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Abstract
Linear programming is a very well known and deeply applied field of optimization
theory. One of its most famous and used algorithms is the so called Simplex algorithm,
independently proposed by Kantorovič and Dantzig, between the end of the 30s and
the end of the 40s. Even if extremely powerful, the Simplex algorithm suffers of one
initialization issue: its starting point must be a feasible basic solution of the problem
to solve. To overcome it, two approaches may be used: the two-phases method and the
Big-M method, both presenting positive and negative aspects. In this work we aim to
propose a non-Archimedean and non-parametric variant of the Big-Mmethod, able to
overcome the drawbacks of its classical counterpart (mainly, the difficulty in setting
the right value for the constant M). We realized such extension by means of the novel
computational methodology proposed by Sergeyev, known as Grossone Methodol-
ogy. We have validated the new algorithm by testing it on three linear programming
problems.

Keywords Big-M method · Grossone methodology · Infinity computer · Linear
programming · Non-Archimedean numerical computing

1 Introduction

Linear Programming (LP) is a branch of optimization theory which studies the min-
imization (or maximization) of a linear objective function, subject to linear equality
and/or linear inequality constraints. LP has found a lot of successful applications both
in theoretical and real world contexts, especially in countless engineering applications.
Most of the algorithms developed so far to solve LP problems fall in one of the two
following categories: basis exchange methods [19] and interior point methods [27].
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Researchers argued a lot about the pros and the cons of these approaches, ending up
asserting the equal dignity of both. The best choice depends on the characteristics of
the problem at hand [16].

Concerning this work, we decided to focus on the class of basis exchange methods
and, in particular, on its probably most famous member: the Simplex algorithm, firstly
proposed in 1939 by Kantorovič [17] and independently rediscovered by Dantzig
during the forties [8–10].

This algorithm needs a feasible basic solution to start from, an input which is not
trivial to generate for complex real-world problems. The main ways to overcome this
difficulty are: the two-phases approach [10] and the Big-M method [2,8,26].

The former splits the optimization in two-phases, and in each it runs the Simplex
algorithm on a phase-specific problem. In the first one, the problem is a simple task for
which a feasible starting point is known, and whose optimum is a valid basic solution
for the original problem. The second one is the original problem itself. In spite of the
guarantee of convergence to the optimum (if it exists), such approach wastes a lot of
time, having to run the Simplex algorithm twice rather than once.

The other possibility is diametrically opposed to the previous one, indeed, it requires
just one run of the Simplex algorithm, though on a problem different from the original
one. The latter approach is known as Big-M method, since it requires a big parameter
M : it consists of applying the Simplex algorithm to a modified and parametrized
version of the original problem for which a feasible initial basic solution is known.
In particular, the big constant M (along with some auxiliary variables) is added to
the original problem; a good tuning of such constant also guarantees that the original
problem and the modified one share the same optimum. Thus, the drawback of the
Big-M method is that it adds a new parameter, which also needs to be properly set:
a too small value does not guarantee the convergence to the same optimum of the
original problem, while a too big value may generate loss of precision and numerical
instabilities.

The actual goal of this work is to overcome the Big-Mmethod issues by means of a
non-Archimedean modification of the original method, that is converting the LP prob-
lem at hand into a new one where the cost function involves infinite and infinitesimal
quantities too. In order to realize such non-Archimedean extension, we exploited the
GrossoneMethodology proposed byY.D. Sergeyev (see [22] and references therein), a
powerful framework which lets one numerically manipulate infinite and infinitesimal
quantities. Even more interestingly, algorithms involving the Grossone Methodology
can run on a hardware computing engine, called Infinity Computer (see patent [20]),
which is a completely new kind of supercomputer. Once opportunely modified, the
new problem can be solved by a recent extension of the Simplex algorithm due to
Cococcioni et al. [4], namely the gross-Simplex algorithm (in brief, G-Simplex). The
latter is an improved Simplex algorithm able to solve non-Archimedean LP problems
too. Together, the G-Simplex algorithm and the non-Archimedean modified prob-
lem give birth to the parameter-less procedure presented in this work, called by us
the Infinitely-Big-M method (abbreviated I-Big-M), since it relies on the use of an
infinitely big constant, which is the same for all the problems and thus does not have
to be specified by the user.
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The remaining of the letter is structured as follows: Sect. 2 provides an intro-
duction to LP and Big-M method, Sect. 3 contains an overview of the Grossone
Methodology and a description of the Gross-Simplex algorithm, Sect. 4 presents our
non-Archimedean extension of the Big-M method, i.e., the Infinitely-Big-M method.
In Sect. 5 we present three experiments we conducted exploiting the I-Big-M method
to solve LP problems, while Sect. 6 is devoted to the conclusions.

