
Divide and conquer methods for functions of matrices with

banded or hierarchical low-rank structure

Alice Cortinovis∗ Daniel Kressner† Stefano Massei‡

Abstract

This work is concerned with approximating matrix functions for banded matrices, hierar-
chically semiseparable matrices, and related structures. We develop a new divide-and-conquer
method based on (rational) Krylov subspace methods for performing low-rank updates of
matrix functions. Our convergence analysis of the newly proposed method proceeds by estab-
lishing relations to best polynomial and rational approximation. When only the trace or the
diagonal of the matrix function is of interest, we demonstrate – in practice and in theory –
that convergence can be faster. For the special case of a banded matrix, we show that the
divide-and-conquer method reduces to a much simpler algorithm, which proceeds by comput-
ing matrix functions of small submatrices. Numerical experiments confirm the effectiveness of
the newly developed algorithms for computing large-scale matrix functions from a wide variety
of applications.

Keywords: matrix function, banded matrix, hierarchically semiseparable matrix, Krylov subspace
method, divide-and-conquer algorithm.
MSC 2010: 65F50, 65F60.

1 Introduction

The task of evaluating matrix functions f(A) for A ∈ Rn×n, such as the matrix exponential or
the matrix square root, has been studied intensively in the last two decades [31]. These prob-
lems arise in the numerical solution of partial differential equations [19, 37], electronic structure
calculations [5, 26], and social network analysis [23], as we will see in more detail in Section 4
and Section 6. In this paper we are concerned with leveraging sparse and low-rank structures in
f(A) that are inherited from A. More specifically, we consider the case where A is banded, or has
off-diagonal blocks with low-rank, e.g. when A is hierarchically semiseparable (HSS) [53], and we
design efficient procedures for computing and storing f(A) and related quantities of interest.

When A is banded and f is well approximated by a low-degree polynomial on the spectrum
of A, the matrix function f(A) can usually be well approximated by a banded matrix. Many a
priori results confirm this property. For example, the entries of the inverse of a tridiagonal matrix
A decay quickly with the distance to the diagonal, provided that A is well conditioned [18]. Such
decay properties extend to inverses of symmetric banded matrices [18], to more general matrix

∗MATH-ANCHP, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland. E-mail:
alice.cortinovis@epfl.ch. The work of Alice Cortinovis has been supported by the SNSF research project Fast
algorithms from low-rank updates, grant number: 200020 178806.

†MATH-ANCHP, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland. E-mail:
daniel.kressner@epfl.ch

‡Centre for Analysis, Scientific Computing and Applications (CASA), TU Eindhoven, Eindhoven, Netherlands.
E-mail: s.massei@tue.nl

1

functions of symmetric banded matrices [8], and to symmetric sparse matrices with more general
sparsity patterns [10]. When A is not symmetric, one can proceed via diagonalization assuming a
well conditioned eigenvector matrix [9, 45] or by leveraging the Crouzeix-Palencia result [15], at
the price of considering polynomial approximations of f(z) on the numerical range of A [6].

For computing a matrix function f(A) when A is banded, to directly exploit the approximate
bandedness of f(A) one can use an a priori polynomial approximation p and evaluate f(A) ≈ p(A).
Compared to A, the width of the band gets multiplied by the degree of the polynomial p. This
technique is used, for instance, in electronic structure methods [26] combined with Chebyshev
interpolation [7]. In [9], polynomial approximation is combined with a dropping strategy in order
to maintain a low bandwidth in the approximation of f(A). A possible alternative to a priori
polynomial approximations is to adapt an existing method for dense matrices to banded matrices,
possibly combining it with thresholding in order to maintain sparsity; for example, Newton-Schultz
iterations have been used for the sign function in the context of electronic structure calculations [17,
43]. For functions of banded Toeplitz matrices, structured thresholding techniques have been
designed in order to maintain a Toeplitz plus low-rank structure [12, 13].

When f cannot be well approximated on the spectrum of A by a low-degree polynomial, the
techniques described above may lead to poor results. Often, low-rank structures come to the
rescue. To illustrate this, let us consider again an invertible tridiagonal matrix A. When A is very
ill-conditioned, the decay of the off-diagonal entries of A−1 mentioned above vanishes; however,
all the off-diagonal blocks of A−1 have rank 1. Therefore, A−1 can be efficiently represented by a
hierarchically semiseparable matrix [30, Section 3.9]. This also means that if we can choose a priori
a rational function r with small degree that well approximates f , then we can approximate f(A) ≈
r(A) in the HSS format. An advantage of this approach is that it also works for matrices with off-
diagonal low-rank structure. For the exponential, there exists an excellent rational approximation
on the negative real axis [1], which implies a good approximation of exp(−A) for a symmetric
positive definite (SPD) matrix A even when the norm of A is large; see [29] for further examples.
Another favorable class of functions is the one of Markov functions, that has been recently discussed
in [2] in the context of a Toeplitz matrix argument. Rational functions approximating f can also
be obtained by discretizing the Cauchy integral representation of the function; this approach is
used, for instance, for the exponential operator [25], for step functions arising in the computation of
spectral projectors [36], and for matrix functions that may have singularities inside the contour of
integration [41]. An alternative to a priori rational approximation is the use of iterative methods,
such as for the matrix sign function [28] or the matrix square root of a symmetric positive definite
matrix [30, Section 15.3]; the iterations can be done in HSS arithmetic and possibly some truncation
strategies are needed in order to maintain a low-rank structure.

In this work, we design new algorithms for approximating matrix functions of matrices which
can be recursively decomposed as the sum of a block diagonal matrix D and a low-rank correction.
This is the case for banded matrices, HSS matrices, and sparse matrices corresponding to graphs
with community structure [44]. As shown in [3, 4], the matrix function update f(A)−f(D) is often
numerically low-rank and can be efficiently approximated using a subspace projection approach
with suitable Krylov subspaces. In this work we perform the evaluation of f(D) recursively, leading
to a divide-and-conquer (D&C) algorithm. Similarly to the a priori bounds on f(A) mentioned
above, we prove that the effectiveness of the D&C algorithm is related to best polynomial or
rational approximation. However, let us emphasize that the use of Krylov subspaces bypasses the
need of choosing an a priori polynomial or rational approximation to f and this can be beneficial
if there are some outliers in the spectrum of A.

For banded matrices A, polynomial Krylov subspaces associated to low-rank updates inherit
sparsity. Thanks to this fact, we can use a splitting approach to develop a method that allows
for a more compact description of the low-rank updates and a more efficient implementation. Our

2

algorithm is based on covering A with overlappping blocks and only needs the evaluation of f on
these blocks. A related, although significantly different, technique has been proposed in [49] for
approximating the exponential of infinite banded matrices. The equivalence of our method with
low-rank updates allows us to prove a convergence result that connects the error of the algorithm
with polynomial approximations of f .

In many applications, only specific quantities associated to f(A) are needed. For example, the
trace of matrix functions is used to compute spectral densities [39], log determinants [24], Schatten
p-norms [20], the Estrada index of a graph [23], and also arises in lattice quantum chromodynam-
ics [52]. The diagonal of a matrix function is needed, for instance, in Density Functional Theory [5],
electronic structure calculations [38], and uncertainty quantification [50]. Our algorithms can be
simplified in case one is only interested in such quantities. We observe accelerated convergence
and we confirm this by theoretical results.

