.

As a matter of fact, QM/MM dynamics and enhanced sampling
techniques have been developed, and became widely used meth-
ods, during the first years of the new millennium. The main ob-
jective of these studies was to obtain accurate free energy esti-
mations for chemical reactions in complex environments. En-
zymatic reactions are an ideal target for this research: in the
early 2000s, QM/MM dynamics with semiempirical (or some-
times DFT) quantum methods and classical non-polarizable force
fields were used in combination with umbrella sampling’3? and
thermodynamic integration techniques, 131133 to determine free
energy profiles of enzymatic reactions. Non-enzymatic reactions
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such as Diels-Alder cycloadditions were also studied, but with
fewer applications.13¥ Moving to more sophisticated enhanced
sampling methods, it is worth mentioning the application of tran-
sition path sampling (TPS)13% to the study of lactate dehydroge-
nase enzymes. 130

It should be noted that, since the propagation of a QM/MM
dynamics requires a great computational effort and only few ps
per day of MD can be produced with current methods, the interest
was mainly focused on methods, such as US or TPS, where the
sampling of the relevant part of the phase space can be performed
simultaneously, by exploiting independent trajectories. Despite
these CV methods are less flexible than other ones such as MetaD,
and a good guess of the CV is essential to obtain good results,
they are probably most suited to these studies as they can trivially
exploit massively parallel infrastructures to produce a reasonable
sampling in relatively low wall-clock time.

To the best of our knowledge, replica exchange methods in
combination with QM/MM descriptions were only applied as a
proof of concept on model systems. 137138 The reason for this mi-
nor interest in these methods is that, despite being very general
and powerful, when applied to large systems they require a large
number of replicas to be propagated for long time. This is often
not affordable for QM/MM Hamiltonians with the current com-
putational power; therefore, when a good CV is available, the
application of CV methods is by far more convenient. It should
be underlined that modification of the classic temperature REMD
algorithm, as solute tempering, can significantly reduce the com-
putational cost associated with these calculations as shown by
Schworer et al., but applications to “real-life” cases are still miss-
ing.

The implementation of enhanced sampling techniques within a
polarizable QM/MM framework does not present significant the-
oretical issues, because these methods just alter the equation of
motion used to propagate the dynamics, and they are not depen-
dent on the potential used. Therefore coupling these methods
with polarizable multiscale models is generally straightforward,
and only requires the MD engine to support the specific sampling
method that one wants to apply. The ingredients needed for the
simplest methods (such as harmonic potentials to perform US)
are already implemented in almost all MD software, including
Tinker,12? and can be easily exploited to perform free energy cal-
culations. In order to use more complex and flexible CV based
methods, it is very convenient to exploit specific codes that pro-
vide a general interface to do so. In this regard we mention the
powerful Plumed library,14% which can be added as a plugin in
virtually any MD engine with little effort, and is already recog-
nized as a standard in the field. REMD based methods are im-
plemented in some MD engines, and their implementation is in
theory quite straightforward. In practice, since this approaches
require many trajectory to be propagated in parallel and com-
municate each other, for an efficient implementation a well orga-
nized parallel interface is almost mandatory, making it preferable
to exploit the already existing implementations.

Despite the apparent simplicity of integrating enhanced sam-
pling techniques and polarizable QM/MM, the applications are
still extremely scarce.138 This is most probably due to the fact
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that, with inefficient implementations, the cost of polarizable MM
can be quite high. The main approach was therefore to use larger
QM regions in combination with cheap QM methods embedded
in static MM environments. Nonetheless, new inexpensive and
linear-scaling implementations of polarizable embedding for dif-
ferent QM methods as the ones described in the previous section
will make these approaches more and more appealing. In partic-
ular, the availability of very general polarizable FF, like AMOEBA,
should allow the calculation of free energy profiles with a proto-
col very similar to the ones cited above, but with a more robust
description of the environment. This could also be exploited to re-
duce the region of QM system to the few atoms actually involved
in the chemical reaction leaving everything else as a polarizable
environment without considerable loss in accuracy.