2 The linear programming problems and the Big-Mmethod

A possible representation of an LP problem, which may be a little complex at first
sight, is shown in Eq. (1):

min dT z

s.t. �le z ≤ ble
�eq z = beq
�ge z ≥ bge
z ≥ 0

(1)

where z ∈ R
nz+ is the unknowns vector, d ∈ R

nz is the cost vector, �i ∈ R
mi×n and

bi ∈ R
mi+ are the feasibility constraints, i = le, eq, ge. Here and throughout the

whole work, bold symbols represent vectors and matrices, while non-bold ones refer
to scalars.

As said, the Simplex algorithm requires a feasible basic solution to start fromwhich
may not be easy to find by hand. The Big-M method [2,8,26] tackles the problem
transforming the original problem by adding some auxiliary variables which guarantee
the existence of an initial feasible basic solution.However, not being part of the original
problem, all of them must be equal to zero in the optimal solution of the modified
problem. In order to guide the optimizer towards this annihilation, the Big-M method
adds the auxiliary variables to the cost function and weights them with a big penalty
M . The form of the modified problem is shown in Eq. (2):

min M1T a + dT z

s.t. �le z + Is = ble
�eq z + Ie = beq
�ge z + Ir − Ip = bge
z, s, e,p, r ≥ 0

, a =
[
e
r

]
, (2)

min cT x

s.t. Ax = b

x ≥ 0

(3)

where a ∈ R
na is the vector of auxiliary variables to be penalized (na = meq +mge),

M is the penalty weight, 1 is a vector of na ones, s and p are mle and mge slack
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variables, respectively. Such new form can be easily turned into the standard one (3),
by applying the equalities shown in Eq. (4):

x =

⎡
⎢⎢⎣
z
0
a
0

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎣

d
0
M1
0

⎤
⎥⎥⎦ , A =

⎡
⎣ �le I 0 0 0

�eq 0 I 0 0
�ge 0 0 I −I

⎤
⎦ , b =

⎡
⎣ ble
beq
bge

⎤
⎦ (4)

where x ∈ R
nx+ , nx = nz + m, m = mle + meq + mge, A ∈ R

m×nx , b ∈ R
m+. The

always feasible initial basic solution for the modified problem is {s, e, r}.
However, the Big-Mmethod has a couple of relevant drawbacks. Actually, it turns a

parameter-less problem into a parametric one, adding the scalar factor M . In addition,
such parameter needs to be a-priory carefully set, in order to guarantee the correctness
of the optimization process. Indeed, a too low value could lead to a non-zeroing of
the auxiliary variables (and, thus, to no feasible solutions, even if they exist), a too
high value could lead to a loss of precision and to numerical instabilities. Such setting
issues, along with the need of re-tuning M for each different problem to solve, are
crucial and struggling aspects from a practical point of view, sometimes limiting the
applicability of the method in real contexts at all. In Sect. 4, we will present our
parameter-free extension of the Big-M method which also preserves all its positive
properties. With this goal in mind, let us move to the next section which introduces
the methodological platform upon which to build such extension.