The remainder of the paper is organized as follows. In Section 2 we recall some results on low-
rank updates of matrix functions and we present a new convergence result regarding the update of
the trace of a matrix function. Section 3 is dedicated to the D&C algorithm for matrix functions
and its convergence analysis. Numerical experiments for banded and HSS matrix arguments are
presented in Section 4. In Section 5 we present and analyze a block diagonal splitting algorithm
that is specialized for banded matrices. The performances of the splitting algorithm are validated
in Section 6. Finally, some conclusions are drawn in Section 7.

Notation. For a matrix A ∈ Rn×n and index sets I, J ⊆ {1, 2, . . . , n} we let A(I, J) denote the
submatrix of A corresponding to the row indices I and column indices J . For integers k < h we
let k:h denote the set {k, k + 1, . . . , h}.

2 Low-rank updates of matrix functions

In this section, we summarize the algorithms from [3, 4] on low-rank updates of matrix functions
and improve their convergence analysis in the case of trace approximation.

Given A,R ∈ Rn×n, with R of low rank, and a function f : C→ C defined on the spectra of A
and A+R (see, e.g., [31]), one aims at computing the update

f(A+R)− f(A).

It turns out that this matrix usually has low numerical rank, in the sense that it can be well
approximated by a low-rank matrix. This motivates to search for approximations of the form

f(A+R)− f(A) ≈ UmXm(f)V Tm , (1)

where Um, Vm are orthonormal bases of (low-dimensional) subspaces Um,Vm of Rn. For reasons
explained in [3, 4], a suitable choice for the (small) coefficient matrix Xm(f) is the (1, 2)-block of
the matrix

f

([
UTmAUm UTmRVm

0 V Tm (A+R)Vm

])
=: f

([
Gm UTmRVm
0 Hm

])
.

The quality of the approximation (1) strongly depends on the choice of Um, Vm. A natural
choice are (rational) Krylov subspaces: Given a factorization of the low-rank matrix R,

R = BJCT , B,C ∈ Rn×rank(R), J ∈ Rrank(R)×rank(R),

we let Um and Vm be Krylov subspaces generated with the matrices A and AT and starting (block)
vectors B and C, respectively. When choosing a polynomial Krylov subspace then

Um = Km(A,B) := span
[
B,AB,A2B, . . . , Am−1B

]
3

and Vm is defined analogously. When choosing a rational Krylov subspace [47] associated with
q(z) = (z − ξ1) · · · (z − ξm) for prescribed poles ξ = (ξ1, . . . , ξm)T ∈ Cm, then

Um = RKm(A,B, ξ) := span
[
qm(A)−1B, qm(A)−1AB, qm(A)−1A2B, . . . , qm(A)−1Am−1B

]
. (2)

To make sure that Um is real, the set of poles is assumed to be closed under complex conjugation.
Also, we allow for infinite poles and consider the polynomial Krylov subspace as the particular
case where ξj =∞, j = 1, . . . ,m.

The orthonormal bases Um, Vm of RKm(A,UR, ξ), RKm(AT , VR, ξ) are computed with the
block rational Arnoldi method described in [11, 21]. This computation is performed incrementally
with respect to m and yields the compressed matrices UTmAUm and V Tm (A+R)Vm nearly for free.
For choosing m, we use the heuristic error estimate from [4]:

‖f(A+R)− f(A)− Um−dXm−d(f)V Tm−d‖F ≈ ‖UmXm(f)V Tm − Um−dXm−d(f)V Tm−d‖F
= ‖Xm(f)−

[
Xm−d(f) 0

0 0

]
‖F

for a small integer d, the so called lag parameter ; ‖ · ‖F denotes the Frobenius norm of a matrix.
The whole procedure is summarized in Algorithm 1. Each step of the block rational Arnoldi
method in lines 4-5 requires either matrix-vector products with A,AT (for an infinite pole) or
solving shifted linear systems with A,AT (for a finite pole). When only a few different finite poles
are present, it can be beneficial to precompute the LU factorization of the shifted matrix A and
reuse it across several steps. We refer to [3, Section 3.1] and the references therein concerning
further implementation details.

Algorithm 1 Krylov subspace projection for approximating f(A+BJCT)− f(A)

1: procedure Krylov proj(A,B, J, C, ξ, f(z), d, ε) . ξ = (ξ1, . . . , ξmmax)T

2: for m = 1, . . . ,mmax do
3: ξ(m) ← (ξ1, . . . , ξm)T

4: Compute orthonormal basis Um of RKm(A,B, ξ(m)) and Gm = UTmAUm
5: Compute orthonormal basis Vm of RKm(AT , C, ξ(m)) and Hm = V Tm (A+BJCT)Vm

6: Compute Xm(f) as the (1, 2) block of f
([

Gm (UTmB)J(CTVm)
0 Hm

])
7: if m > d and

∥∥Xm(f)−
[
Xm−d(f) 0

0 0

]∥∥
F
< ε then

8: break
9: end if

10: end for
11: return Um, Xm(f), Vm

When A and R are symmetric, we can choose C = B. It follows that Um = Vm and hence only
one basis needs to be generated; line 5 of Algorithm 1 is skipped. Moreover, the computation of
Xm(f) in line 6 simplifies to

Xm(f) = f(UTm(A+R)Um)− f(UTmAUm).

2.1 Exactness results and convergence of Algorithm 1

We let Πm denote the space of polynomials with degree bounded by m. In [4, Theorem 3.2] it is
shown that, when using polynomial Krylov subspaces, the approximation UmXm(f)V Tm returned
by Algorithm 1 equals the exact update f(A + R) − f(A) when f ∈ Πm. In [3, Theorem 3.3]

4

this was extended to the rational Krylov subspace (2); in this case UmXm(f)V Tm is exact for all
f ∈ Πm/qm, that is, all rational functions of the form p(z)/qm(z) with p ∈ Πm. Such exactness
results are turned into convergence results via polynomial/rational approximation.

Remark 1. For future reference, we note that the exactness results explained above also hold when
Um and Vm are orthonormal bases of subspaces of Rn which contain the Krylov subspaces Um and
Vm, respectively.

When A and R are symmetric, a better exactness result holds when considering the update of
the trace, that is, the approximation

tr(f(A+BJBT)− f(A)) ≈ tr(UmXm(f)UTm) = tr(Xm(f))

instead of the approximation of the full update.

Theorem 2. Let A ∈ Rn×n and J ∈ Rb×b be symmetric, and let B ∈ Rn×b. Let Um be an
orthonormal basis of Km(A,B). Then

tr(Xm(p)) = tr(p(A+BJBT)− p(A)) for all p ∈ Π2m.