4 Simulation of spectroscopies

As already commented in the Introduction, EE QM/MM methods
are now routinely employed to study several aspects of molecule-
environment interactions and their effect on spectroscopy. 241
As a polarizable embedding is, in principle, a more complete
approach to describe the QM-classical coupling, polarizable
QM/MM approaches are expected to represent an even better
framework to reproduce spectroscopic properties of molecules
embedded in complex environments, and, in particular biosys-
tems.® Here we focus on two specific spectroscopies that have
been more often investigated with these hybrid methods, namely
vibrational and electronic ones. The importance of a polarizable
embedding in electronic spectroscopy simulations is already well
established,?223 and is related to the coupling of electronic ex-
citation and environment response outlined in Section For
what concerns vibrational properties, the improvement given by
using a polarizable embedding depends on how large is the effect
of polarization on vibrational frequencies. The pioneering results
by|Schworer et al.| show that the inclusion of polarization could be
important to recover the correct amide band frequencies. How-
ever, further work is needed in this direction in order to assess the
importance of polarization in vibrational spectroscopy.

4.1 Vibrational spectroscopy

The most common approach to vibrational spectroscopy is rep-
resented by the normal-mode analysis in the harmonic approxi-
mation. This strategy requires to compute and diagonalize the
Hessian matrix of the potential energy surface (PES) calculated
at a minimum geometry, whereas IR and Raman intensities are
obtained respectively through the derivatives of dipole moment
and polarizability. Anharmonicity can be included by computing
higher-order derivatives of the energy with respect to the atomic
positions. The normal-mode approach clearly represents a pow-
erful technique for its simplicity, and allows an easy assignment
of vibrational peaks to normal modes of the molecule. This ap-
proach has been largely used in combination with electrostatic
QM/MM approaches and more recently extended to polarizable
QM/MM for describing molecules in solution. 142143

However, in complex environments such as proteins, the PES
of the system is extremely rugged, and contains numerous local



minima. Extensive sampling of these minima might be required
in order to obtain accurate vibrational properties, and this task
is usually performed through classical MD or Monte Carlo tech-
niques, followed by partial or full optimization of the system.144
The latter task can be quite tedious given the roughness of the
PES, and the optimizations might be difficult to converge. More-
over, assembly and diagonalization of the Hessian matrix for such
large systems can be prohibitively expensive. To overcome this
problem, different techniques have been proposed such as the one
using a partial Hessian diagonalization (often for the QM region
only)142l or the one computing only modes of interest through
algorithms such as vibrational mode-tracking.14¢

A substantially different approach is based on autocorrelation
functions (ACFs) extracted directly from a MD simulation. 1471148
It can be shown that the IR spectrum is proportional to the Fourier
transform of the dipole-dipole ACF (u(7)u(0)):

IR(0) > po? [~ e (u(r)u(0)) dr ®

where f8 = 1/kgT is the inverse temperature along the trajec-
tory and o is the response frequency.  Similarly, the Raman
spectrum is proportional to the Fourier transform of the polar-
izability ACF.148 A clear advantage of this method is that it auto-
matically includes anharmonic and finite-temperature effects, 142
although these effects are only approximated by a classical nu-
clear trajectory.12¥ Moreover, it does not require the identifica-
tion of all local minima and the corresponding Hessian, which
makes this approach particularly appealing for QM/MM calcula-
tions.142142 Op the other hand, assignment of vibrational modes
is not straightforward for this approach. A qualitative under-
standing of vibrational modes can be obtained by computing the
velocity autocorrelation function for some atoms or internal coor-
dinates.1>U A more rigorous approach to extract effective normal
modes is based on a variational principle applied to the vibra-
tional frequencies. 1471149

4.2 Electronic and vibronic spectroscopies

The most common approach employed for QM/MM calculations
of electronic absorption spectra is based on the calculation of ver-
tical excitation energies, in many solute/environment configura-
tions, which are sampled by classical MD methods. This “ensem-
ble” method allows considering the effect of the inhomogeneous
environment distribution on the band broadening.1>215>

This approach, however, completely neglects vibronic coupling,
which impacts substantially absorption lineshapes even when the
vibronic progression itself is hidden under inhomogeneous broad-
ening. In order to overcome this limitation, the vibronic lineshape
can be computed at an optimized geometry in implicit solvent,
and convoluted with the inhomogeneous distribution function of
the excitation energy obtained by MD sampling.12¢ In order to
include the coupling between the environment and the internal
degrees of freedom, this approach should be complemented by a
normal-mode calculation at each MD snapshot.1>7