3 The Grossonemethodology and the G-simplex algorithm

The Grossone Methodology (GM), which has been proved to stay apart from non-
Standard Analysis [23], is a novel way for dealing with infinite, finite and infinitesimal
numbers at once and in a numerical way [22]. Originally proposed in 2003, such frame-
work already counts a lot of practical applications, for example it has been applied to
non-linear optimization [11,18], global optimization [25], ordinary differential equa-
tions [1,15,21,24], control theory [3,12], and game theory [13,14], to cite a few. Also
linear optimization positively enjoyed the advent of GM, as shown in [4–7]. In par-
ticular, in [4,6] the authors proposed an extension of the Simplex algorithm able to
address Lexicographic Multi-Objective LP problems, both in absence and in pres-
ence of integer constraints, using a simplex-like approach. Such extension has been
called gross-Simplex algorithm (briefly, G-Simplex), since it adopts GM to make the
optimizer aware of the lexicographic priority between the objectives.

Actually, GM relates to the infinite unit Grossone, which is represented by the
numeral ①. By means of it, a new numeral system with infinite base can be carried
out, and each number c̃ within such numeral system can be represented as follows:

c̃ = cpm①pm + cpm−1①
pm−1 + · · · + c0①

0 + · · · + cp−k+1①
p−k+1 + cp−k①

p−k . (5)
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The Big-Mmethod with the numerical infiniteM 2459

In Eq. (5) the number c̃ is called gross-scalar (in short, G-scalar), m, k ∈ N, each pi
is called gross-power (G-power) and can be of the same form of c̃, while cpi is called
gross-digit (G-digit) and is a finite (positive or negative) real number, i = m, . . . ,−k.

Asmentioned, theG-Simplex is an algorithmwhich extends the Simplex procedure,
being also able to solve the new class of LP problems known as non-Archimedean LP
(NA-LP) problems. The latter have the canonical form described by Eq. (6):

min c̃T x

s.t. Ax = b

x ≥ 0

(6)

min
l∑

i=1

cTi x①1−i

s.t. Ax = b

x ≥ 0

(7)

where this time the cost vector c̃ is a vector of non-Archimedean quantities, that is
infinite and infinitesimal values, rather than just real numbers as in Eq. (3). In this
work, we modeled c̃ by means of a gross-vector (G-vector), i.e., an n-dimensional
vector whose entries are G-scalars. In [4], it has been proved that a NA-LP problem
is equivalent to the optimization of multiple linear functions among which a lexico-
graphic priority relation exists, i.e., the problem expressed in Eq. (7) (l is the number
of functions to optimize at the same time).

4 The Infinitely-Big-Mmethod

The main issues related to the Big-M method concern the weight M . As said, it
needs an a-priori careful settings because a too low value may not force the Simplex
algorithm to nil the auxiliary variables, and a too big value may bring to loss of
precision and numerical instabilities. Moreover, the weight needs to be opportunely
tuned for each different LP problem, which means the task to solve is no more a
parameter-less but a parametric one. Notwithstanding, the role of the weight M is
just to prioritize the zeroing of the auxiliary variables over the optimization of dT z,
regardless its actual value. Indeed, it has just to put as much emphasis as possible on
their minimization (reads to prioritize them), since a solution with at least one non-
zero auxiliary variable is actually a non-feasible output for the original problem. Such
priority lets us reformulate the modified problem into a non-Archimedean version.

The idea is to set theweightM equal to①, in linewithwhatDeCosmis andDeLeone
did inNonlinear Programming [7]. Indeed,M represents a very big numberwhich aims
to increase the importance of the auxiliary variables zeroing over the minimization of
dT z. The canonical form of such modified problem is shown in Eq. (8).
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2460 M. Cococcioni, L. Fiaschi

min 1T a① + dT z

s.t. �le z + Is = ble
�eq z + Ie = beq
�ge z + Ir − Ip = bge
z, s, e,p, r ≥ 0

(8)