Proof. By linearity it is sufficient to show that the theorem holds for monomials, that is, we need
to prove that

tr
(
(UTm(A+BJBT)Um)j

)
− tr

(
(UTmAUm)j

)
= tr

(
(A+BJBT)j

)
− tr(Aj)

for j = 0, 1, 2, . . . , 2m. The left hand side is a sum of terms of the following form:

tr
(
(UTmAUm)a0(UTmBJB

TUm)b1(UTmAUm)a1 · · · (UTmBJBTUm)bh(UTmAUm)ah
)
, (3)

for some h ≥ 1, a0, ah ≥ 0, a1, . . . , ah−1 ≥ 1, b1, . . . , bh ≥ 1, and a0 + b1 + . . .+ ah−1 + bh + ah = j.
By [48, Lemma 3.1] we have that

Um(UTmAUm)kUTmB = AkB (4)

for all k = 0, . . . ,m − 1. Moreover, it is easy to see that for k ≥ 1 we have (UTmBJB
TUm)k =

UTm(BJBT)kUm = UTmB(JBTB)k−1JBTUm. Then, using (4) and the cyclic property of the trace
we rewrite (3) as

tr
(
(UTmAUm)a0(UTmBJB

TUm)b1(UTmAUm)a1 · · · (UTmBJBTUm)bh(UTmAUm)ah
)

= tr

(
(UTmAUm)a0UTmB

(
h−1∏
i=1

Cai,bi

)
(JBTB)bh−1JBTUm(UTmAUm)ah

)

= tr

(
Ca0+ah,bh

h−1∏
i=1

Cai,bi

) (5)

with Ca,b := (JBTB)b−1JBTUm(UTmAUm)aUTmB for b ≥ 1 and 0 ≤ a ≤ 2m − 1. We claim that
Ca,b = (JBTB)b−1JBTAaB: If a ≤ m − 1, this follows directly from the exactness property (4);
if a ≥ m, we write Ca,b as

(JBTB)b−1J BTUm(UTmAUm)m−1UTm︸ ︷︷ ︸
BTAm−1

AUm(UTmAUm)a−mUTmB︸ ︷︷ ︸
Aa−mB

5

and use the exactness property (4) on the two selected parts to arrive at the same conclusion.
Finally, incorporating the rightmost factor B of Cai,bi into Cai+1,bi+1

we obtain that (5) is equal
to

tr
(
(JBTB)bh−1JBTAa0+ahUTm(BJBT)b1Aa1 · · · (BJBT)bh−1Aah−1B

)
.

By means of the cyclic property of the trace we finally get

tr
(
Aa0(BJBT)b1Aa1 · · · (BJBT)bhAah

)
which matches the terms in the expansion of tr

(
(A+BJBT)j

)
− tr(Aj).

For a set E and a function f we denote ‖f‖E := supz∈E |f(z)|. Moreover, we indicate with Λ(A)
the convex hull of the eigenvalues of A. The following theorem provides an a priori estimate on
the error of the approximation of the trace of a matrix function update obtained by Algorithm 1.

Theorem 3. Let A be symmetric and let f be defined on an interval E ⊂ R containing the
eigenvalues of A and A+BJBT . Then

|tr(f(A+BJBT)− f(A))− tr(Xm(f))| ≤ 4n min
p∈Π2m

‖f − p‖E.

Proof. By Theorem 2, for all polynomials p ∈ Π2m we have that

|tr(f(A+BJBT)− f(A))− tr(Xm(f))|
= |tr((f − p)(A+BJBT))− tr((f − p)(A))

+ tr((f − p)(UTm(A+BJBT)Um))− tr((f − p)(UTmAUm))|
≤ |tr((f − p)(A+BJBT))|+ |tr((f − p)(A))|

+ |tr((f − p)(UTm(A+BJBT)Um))|+ |tr((f − p)(UTmAUm))|
≤ n‖(f − p)(A+BJBT)‖2 + n‖(f − p)(A)‖2

+ n‖(f − p)(UTm(A+BJBT)Um)‖2 + n‖(f − p)(UTmAUm)‖2.

For a normal matrix X and a function g, it holds that ‖g(X)‖2 ≤ ‖g‖Λ(X), where ‖ · ‖2 denotes
the spectral norm of a matrix. As the spectral intervals of all matrices A + BJBT , A, UTm(A +
BJBT)Um, and UTmAUm are all contained in E, it follows that the right hand side of the above
equation is upper bounded by 4n‖f − p‖E. Taking the minimum over all polynomials p ∈ Π2m

concludes the proof.

For example, consider SPD matrices A ∈ Rn×n and J ∈ Rb×b, a matrix B ∈ Rn×b, and
denote by [α, β] an interval containing the eigenvalues of A and A+BJBT . The best polynomial
approximation error on such interval when f is the square root function is proportional to γm for
γ := (

√
β/α−1)/(

√
β/α+1); see, e.g., [51, Theorem 8.2]. Therefore, the error in the approximation

of f(A + BJBT) − f(A) via Algorithm 1 decreases geometrically with rate γ, while the error in
the approximation of tr(f(A+BJBT)− f(A)) decreases with rate γ2 thanks to Theorem 3, that
is, twice as fast.

Numerical examples. Figure 1 reports numerical experiments to explore the scope of the result
of Theorem 3. For this purpose, we have applied Algorithm 1 with polynomial Krylov subspaces
to random symmetric and nonsymmetric matrices A. In Figure 1 (a) and (b), the double speed of
convergence predicted by Theorem 3 is only observed for the trace and when A,R are symmetric.
In all other situations, when approximating the diagonal or when A is nonsymmetric, there is no
significant difference in the convergence. In Figure 1 (c) a rational Krylov subspace method is used
and the double speed of convergence of the trace approximation error disappears even when A,R
are symmetric.

6

0 5 10 15

m

10 -15

10 -10

10 -5

10 0

e
rr

o
r

Full update

Diagonal

Trace

(a) Polynomial Krylov applied
to symmetric A and R

0 5 10 15

m

10 -15

10 -10

10 -5

10 0

e
rr

o
r

Full update

Diagonal

Trace

(b) Polynomial Krylov applied
to non-symmetric A

0 10 20 30

m

10 -15

10 -10

10 -5

10 0

e
rr

o
r

Full update

Diagonal

Trace

(c) Rational Krylov applied to
symmetric A and R

Figure 1: Convergence of the errors ‖f(A+R)−f(A)−UmXm(f)V Tm‖F , ‖diag(f(A+R)−f(A)−
UmXm(f)V Tm)‖2, and |tr(f(A+R)− f(A))− UmXm(f)V Tm)| for f = exp.

3 Divide-and-conquer for matrix functions

3.1 Divide-and-conquer for matrices with low-rank off-diagonal blocks

In this section we use low-rank updates to devise a new divide-and-conquer (D&C) method for
functions of matrices that have low-rank off-diagonal blocks. More specifically, let us assume that
A can be block partitioned as

A =

[
A11

A22

]
︸ ︷︷ ︸

AD

+

[
A12

A21

]
︸ ︷︷ ︸

AO

, A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , (6)

where the off-diagonal part AO has low rank and the diagonal blocks can be recursively block
partitioned in the same fashion. Examples of matrix structures that have this property are banded
matrices and hierarchically semiseparable (HSS) matrices [14]; see also Section 3.3 below.