In principle, all the information on the coupling between an
electronic excitation g — ¢ and the nuclear degrees of freedom

of a molecule could be obtained knowing how the excitation en-
ergy AE changes along the ground-state PES. If the ground-state
wavepacket trajectory of the nuclei was known, all the informa-
tion on vibronic coupling could be determined by the time de-
pendence of AE. Based on a ground-state trajectory it is thus
possible to compute vibronic properties, such as absorption line-
shapes and Resonance Raman scattering, beyond the harmonic
approximation, automatically including the effect of the envi-
ronment. The approach we review here is based on expressing
the vibronic coupling in terms of a “spectral density” function
(SD), which describes the frequency-dependent linear coupling
between the electronic excitation and the nuclear degrees of free-
dom 1281161 The electronic lineshapes can be expressed in a time-
domain approach within the second-order cumulant expansion
formalism. 128
From a Born-Oppenheimer ground-state trajectory, the SD can
be obtained from the Fourier transform of the ACF of the exci-
tation energy fluctuations, i.e., Cy(t) = (U(¢)U(0)), where U(¢) =
AE(t) — (AE).
J(w)= o e Cy(1)dt 9
27 J—oo
Here, B = 1/kgT is the inverse temperature along the Born-
Oppenheimer trajectory. The subscript “cl” specifies that the tra-
jectory of the nuclei is classical, and obtained through Newton’s
equations of motion. The temperature-dependent prefactor in
eq. (@) allows reconstructing the spectral density for a quantum
trajectory of the nuclei, based on the classical trajectory ACF.1>2
In practice, the time-series of the excitation energy is calculated
with an excited-state method along the ground-state trajectory.
In order to obtain the absorption lineshape, it is useful to de-
fine the lineshape function g.,(t), which describes the dephasing
between the ground- and excited-state wavepacket dynamics fol-
lowing excitation.228 In the second-order cumulant expansion,
the lineshape function is given by:

g(t) = — '/Ow dw% {coth (MT(D) (cos(@r) — 1) — i(sin(ar) — or)
(10)

and the absorption (homogeneous) lineshape can be obtained as:
S(0— @) = R / dr (@08 (1) 11
0

where @, is the frequency corresponding to the g — e vertical
excitation. The second-order cumulant expansion is exact only
when the ground-state PES is harmonic, and the excitation en-
ergy depends linearly on the nuclear coordinates, 139162 and ap-
proximate in the general anharmonic case. Recently, however,
it was demonstrated that the second-order cumulant expansion
gives accurate results even for anharmonic potentials. 103

When considering a chromophore in a complex environment
such as a protein matrix, the spectral density has contributions
from both the internal vibrations of the chromophore and from
the motions of the environment. Generally, the former give rise
to sharp peaks in the SD, whereas the latter contribute to a low-
frequency smooth background.

The environment affects vibronic coupling in several ways. On
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the one hand it affects directly the chromophore’s electronic den-
sity, and thus modifies the dependence of AE on the nuclear co-
ordinates. On the other hand, it can also affect the nuclear tra-
jectory on which AE is computed, by modifying both the equilib-
rium geometry and the vibrational frequencies. The accuracy of
the vibronic calculation is thus directly connected to the embed-
ding method used for the excitation energy calculations and to
the one used for the ground-state trajectory. Combining a polar-
izable QM/MM calculation of excitation energies with a polariz-
able QM/MM MD offers a route towards accurate prediction of
absorption lineshapes in arbitrarily complex environments. We
applied this approach to calculating the absorption lineshape for
a dye intercalated in DNA162164 and for a keto-carotenoid in a
protein.162

5 Nonadiabatic dynamics

Modeling excited-state processes, such as photoisomerizations
and photoinduced electron and/or proton transfers, often re-
quires theory beyond the Born-Oppenheimer approximation. In
fact, when different states get closer in energy, the nonadia-
batic couplings become non negligible and the BO approxima-
tion breaks down. Among the many methods used to perform
nonadiabatic molecular dynamics, the most suited for modeling
complex chemical and biological systems are those which present
the best compromise between accuracy and computational cost.
Among them, the most popular ones are the methods in which
the nuclear degrees of freedom are classical and the electronic
ones are quantum mechanical, namely the mixed quantum clas-
sical (MQC) methods. As methods requiring a precomputed po-
tential energy surface are not readily applicable to systems with
many degrees of freedom, the most common strategy is to com-
pute the required energy and properties on the fly 1607168 The
most successful and largely used methods belonging to this family
are the trajectory surface hopping (TSH)1627172 and the methods
based on the multiple spawning.173174 The mean field Ehrenfest
method has been largely used 1221176 a5 well, but it has a narrower
range of applications, since it is only viable in regions of strong
non adiabatic coupling.