Imposing the equalities in Eq. (4) (except for the vector c) and the ones in Eq. (9), the
problem gets a form close to Eq. (7). Scaling down its cost function by a factor ①, it
ens up fitting it perfectly. This means that such a problem can be solved by means of
the G-Simplex algorithm. Indeed, as stated in Sect. 3, there always exists a bijection
between a problem in the form of Eq. (7) and one in the form of Eq. (6). With regard
to the Big-Mmethod we aim to present in this letter, such bijection corresponds to Eq.
(10).

c1 =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ , c2 =

⎡
⎢⎢⎣
d
0
0
0

⎤
⎥⎥⎦ (9)

c̃ = c1① + c2 =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ ① +

⎡
⎢⎢⎣
d
0
0
0

⎤
⎥⎥⎦ (10)

Together, the rewriting of the modified problem into its non-Archimedean form
and the use of the G-Simplex algorithm to solve it, implement the extended version of
the Big-M method we sought to propose in this work. The latter is a procedure which
leverages on an infinitely big constant to properly guide the optimization, which is the
reason why we called it Infinitely-Big-M (in brief, I-Big-M). Notice that the I-Big-M
method is a parameter-less approach, indeed, it does not require anymore the tuning
of M , which is now always set to ①, regardless the problem to solve. Moreover, the
issue of finding a feasible initial basic solution for the G-Simplex algorithm does not
exist, since the modified problem and its non-Archimedean version are two different
ways for representing the very same problem. What changes is only how to guide
the optimization process, that is the loss function, while the polytope describing the
feasible region stays the same. This means that a feasible initial basic solution for
the Simplex algorithm in the modified problem is also a polytope vertex for the G-
Simplex. Thus, Big-M and a I-Big-M methods share both their starting and optimal
points (to be precise, the latter is true only if the weight M is correctly set in the
Big-M method). Finally, it is worth to highlight how the I-Big-M method is able to
tackle lexicographic multi-objective LP problems straightforwardly and without any
modification to the method itself. Indeed, on the one hand the problem modification
remains the same, this time with more than just one secondary vector. On the other
hand, theG-Simplex algorithm is able to solveNA-LP problems regardless the number
of objectives to deal with. Thus, the I-Big-M method, which is the combination of the
problemmodification and the G-Simplex algorithm, does not care whether the original
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The Big-Mmethod with the numerical infiniteM 2461

problem to solve is lexicographic multi-objective or just single-objective. Numerical
evidences of such property will be shown in Sect. 5.2.

5 A numerical illustration

In this section we show three practical cases of study where we can appreciate the
effectiveness of the I-Big-M algorithm.

5.1 First case of study

The first analysed problem is a slight variant of Example 1 provided in [4]. Our
variant takes into account only the first objective of that benchmark, which is actually
a lexicographic multi-objective problem.

In order to involve an equality constraint, we have also introduced the additional
variable z3, which plays a very marginal role in the economy of the problem. The ana-
lytical form of the current case of study is shown below, while its graphical description
is reported in Fig. 1 (after being projected onto the plane z3 = 10).

min − 8z1 − 12z2 − 7z3
s.t. 2z1 + z2 − 3z3 ≤ 90

2z1 + 3z2 − 2z3 ≤ 190

4z1 + 3z2 + 3z3 ≤ 300

z3 = 10

z1 + 2z2 + z3 ≥ 70

z1, z2, z3 ≥ 0

For completeness, belowwe also report the matrices�i and the vectors bi bymeans of
whichwe can represent the current LP problem in the form of Eq. (1), i = le, eq, ge :

�le =
⎡
⎣2 1 −3
2 3 −2
4 3 3

⎤
⎦ , ble =

⎡
⎣ 90
190
300

⎤
⎦ ,

�eq = [
0 0 1

]
beq = [

10
] ,

�ge = [
1 2 1

]
bge = [

70
] (11)