The computation of f(A) is split in two tasks: computing f(AD) and computing f(A)−f(AD).
The latter quantity is approximated via Algorithm 1 exploiting that AO = A− AD has low rank;
the former decouples into the computation of f(A11) and f(A22). Since we assume that the blocks
Aii can again be decomposed into the form (6), the described procedure is applied recursively
for computing f(Aii), i = 1, 2. Finally, when the size of a block Aii is below a minimal block
size ni ≤ nmin, we evaluate f(Aii) with a standard dense method, like the scaling and squaring
method [31] for f = exp.

Algorithm 2 summarizes the described D&C method for matrix functions. The D&C method
simplifies when certain selected quantities of f(A), like the diagonal or the trace, are of interest.
Because of linearity, it suffices to evaluate the diagonal or the trace of the low-rank update UXV T ≈
f(A)− f(AD); see lines 19 and 21 of Algorithm 2.

The exactness properties of Algorithm 1 discussed in Section 2.1 directly imply the following
result.

Proposition 4. Let A ∈ Rn×n and consider qm(z) :=
∏m
i=1(z−ξi) for a set of m poles ξ1, . . . , ξm ∈

C ∪ {∞} closed under complex conjugation. Then Algorithm 2 applied to A and a function f ∈
Πm/qm is exact, provided that Algorithm 1 called in Line 13 utilizes all m poles.

7

Algorithm 2 Template of D&C algorithm for matrix functions

1: procedure D&C funm(A, ξ, f(z), d, ε, nmin, flag) A ∈ Rn×n
2: if n ≤ nmin then
3: if flag = “full” then
4: return f(A)
5: else if flag = “diagonal” then
6: return diag(f(A))
7: else if flag = “trace” then
8: Compute the eigenvalues λj j = 1, . . . , n, of A
9: return

∑m
j=1 f(λj)

10: end if
11: end if
12: Given a decomposition (6), retrieve a low-rank factorization AO = BJCT

13: [U,X, V]←Krylov proj(AD, B, J, C, ξ, f(z), d, ε) (Algorithm 1)
14: F11 ← D&C funm(A11, ξ, f(z), d, ε, nmin, flag) (Recursion)
15: F22 ← D&C funm(A22, ξ, f(z), d, ε, nmin, flag) (Recursion)
16: if flag = “full” then
17: return

[
F11

F22

]
+ UXV T

18: else if flag = “diagonal” then
19: return

[
F11

F22

]
+ diag(UXV T)

20: else if flag = “trace” then
21: return F11 + F22 + trace(V TUX)
22: end if

3.2 Algorithm 2 for banded matrices

Let us first consider the application of Algorithm 2 to a banded matrix A with bandwidth b, that
is, aij = 0 whenever |i− j| > b. Then the off-diagonal part AO in the decomposition (6) has rank
at most 2b. Under the idealistic assumption that Algorithm 1 converges in a constant number of
iterations (independent of n), computing the low-rank update on the top level of recursion requires
O(b2n) operations when using either polynomial or rational Krylov subspaces. Thus, the total
complexity of Algorithm 2 is O(b2n log n), provided that nmin = O(1).

Remark 5. By an appropriate correction of the diagonal blocks in the decomposition (6), it is
possible to reduce the rank of the off-diagonal part to b. Although this clearly has the potential to
result in lower-dimensional Krylov subspaces in the low-rank update, it also bears the danger of
leading to diagonal blocks for which f is not defined or difficult to approximate. When A is SPD
then the rank-b update can be chosen such that the diagonal blocks remain SPD [35, Section 4.4.2].

Remark 6. When Algorithm 2 is used with polynomial Krylov subspaces for banded A then it can
be shown that the output is again banded (but with larger bandwidth). However, in such a situation
a much simpler approach is possible, which will be described in Section 5.

3.3 Storing the output of Algorithm 2 using HSS matrices

Except for the situation described in Remark 6, the approximation of f(A) constructed in line 17 of
Algorithm 2 is not banded. To still efficiently represent this approximation, we use HSS matrices.
In the following we give a brief introduction to HSS matrices; see [42, 53] for more details.

We start by formalizing the concept of recursive partitioning.

8

Definition 7. Given n ∈ N, let TL be a perfect binary tree of depth L whose nodes are subsets of
{1, . . . , n}. We say that TL is a cluster tree if it satisfies:

• The root is I0
1 := I = {1, . . . , n}.

• The nodes at level `, denoted by I`1, . . . , I
`
2` , form a partitioning of {1, . . . , n} into consecutive

indices:
I`i = {n(`)

i−1 + 1 . . . , n
(`)
i − 1, n

(`)
i }

for some integers 0 = n
(`)
0 ≤ n

(`)
1 ≤ · · · ≤ n

(`)

2`
= n, ` = 0, . . . , L. In particular, if n

(`)
i−1 = n

(`)
i

then I`i = ∅.

• The children form a partitioning of their parent.

Usually, the cluster tree TL is defined such that the index sets on the same level ` have nearly
equal cardinalities and the depth of the tree is determined by a minimal diagonal block size nmin

for stopping the recursion. In particular, if n = 2Lnmin, such a construction yields a perfectly
balanced binary tree of depth L.

The structure of an HSS matrix is determined by TL. For an HSS matrix of HSS rank k, for
any siblings I`i , I

`
j in TL (that is, for any pair of nodes with the same parent), the corresponding

off-diagonal block of A, denoted by A(I`i , I
`
j), has rank at most k and thus admits a factorization

A(I`i , I
`
j) = U

(`)
i S

(`)
i,j (V

(`)
j)T , S

(`)
i,j ∈ Rk×k, U

(`)
i ∈ Rn

(`)
i ×k, V

(`)
j ∈ Rn

(`)
j ×k.

Moreover, the factors U
(`)
i , V

(`)
j are nested across different levels of TL [53]. More specifically, there

exist so called translation operators, R
(`)
U,i, R

(`)
V,j ∈ R2k×k such that

U
(`)
i =

[
U

(`+1)
2i−1 0

0 U
(`+1)
2i

]
R

(`)
U,i, V

(`)
j =

[
V

(`+1)
2j−1 0

0 V
(`+1)
2j

]
R

(`)
V,j ,

where I`+1
2i−1, I

`+1
2i and I`+1

2j−1, I
`+1
2j denote the children of I`i and I`j , respectively. Given the bases

U
(L)
i and V

(L)
i at the deepest level L, the low-rank factors U

(`)
i and V

(`)
i for the higher levels ` =

1, . . . , L− 1, can be retrieved by means of the translation operators. Therefore, the representation

of A only requires to store: the diagonal blocks Di := A(ILi , I
L
i), the bases U

(L)
i , V

(L)
i , the core

factors S
(`)
i,j , S

(`)
j,i and the translation operators R

(`)
U,i, R

(`)
V,i. Therefore, the storage cost is O(kn).

Note that we have used a uniform rank k for the off-diagonal blocks to simplify the description; in
practice these ranks are chosen adaptively.