Nonadiabatic MD techniques have been extended to QM/MM
approaches, 22177 initially through mechanical embedding,178
and successively through electrostatic embedding. The latter
formulation has been successfully used in combination with
TSHIZ2U80 and multiple spawning. 181182 Different QM meth-
ods have been used in QM/MM nonadiabatic simulations, such as
semiempirical methods, 181183 TDDFT, 184 and CASSCF/CASPT2
methods. 185H120

In general, the frameworks used to perform nonadiabatic
QM/MM simulations combine different codes, specialized in dif-
ferent tasks. One possibility is to interface an existing classical
MD code to an electronic structure code, so that the first drives
the dynamics and the second performs the QM calculation and
takes care of non adiabatic effects. This choice is less general,
but presents a reduced amount of data transfer and it is easier
to implement; for such reasons it is often used in development
implementations. A second option is to use a program that per-
forms the trajectory propagation and calls the appropriate QM
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and MM codes for the computation of energies and forces. Many
production codes fall in this category. COBRAMM!2L has an
interface to several QM codes and uses Amberl®? for the MM
part; SHARCI23 and Newton-X12419 can use a single program
to handle the whole QM/MM calculation or they can interface
Tinker00107 with another QM method of choice.

The extension of nonadiabatic dynamics to polarizable
QM/MM approaches is neither straightforward nor unique. The
difficulties come from the fact that a polarizable embedding re-
sponds differently to different electronic states. In the following
discussion, we distinguish two classes of embedding schemes, LR
and SS (more details can be found in section [2.3). The correc-
tions which go beyond a LR description — such as the cLR —
indeed introduce some SS character and have to be considered
in the second class. In the application to nonadiabatic dynam-
ics, the first class presents some technical issues, the second class
presents some theoretical issues.

LR embeddings can address multiple states at the same time,
so their extension to nonadiabatic dynamics is straightforward.
However, (i) they are an approximation since the response of the
enviroment lacks the contribution from the excited state relaxed
density, and (ii) they can be used only in combination with LR QM
methods, which often are not suited for nonadiabatic dynamics.
For instance TDDFT is usually not able to correctly model conical
intersection between the GS and the first excited state.12% A pos-
sible solution for this last issue, is the use of spin-flip TDDFT,127
which solves the problem of GS-S1 conical intersections, while
maintaining TDDFT advantages. Nevertheless, some systems may
indeed require a multiconfigurational description, and thus a SS
embedding.

SS polarizable embeddings provide a physically sound descrip-
tion, and arise naturally from SS QM methods (for instance
CASSCF). However, they respond to a specific density, and as
such they cannot directly address multiple excited state at the
same time, thus the correct definition of a nonadiabatic dynamics
trajectory is not uniquely defined. Considering TSH as the nona-
diabatic method, we can formulate three different strategies to
solve this issue, which are graphically represented in Fig. [4]

The first strategy allows the environment to respond to the
average density, in a state-average formalism. This could be a
possible solution in regions of strong coupling where different
states are close in energy and have similar characteristics, how-
ever it would not be reliable in other regions. A second type of
coupling would be describing each state separately, with the en-
vironment polarized accordingly. But in this case the computa-
tional cost would be much higher and the states would no longer
be orthogonal. A third strategy, possibly more reliable, polarizes
the environment according to the state that is used to propagate
the dynamics. This is computationally simple and retrieves ver-
tical transitions from the selected state to the others. However,
it would cause discontinuities at the hops because of the sudden
change in the description of the environment.