The problem’s optimum is degenerate: any point within the red segment of Fig. 1 is
optimal. We have indicated as α = [0, 70, 10] and β = [30, 50, 10] the two vertices
of the optimal segment. In Table 1, we reported the iterations that the G-Simplex
algorithm performed once run on our Infinity Computer simulator implemented in
Matlab. As it can be seen from the table, the G-Simplex algorithm immediately gets
rid of the auxiliary variables. Indeed, in the very first iteration the auxiliary variable
r exits from the base, followed by variable e during the second iteration (in this case
vectors r and e are actually scalars). This is confirmed by the cost function, which
assumes a finite value in exactly two steps. Thus, the infinite weight ① does its own
duty, that is prioritize the zeroing of the auxiliary variables during the solution of
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Fig. 1 Graphical representation of the first case of study in R
2 (actually, along the plane z3 = 10). The

polygon is highlighted in green, while the degenerate optimal solutions in red. Vector d is the cost vector
of the original problem: d = [−8,−12, −7]T . Here we have depicted the negation of its projection on the
z1z2-plane (color figure online)

Table 1 The Algorithm’s iterations to find the optimum z∗ = [0, 70, 10]
Iter. x∗ c̃T x∗ Base z∗

1 [0, 0, 0, 90, 190, 300, 10, 70, 0] 80①1 + 0①0 {4,5,6,7,8} [0, 0, 0]
2 [0, 35, 0, 55, 85, 195, 10, 0, 0] 10①1 − 420①0 {4,5,6,7,2} [0, 35, 0]
3 [0, 30, 10, 90, 120, 180, 0, 0, 0] 0①1 − 430①0 {4,5,6,3,2} [0, 30, 10]
4 [0, 70, 10, 50, 0, 60, 0, 0, 0, 80] 0①1 − 910①0 {4,9,6,3,2} [0,70,10]

the problem, which manifests in the auxiliary variables exiting from the optimal base
before all the other unknowns. Finally, the optimum output by the routine was z∗ = α.

5.2 Second case of study

The aim of this second case of study is to numerically verify that the I-Big-M method
is able to tackle the lexicographic multi-objective optimization transparently with
respect to the user and the problem modification procedure. To do it, we run the
I-Big-M routine on the problem presented in Eq. (12) and graphically described in
Fig. 2. The new problem is the same as before with the addition of two new linear
cost functions. The three overall cost vectors are reported in Eq. (13), and they can
be lexicographically ordered by priority as follows: d � d2 � d3. We avoided to
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report the problem splittings in matrices �i and vectors bi (i = le, eq, ge), since the
splitting is exactly the same already reported in Eq. (11):

lexmin dT z, dT2 z, dT3 z

s.t. 2z1 + z2 − 3z3 ≤ 90

2z1 + 3z2 − 2z3 ≤ 190

4z1 + 3z2 + 3z3 ≤ 300

z3 = 10

z1 + 2z2 + z3 ≥ 70

z1, z2, z3 ≥ 0

(12)

where

d =
⎡
⎣ −8

−12
−7

⎤
⎦ , d2 =

⎡
⎣−14

−10
−2

⎤
⎦ , d3 =

⎡
⎣−1

−1
−1

⎤
⎦ (13)

Some aspects of the problem are worth to be pointed out. Actually, the optimum
of the new problem is now the point β, as higlighted by Fig. 2. Indeed, while for the
first objective (d) the problem solution is degenerate (both α and β are acceptable),
the function d2 lets us discriminate between them. Thus, while before the choice
between them was delegated to the G-Simplex algorithm actual implementation, now
it is guided by the second objective function and it falls upon β. The third and least
optimality direction, i.e., d3 plays no role, since the optimum is just a singleton this
time.

Finally, in Table 2 we reported the iterations performed by the G-Simplex algorithm
when solving the lexicographic multi-objective LP problem in Eq. (12). Notice that
the first four iterations of the algorithm are exactly the same reported in Table 1.
The reason behind this phenomenon is twofold. Firstly, the G-Simplex solves both
the problems (this and the previous one) from the very same initial basic solution
{s, e, a}, chosen by the I-Big-M method. Secondly, the optimization is guided by the
objective d until the degenerate solution is found. Together, this two aspects make
reasonable to expect that the G-Simplex algorithm will follow the same steps in both
the problems until it finds the degenerate solution. At that point, the first objective
is not able anymore to discriminate among the solutions, and therefore the second
objective turns to be effective, leading the algorithm towards the unique lexicographic
solution of the problem β.