In the context of Algorithm 2, we choose a cluster tree that aligns with the (recursive) decom-
positions (6). In turn, the sum at line 17 is performed using HSS arithmetic and is combined with
a re-compression step to mitigate the increase of the HSS rank. This costs O(k2n) operations,
assuming that the HSS ranks of F11, F22 and the rank of UXV T are O(k) [42].

3.4 Algorithm 2 for HSS matrices

We now discuss the situation when the HSS structure is not only used for storing the output of
Algorithm 2 but when the input matrix A itself is also an HSS matrix. In this case the decomposi-
tion (6) is aligned with the cluster tree TL associated with A as this choice guarantees that the rank
of AO is bounded by 2k and that the outcome inherits the same cluster tree of the input matrix.
In addition, fast algorithms for matrix operations are available within the HSS format [42]. More

9

specifically, complexity O(kn) is achieved for the matrix-vector product; solving linear systems
and computing the corresponding matrix factorizations cost O(k2n). Algorithm 2 leverages these
features as follows:

• Retrieve the low-rank factorization at line 12 by means of the translation operators (O(k2n)).

• Generate the Krylov subspaces in Krylov proj by performing matrix-vector products
and/or solving shifted linear systems with HSS algorithms.

• Use the HSS structures of A11, A22 in the recursive calls at lines 14-15 and return HSS
matrices F11 and F22.

Let us analyze the cost of Algorithm 2 for the input (TL, k)-HSS matrix A, with L = O(log(n)),
and flag equals “full”. We again make the idealistic assumption that Krylov proj converges in a
constant number of iterations, independent of k and n, and that the outcome of the (compressed)
sum at line 17 has always HSS rank O(k). Then, we have that the low-rank updates at level

` ∈ {0, 1, . . . , L−1} cost O(k2(n
(`)
i −n

(`)
i−1)), i = 1, . . . , 2`, when using either polynomial or rational

Krylov subspaces. Since the sum at line 17 costs O(k2(n
(`)
i −n

(`)
i−1)) too, the asymptotic complexity

of each non base level of the recursion is O(k2
∑2`

i=1(n
(`)
i − n

(`)
i−1)) = O(k2n). The base of the

recursion requires to evaluateO(n/nmin) functions of matrices of size at most nmin×nmin; assuming
a cubic cost for matrix function evaluations yields O(n2

minn). Hence, the overall complexity of
Algorithm 2 is O(k2n log(n)).

3.5 Convergence results for D&C algorithm

Convergence results for Algorithm 2 can be obtained from the convergence results on low-rank
updates of matrix functions discussed in Section 2.1. In the following, we let TL denote the
(perfect binary) tree of depth L associated with the recursive decompositions performed in line 12.

Theorem 8. Let A be symmetric and let f be a function analytic on an interval E containing the
eigenvalues of A. Suppose that Algorithm 2 uses rational Krylov subspaces with poles ξ1, . . . , ξm,
closed under complex conjugation, for computing updates. Then the output FA of Algorithm 2
satisfies

‖f(A)− FA‖2 ≤ 4L · min
r∈Πm/qm

‖f − r‖E,

where qm(z) =
∏m
i=1(z − ξi).

Proof. Using the index sets contained in TL (see Definition 7), the matrices to which Algorithm 2
is applied to in the `th level of recursion are denoted by A`j := A(I`j , I

`
j) for ` < L. Analogously, we

let G`j denote the update of the form UXV T computed in line 13. We aim at proving the following
bound for the error of Algorithm 2:

‖f(A)− FA‖2 ≤
L−1∑
`=0

max
j=1,...,2`

∥∥∥∥f(A`j)−
[
f(A`+1

2j−1)

f(A`+1
2j)

]
−G`j

∥∥∥∥
2

. (7)

This bound implies the statement of the theorem because by [3, Theorem 4.5] each term appearing
in the sum can be bounded by∥∥∥∥f(A`j)−

[
f(A`+1

2j−1)

f(A`+1
2j)

]
−G`j

∥∥∥∥
2

≤ 4 min
r∈Πm/qm

‖f − r‖E,

10

where we used that the eigenvalues of principal submatrices of A are contained in E.
The proof of (7) is by induction on L, the number of levels. When L = 1, the definition of FA

yields

‖f(A)− FA‖2 =

∥∥∥∥f(A0
1)−

[
f(A1

1)
f(A1

2)

]
−G0

1

∥∥∥∥
2

.

Now, suppose that (7) holds for L− 1. Then the result for L ≥ 2 is proven by observing

‖f(A)− FA‖2 =

∥∥∥∥f(A0
1)−

([
FA1

1

FA1
2

]
+G0

1

)∥∥∥∥
2

=

∥∥∥∥f(A0
1)−

[
f(A1

1)
f(A1

2)

]
−G0

1 +

[
f(A1

1)
f(A1

2)

]
−
[
FA1

1

FA1
2

]∥∥∥∥
2

≤
∥∥∥∥f(A0

1)−
[
f(A1

1)
f(A1

2)

]
−G0

1

∥∥∥∥
2

+

∥∥∥∥[f(A1
1)− FA1

1

f(A1
2)− FA1

2

]∥∥∥∥
2

=

∥∥∥∥f(A0
1)−

[
f(A1

1)
f(A1

2)

]
−G0

1

∥∥∥∥
2

+ max
k∈{1,2}

‖f(A1
k)− FA1

k
‖2.

Each of the terms ‖f(A1
k)−FA1

k
‖2 corresponds to applying Algorithm 2 with a cluster tree of depth

L− 1, for which (7) holds by the induction assumption; therefore, (7) also holds for L.

Corollary 9. Under the assumptions of Theorem 8, when using polynomial Krylov subspaces in
Algorithm 1, we have that

|trace(f(A))− trace(FA)| ≤ 4nL min
p∈Π2m

‖f − p‖E.

Proof. Analogously to the proof of Theorem 8, we can bound

|trace(f(A))− trace(FA)| ≤
L−1∑
`=0

2`∑
j=1

∣∣∣∣trace(f(A`j))− trace

[
f(A`2j−1)

f(A`2j)

]
− trace(G`j)

∣∣∣∣
and use Theorem 3 to conclude.

4 Numerical tests for Algorithm 2

In this section we test Algorithm 2 on a variety of matrices and functions coming from different
applications. The minimum block size parameter nmin is set to 256 for all our experiments, and
the tolerance is ε = 10−8 for all experiments, unless otherwise noted. The lag parameter in
Algorithm 1 is set to d = 1. The algorithm has been implemented in Matlab, version 9.9 (R2020b),
and all numerical experiments in this work have been run on an eight-core Intel Core i7-8650U
1.90 GHz CPU, with 256 KB of level 2 Cache and 16 GB of RAM. The code for reproducing
the experiments in this section and in Section 6 is available at https://github.com/Alice94/

MatrixFunctions-Banded-HSS. The computations with HSS matrices have been performed using
the hm-toolbox [42]. This requires choosing a minimum block size and a tolerance parameter,
which we set to be equal to nmin and ε, respectively.

In all tables referring to the computation of matrix functions f(A) the columns denoted by
“Err” contain the relative error in the Frobenius norm computed – whenever possible – with
respect to the value of f(A) obtained by dense arithmetic.