To conclude this section, it is worth mentioning the strategies
that can be used to model nonadiabatic dynamics in multichro-
mophoric systems. Within the formalism of the exciton model
mentioned above, it is possible to describe the excitations of a
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Fig. 4 Schematic representation of the three approaches proposed by the authors to perform non-adiabatic dynamics with PE. A simple SH trajectory
on two states (solid red and blue lines) is schematized in three different steps, with an hop occurring between step 2 and 3. The density used for
calculating the embedding response is symbolized by the color of the protein in background, while the state calculated for the QM part by the color

of the schematized molecule in foreground.

multichromophoric system with reduced computational cost. This
has allowed the development of an exciton-model nonadiabatic
dynamics framework, 198199 in which however the exciton cou-
plings are approximated by a dipole interaction. Propagating the
dynamics of an exciton model would also require to calculate
the analytical derivatives of the exciton couplings.2%0 A nona-
diabatic exciton model with QM/MM description was developed
by Menger et al.,2% using electrostatic embedding QM/MM. In-
troducing a polarizable embedding in the nonadiabatic exciton
model requires overcoming all the difficulties outlined above. In
addition, as the polarizable environment introduces an additional
term in the exciton couplings, a correct description of the dynam-
ics would also require the analytical derivatives of this term.

6 Concluding remarks

In this perspective we have given an overview of the state of the
art of QM/MM approaches which use a polarizable embedding.
The focus has been mostly on the induced point dipole formula-
tion and the analysis which has been presented is mainly appli-
cable to biosystems. We have summarized the most recent devel-
opments but also underlined the still present limitations. From
a computational point of view, the main limitation lies in the in-
herent complexity and computational cost of these methods. As
discussed in section the self-consistent treatment of polar-
ization requires one to perform several operations that are not
required for electrostatic embedding, the most expensive being
solving the polarization equations, which has to be done at each
SCF step and, for excited states and response properties, at each
step of the solution of the response equations. We believe that the
use of a linear scaling strategy is the key to address such a limita-
tion. Relying on the FMM, polarizable QM/MM calculations can
be performed at a cost that scales linearly with the size of the MM
system and that is overall small if compared to the cost of solv-
ing the QM equations. This linear scaling implementation will
thus allow the use of polarizable QM/MM methods not only for
static descriptions but also effectively extended to molecular dy-
namics simulations. In particular, the combination of enhanced
sampling techniques with polarizable QM/MM approaches can
lead to very interesting applications where the PES of a complex
system, obtained with high accuracy, can be efficiently explored.

This is the most promising strategy in the field of reactive pro-
cesses in complex biosystems at a new level of accuracy without
sacrificing computational efficiency. This extension to dynamics
will also have a very important application in the simulation of
spectroscopy in complex environments. As a matter of fact, we
are confident that polarizable QM/MM might become, in the next
decade, the new golden standard for simulating condensed-phase
spectroscopy. In the same way, we believe that polarizable embed-
dings will be largely used to describe excited-state properties and
processes. Their extension to non adiabatic dynamics will then
come as a natural step for the simulation of complex photophysi-
cal processes.

The next fundamental challenge for QM/MM methods will be
the inclusion of nonelectrostatic interactions, namely, dispersion
and Pauli repulsion. These interactions are treated at the force-
field level in (PE) QM/MM MD, through the Lennard-Jones poten-
tial or similar analytical functions. Several groups have devised
frameworks to introduce density-dependent QM/MM nonelectro-
static interactions, in the EFP method,ILSI and in the PE QM/MM
approaches, 2717 with promising results. Nonetheless, applying
these approaches to PE QM/MM dynamics will require substan-
tial parametrization and optimization efforts, to ensure a reliable
yet efficient inclusion of nonelectrostatic interactions in the dy-
namics.

All the applications that we have here presented and discussed,
however, require the fulfillment of a fundamental preliminary
condition, namely polarizable QM/MM implementations have to
be made available in robust, effective and simple-to-use software
packages. This is indeed not a simple objective due to the com-
plexity introduced by the mutual polarization between the QM
and the MM system. As we have discussed in this perspective, dif-
ferent strategies have been used so far, each with its own advan-
tages and limitations. We hope that in the near future these im-
plementations will become more numerous and higher perform-
ing, thus allowing a larger community of users to exploit the ad-
vantages of mutual polarization between the QM and the classical
subsytems in the simulation of biosystems.
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