Before concluding, in Eq. (14) we report the non-Archimedean objective function
of the modified NA-LP problem generated by the I-Big-M method. Such function lets
us write such problem in the form of Eq. (6):

c̃ =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ ① +

⎡
⎢⎢⎣
d
0
0
0

⎤
⎥⎥⎦ ①0 +

⎡
⎢⎢⎣
d2
0
0
0

⎤
⎥⎥⎦ ①−1 +

⎡
⎢⎢⎣
d3
0
0
0

⎤
⎥⎥⎦ ①−2 (14)
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Fig. 2 Graphical representation of the second case of study assuming z3 = 10. The polygon is highlighted
in green, while the optimal solution z∗ = [35, 50, 10] (β) in red. d3 has not been drawn, since it does not
play any role (color figure online)

5.3 Third case of study

We now illustrate a third case of study where the traditional Big-M method struggles,
because setting the right value for M is not trivial. We have considered the problem
neos-1425699, which can be downloaded from: https://miplib.zib.de/instance_
details_neos-1425699.html
The problem is included within the MIPLIB2017 collection of Mixed Integer LP
benchmarks, and it contains 63 inequality constraints and 26 equality constraints. Of
course, we have removed the integrality constraint from all the 105 variables, and we
have also removed their upper bounds. As it can be seen from Table 3, the known
optimal value of the cost function is 3.14867 · 109 (found using Matlab linprog
function). Using values for M below 108 the standard Big-M algorithm is not able to
find the right optimum, as proved by a different value of the cost function. Also the
number of iterations performed by the Big-M method is interesting: it passes from
26 to 89 (see the third column of Table 3). Needless to say, on the same problem the
I-Big-M method is able to find the optimum at the first attempt, i.e., without any trial-
and-error approach. Thus, we think that the I-Big-Mmethod can be a powerful method
in those setting which require the solution of LP problems as a sub-problem, like in
the case of Mixed Integer Linear Programming when approached using a Branch-and-
Bound/Branch-and-Cut strategy, both for the single objective and the lexicographic
multiple-objective cases [6].
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Table 3 An example of problem where setting the right value of M in the standard Big-M method is not
trivial

Problem: neos-1425699.mps
(known optimal value of the cost function: 3.14867 · 109)
Value of M Optimum cost function found by Big-M Number of iterations

102 1.36403 · 107 26

103 1.29867 · 108 26

104 1.25666 · 109 30

105 2.95207 · 109 88

106 2.95535 · 109 88

107 2.98818 · 109 88

108 3.14867 · 109 89

109 3.14867 · 109 89

6 Conclusions

In this letter we have introduced a new algorithm, called I-Big-M method, which is
a re-visitation of the Big-M method for the Infinity Computer. The I-Big-M method
is able to solve a LP problem using only one run of the G-Simplex algorithm, in
the very same manner of the classical Big-M method, which uses a single run of
the classical Simplex algorithm. Even more interesting, the I-Big-M method does
not require the constant M , a parameter difficult to set, typically chosen by an error-
prone trial-and-error approach. Hence, the I-Big-M offers a parameter-less algorithm
to solve LP problems, generating a single sequence of visited vertices. Moreover,
its formulation also allows one to solve lexicographic multi-objective LP problems
in a natural way, again without any assistance by the user and solving the problem
using just a single run of the G-Simplex algorithm (i.e., by generating overall a single
sequence of visited vertices: a pretty remarkable result). All these properties have been
numerically validated by means of three experiments, one of which involving a real-
world challenging benchmark. Finally, the I-Big-M method is expected to be more
numerically stable than the original Big-Mmethod, since it does not mix numbers with
very different order of magnitudes. The verification of the latter conjecture deserves
a deeper investigation and it is left to a future study.
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