11

https://github.com/Alice94/MatrixFunctions-Banded-HSS
https://github.com/Alice94/MatrixFunctions-Banded-HSS

4.1 Space-fractional diffusion equation without source

Let us consider the fractional diffusion problem:
∂u(x,t)
∂t = ∂αu(x,t)

∂−xα
+ ∂αu(x,t)

∂+xα
(x, t) ∈ (0, 1)× (0, T]

u(x, t) = 0 (x, t) ∈ (R \ [0, 1])× [0, T]

u(x, 0) = u0(x) x ∈ [0, 1]

where α ∈ (1, 2) is a fractional order of derivation and ∂α

∂−xα
, ∂α

∂+xα
denote the left looking and right

looking αth derivatives. Discretizing in space by means of the finite difference scheme based on
Grünwald-Letnikov formulas, with step size ∆x = 1

n+1 , yields

{
u̇(t) = Au(t)

u(0) = u0

, A = Tn + TTn , Tn =
1

∆xα

g
(α)
1 g

(α)
0 0 . . . 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
n−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
n g

(α)
n−1 g

(α)
2 g

(α)
1

,

where

g
(α)
0 = −1, g

(α)
k =

(−1)k+1

k!
α(α− 1) · · · (α− k + 1), k = 1, . . . , n,

and u(t),u0 ∈ Rn contain the sampling of the solution and of the boundary condition, respectively,
at the spatial points j∆x, for j = 1, . . . , n. In particular, evaluating the solution at time t = 1 as
u(1) = eAu0 requires the computation of the matrix exponential of A which is well approximated
in the HSS format [40].

Concerning the latter task, we compare the performances of our D&C method (Algorithm 2)
with polynomial Krylov subspaces and of the function expm of the hm-toolbox that makes use of
a Padé approximant combined with scaling and squaring.

The results are reported in Table 1. The column labeled as “Dense” corresponds to the evalu-
ation of the matrix exponential with dense arithmetic via Matlab’s expm function. This has been
computed up to size n = 8192 and demonstrates that D&C is slightly more accurate; expm (HSS)
and D&C are cheaper than the dense method from sizes 4096 and 2048, respectively.

4.2 Sampling from a Gaussian Markov random field

This case study, taken from [32], arises from computational statistics and it concerns a tool often
used to model spatially structured uncertainty in the data. Given a cloud of points {si}ni=1 ⊂ Rd
we introduce Gaussian random variables xi i = 1, . . . , n at each point. The vector x = (xi) is
referred to as a Gaussian Markov random field (GMRF) when it is distributed according to the
precision (inverse covariance) matrix A = (aij) ∈ Rn×n depending on two positive parameters φ
and δ as follows:

aij =

1 + φ ·
n∑

k=1,k 6=i
χδki if i = j

−φ · χδij if i 6= j

, where χδij =

{
1 if ||si − sj ||2 < δ

0 otherwise
.

A sample v ∈ Rn from a zero-mean GMRF with precision matrix A is obtained as v = A−
1
2 z, where

z is a vector of independently and identically distributed standard normal random variables.

12

A D&C expm (HSS) Dense eA

Size HSS rank Time Err Time Err Time HSS rank

512 10 0.09 1.89 · 10−8 0.57 3.78 · 10−8 0.03 13
1,024 11 0.18 2.34 · 10−8 1.01 6.75 · 10−8 0.15 15
2,048 13 0.38 4 · 10−8 1.77 9.88 · 10−8 0.96 23
4,096 14 1.09 4.85 · 10−8 3.99 1.44 · 10−7 8.94 23
8,192 15 3.11 6.09 · 10−8 10.22 1.16 · 10−7 70.75 25
16,384 15 8.61 18.48 26
32,768 16 22.18 37.22 27

Table 1: Computation of eA in the HSS format for the coefficient matrix A of the fractional
diffusion problem discussed in Section 4.1. We compare the performances of the expm function of
the hm-toolbox [42] and of the D&C approach proposed in Algorithm 2.

When many samples are needed, it is convenient to store an HSS representation of A−
1
2 so that

each sample requires only a matrix vector product with an HSS matrix. In this experiment we
set φ = 3, we generate n = 2j pseudorandom points si in the unit interval (0, 1), and we choose
δ = 0.02 ·29−j for j = 9, . . . , 18. Sorting the points si yields precision matrices that are symmetric,
diagonally dominant and with bandwidth in the range [19, 26].

As suggested in Remark 5, as the matrix A is banded and SPD we use a decomposition which
features rank-b updates; we observed a speed up with respect to doing rank-2b updates in our
experiments. In Algorithm 1 the projection method used for computing the updates in the D&C
is the Extended Krylov method, which alternates poles 0 and ∞1. We compare the computation of
A−

1
2 in the HSS format by means of our D&C scheme with the function sqrtm contained in the

hm-toolbox [42] which combines the Denman and Beavers iteration with the HSS arithmetic.
The results reported in Table 2 show that the D&C approach yields a significant reduction of

the computational time with respect to sqrtm (HSS). For the largest instance, n = 32, 768, we
have profiled the computing time spent at the different stages of the D&C method. The generation
of the bases of the extended Krylov subspaces consumed about 25% of the total time while about
50% was spent to sum the (low-rank) updates to the block diagonal intermediate results. Around
20% was used for computing the projected matrices and evaluating the inverse square roots of the
diagonal blocks at the lowest level of recursion and of the projected matrices.

4.3 Merton model for option pricing

We consider the evaluation of option prices in the Merton model for one single underlying asset, as
in [34, Section 6.3]. More specifically, we compute the exponential of the nonsymmetric Toeplitz
matrix A arising from the discretization of the partial integro-differential equation

ωt =
ν2

2
ωξξ +

(
r − λκ− ν2

2

)
ωξ − (r + λ)ω + λ

∫ +∞

−∞
ω(ξ + η, t)φ(η)dη,

where ω(ξ, t) on (−∞,+∞) × [0, T] is the option value, T is the time to maturity, ν ≥ 0 is the
volatility, r is the risk-free interest rate, λ ≥ 0 is the arrival intensity of a Poisson process, φ is
the normal distribution with mean µ and standard deviation σ, and κ = eµ+σ2/2 − 1. We use the
same discretization and parameters as [34, Section 6.3] and [37, Example 3].

1More precisely, the mth extended Krylov subspace associated to a matrix A and a (block) vector B is
A−mK2m(A,B) := span

[
B,A−1B,AB, . . . , Am−1B,A−mB

]
.

13

A D&C sqrtm (HSS) Dense A−
1
2

Size Band Time Err Time Err Time HSS rank

512 22 0.05 2.02 · 10−9 0.49 3.44 · 10−9 0.02 14
1,024 20 0.16 3.45 · 10−9 1.41 5.22 · 10−9 0.13 17
2,048 19 0.37 3.76 · 10−9 3.99 6.38 · 10−9 0.95 19
4,096 21 0.8 3.23 · 10−9 9.05 5.61 · 10−9 9.03 19
8,192 22 2.46 3.46 · 10−9 21.27 6.61 · 10−9 70.42 20
16,384 25 5.7 48.92 22
32,768 26 15.12 102.65 25
65,536 26 26.25 209.56 24
131,070 25 60.44 417.21 24
262,140 26 146.97 918.81 26

Table 2: Computation of A−
1
2 in the HSS format for the precision matrix A of the Gaussian Markov

random field discussed in Section 4.2. We compare the performances of the sqrtm function of the
hm-toolbox [42] and of the D&C approach proposed in Algorithm 2.

We aim at approximating exp(A), for different values of the matrix size n. To do so, we first
convert A into HSS format using the hm-toolbox [42], then rescale it by dividing by 2dlog2 ‖H‖2e,
then apply Algorithm 2, and finally squaring the result dlog2 ‖H‖2e times in the HSS format. We
use polynomial Krylov subspaces for the updates in Algorithm 2. For different values of n, we
compare the output of the described method with the expm algorithm from the hm-toolbox [42]
and the algorithm sexpmt proposed in [34]. In order to attain a similar accuracy to the sexpmt

algorithm, we set the tolerance parameter ε = 10−12 in Algorithm 2 and for HSS computations in
the hm-toolbox [42]. The results are summarized in Table 3.

A D&C expm (HSS) sexpmt Dense eA

Size Time Err Time Err Time Err Time HSS rank

512 0.49 2.66 · 10−11 0.57 2.34 · 10−10 0.16 2.95 · 10−12 0.1 18
1,024 0.86 7.13 · 10−10 1.82 5.99 · 10−10 0.54 2.04 · 10−11 0.69 18
2,048 2.4 1.18 · 10−9 4.16 8.03 · 10−9 1.31 3.37 · 10−11 5.05 17
4,096 5.53 6.19 · 10−8 8.06 2.96 · 10−8 7.39 1.86 · 10−10 42.33 19
8,192 9.6 5.65 · 10−7 16.23 3.1 · 10−7 25.52 1.35 · 10−9 323.18 18
16,384 20.58 33.71 98.41 20
32,768 46.13 67.43 419.82 20

Table 3: Computation of eA in the HSS format for the coefficient matrix A in Section 4.3. We
compare the performances of our Algorithm 2 with the expm function of the hm-toolbox [42] and
the sexpmt algorithm of [34].

4.4 Neumann-to-Dirichlet operator

Consider
∂2

∂x2
u = Au,

∂

∂x
u |x=0= −b, u |x=+∞ (8)

14

for a nonsingular matrix A which is the discretization of a differential operator on some spatial
domain Ω ⊆ R`. Then (8) is a semidiscretization of an (`+1)-dimensional PDE on [0,+∞)×Ω; the
solution is given by u(x) = exp

(
−xA−1/2

)
A−1/2b. In particular, u(0) = A−1/2b and the operator

A−1/2 is called Neumann-to-Dirichlet (NtD) operator as it allows for conversion of the Neumann
data −b at the boundary x = 0 into the Dirichlet data u(0), without needing to solve (8) on its
unbounded domain.

As in [19, Example 6.1], we consider the inhomogeneous Helmholtz equation

∆u(x, y) + k2u(x, y) = f(x, y), f(x, y) = 10δ(x− 511π/512)δ(y − 50π/512) (9)

for k = 50 on the domain [0, π]2. The matrix A corresponds to the discretization of − ∂2

∂y2 − k
2 on

[0, π] by central finite differences. We consider step sizes h ∈ {π/29, . . . , π/215} and compute the
NtD operator A−1/2 in the HSS format using the D&C algorithm 2; Table 4 illustrates the compar-
ison with the computation of A−1/2 in dense arithmetic. For computing the inverse square root, we
move the branch cut to the negative imaginary axis. For the updates, we use the complex extension
of Algorithm 1 with rational Krylov subspaces where we cyclically repeat 6 poles coming from the
degree-6 approximation to f(z) = z−1/2 on the set S := [−b,−a] ∪ [a, b] for b = ‖A‖2 (estimated
with normest(A)) and a = 1/‖A−1‖2 (computed via b / condest(A)) described in [19, Section
2]. As the spectral interval of A contains zero, which is a singularity of the inverse square root
function, we could potentially encounter instability issues when using Krylov subspace methods;
however, this does not happen in our example.

A D&C Dense A−1/2

Size Time Err Time HSS rank

512 1.18 2.53 · 10−8 0.13 12
1,024 0.99 3.59 · 10−8 0.21 13
2,048 1.84 4.26 · 10−8 0.92 20
4,096 3.23 6.39 · 10−8 6.73 20
8,192 7.89 8.2 · 10−8 64.74 20
16,384 16.75 20
32,768 37.7 20

Table 4: Computation of A−1/2 in the HSS format for Neumann-to-Dirichlet problem discussed in
Section 4.4.

4.5 Computing charge densities

The approximation of the diagonal of a matrix function applies to the calculation of the electronic
structure of systems of atoms. In particular, the charge densities of a system are contained in the
diagonal of f(H), where f is the Heaviside function

f(x) =

{
1 x < 0

0 x ≥ 0

and H is the Hamiltonian matrix that is given by the sum of the kinetic and potential energies.
The entries of Hamiltonian matrices usually decay rapidly away from the main diagonal. Let us

15

consider the parametrized model Hamiltonian given in [5, Section 4.3]:

H ∈ RNb·Ns×Nb·Ns , HNb·(i−1)+j,i′·Nb(i′−1)+j′ =

(i− 1)∆ + (j − 1)δ i = i′, j = j′

C · e−|j−j′| i = i′, j 6= j′

C
nod(|i−i′|+1) · e

−|j−j′| otherwise

,

where we have set the parameters’ values: Nb = 5, Ns = 1600,∆ = 10−1, δ = 10−4, C = 10−1, and
nod = 5000. The HSS structure of the matrix H is shown in the left part of Figure 2. We compute
the diagonal of f(H) by means of Algorithm 2 and exploiting the relation

f(x) = (1− sign(x))/2.

More specifically, we use Algorithm 2 to compute the diagonal of sign(H); then we subtract the
latter from the vector of all ones and we divide by 2. The procedure has terminated after 3.52
seconds. As benchmark method we evaluate f(H) by diagonalization with dense arithmetic. This
has required 78.62 seconds. The Euclidean distance of the vectors obtained with the two approaches
is 2.68 · 10−11. In Figure 2, the first 500 components of the two charge densities are shown.

13

13

22

22

16

16

22

22

22

22

24

24

17

17

22

22

22

22

24

24

22

22

22

22

24

24

27

27

17

17

22

22

22

22

24

24

22

22

22

22

24

24

27

27

22

22

22

22

24

24

22

22

13

13

16

16

17

17

17

17

18

18

0 100 200 300 400 500

10 -15

10 -10

10 -5

10 0

True diag

HSS diag

Figure 2: Left: Ranks of the off-diagonal blocks of the Hamiltonian matrix H from Section 4.5;
the blue blocks indicate matrices for which dense arithmetics is used. Right: Charge densities
estimated with dense arithmetic (blue) and with the HSS D&C method (red).

4.6 Computing subgraph centralities and Estrada index

Given an undirected graph G with adjacency matrix A, the diagonal entries of exp(A) are called
the subgraph centralities of the vertices. Their normalized sum EEn(G) := 1

n tr(exp(A)) is called
the normalized Estrada index of the graph; it was introduced in [22] to characterize the folding of
molecular structures and has found applications in network analysis [23].

When aiming at the diagonal of exp(A), at each step of our D&C method we run a clustering
algorithm [33] on the matrix to divide it into two components that have few edges between them;
the ufactor parameter is set to 100. If the rank of the off-diagonal part is less than 1/15 of
the matrix size, we compute a low-rank update, otherwise we use the mmq algorithm [27], which
approximates each diagonal entry of exp(A) by Gauss quadrature.We also use mmq on matrices

16

of size less than nmin = 256. We compare our D&C algorithm for the diagonal with mmq and
diag(expm(full(A))).

When aiming at trace(exp(A)), we use sum(exp(eig(full(A)))) instead of mmq to address
small blocks or blocks that cannot be divided in smaller blocks with a low-rank correction; we
noticed that this is faster than letting Matlab work with the matrices in sparse format. As a
competitor for the computation of the trace we consider sum(exp(eig(full(A)))).

In Table 5 we report the errors and the time needed by our algorithm. The matrices we used
are minnesota, power, as-735, nopoly, worms20 10NN, and fe body from the SuiteSparse Matrix
Collection [16].

A D&C diagonal mmq diagonal expm D&C trace eig

Size Time Err Time Err Time Time Err Time

2,642 1.01 6.24 · 10−10 0.8 1.82 · 10−11 1.98 0.14 7.71 · 10−13 0.44
4,941 2.06 1.29 · 10−8 5.15 3.39 · 10−11 16.11 0.47 7.75 · 10−11 3.61
7,716 8.01 4.03 · 10−9 24.19 2.29 · 10−10 56.59 3.91 1.96 · 10−12 8.73
10,774 15.87 1.04 · 10−8 39.42 3.54 · 10−10 151.52 2.98 2.69 · 10−10 21.04
20,055 38.49 2.59 · 10−9 97.53 1.4 · 10−11 929.25 6.99 2.66 · 10−13 124.34
45,087 182.19 603.57 27.99

Table 5: Computation of the diagonal and the trace of eA for the graphs from Section 4.6.

4.6.1 The lag parameter

We compare the timings and the accuracy of our D&C algorithm on the matrices nopoly and
worms20 10NN for values of the lag parameter in the range {1, 2, 3, 4}. The results are reported in
Table 6. In general, it looks like we can safely put the lag parameter equal to 1.

nopoly worms20 10NN

Lag Diag Trace Err diag Err trace Diag Trace Err diag Err trace

1 19.44 2.81 1.04 · 10−8 2.69 · 10−10 47.82 6.37 2.59 · 10−9 2.6 · 10−13

2 16.54 3.13 1 · 10−8 3.78 · 10−12 61.76 12.04 2.46 · 10−9 5.19 · 10−16

3 14.63 4 9.29 · 10−9 2.41 · 10−14 87.85 11.55 2.34 · 10−9 5.19 · 10−16

4 16.08 3.76 8.51 · 10−9 1.42 · 10−14 89.01 20.86 2.16 · 10−9 1.73 · 10−16

Table 6: For two matrices from [16] we investigate the influence of the lag parameter on the timing
of the D&C algorithm for computing the diagonal and the trace of exp(A).

5 Block diagonal splitting algorithm for banded matrices

As already mentioned in Remark 6 and shown in more detail below, Algorithm 2 applied to a
banded matrix returns again a banded matrix when polynomial Krylov subspace bases are used.
The purpose of this section is to go further and use this observation to bypass the need for building
Krylov subspaces. We can also avoid recursion and arrive at a simpler algorithm.

17

5.1 Block diagonal splitting algorithm from low-rank updates

Let A ∈ Rn×n be banded with bandwidth b. Our algorithm will be based on splitting A into a
block diagonal matrix with many small diagonal blocks and an off-diagonal part. To explain this
construction, we will first discuss splitting off one small diagonal block. We consider the partioning

A = D +R, D =

[
D1

D̃1

]
, D1 ∈ Rs×s, R = A−D, (10)

but we now suppose that the first diagonal block is small, that is, s � n; see also Figure 3. The

A = D +R = +

Figure 3: Illustration of decomposition (10).

matrix R can be written as R = U1JU
T
1 where

U1 := 0 I2b 0
[]
s− b 2b n− s− b

T
and J :=

[
A(s-b+1:s,s+1:s+b)

A(s+1:s+b, s-b+1:s)

]
.

When applying Algorithm 1 to approximate the low-rank update f(A) − f(D) the polynomial
Krylov subspaces remain sparse in the following sense.

Lemma 10. Given the setting described above, assume that 2mb ≤ s. Then the Krylov subspaces
Km(D,U1) and Km(DT , U1) are each contained in the column span of the n× 2mb matrix

Um := 0 I2mb 0
[]

s−mb 2mb n− s−mb

T
.

Proof. For every polynomial p ∈ Πm−1, the matrix p(D) is banded with bandwidth (m − 1)b.
In turn, p(D)U1 only has nonzero rows at positions s − mb + 1, . . . , s + mb or, in other words,
every column of p(D)U1 is contained in the column span of Um. Combined with the definition
Km(D,U1) = span[U1, DU1, . . . , D

m−1U1], this proves the statement of the lemma.

The compressions of D and A with respect to the orthonormal basis Um from Lemma 10 takes
the form

Gm = UTmDUm = blkdiag(A(s-mb+1:s, s-mb+1:s), A(s+1:s+mb, s+1:s+mb)))

=: blkdiag(C
(1)
1 , C

(2)
1),

Hm = UTmAUm = A(s-mb+1:s+mb, s-mb+1:s+mb) =: B1.

18

Following Algorithm 1, we define the approximate low-rank update as

f(A)− f(D) = f(A)− blkdiag(f(D1), f(D̃1))

≈ Umf(B1)UTm − Umf(blkdiag(C
(1)
1 , C

(2)
1))UTm. (11)

By Lemma 10, this approximation becomes in fact identical to the one returned by Algorithm 1
if Km(D,U1) and Km(DT , U1) each have dimension 2mb. If the Krylov subspaces are of smaller
dimension then the approximations may differ, but the exactness properties mentioned in 2.1 still
hold (see Remark 1).

5.2 The block diagonal splitting algorithm

From (11), it follows that the first part of Algorithm 2 (lines 12–14) reduces to the computation of

f(B1), f(C
(1)
1), f(C

(2)
1), f(D1), that is, functions of small submatrices of A. For the second part

(line 15) one can apply the same reasoning recursively to D̃1.
With the simplified assumptions that n = ks for an integer k and m := s

2b is an integer, the
discussion above shows that Algorithm 2 reduces to the simpler Algorithm 3, where

• D := blkdiag(D1, . . . , Dk) and D1, . . . , Dk are the consecutive s× s diagonal blocks of A;

• B̃ := blkdiag(B1, . . . , Bk−1) and B1, . . . , Bk−1 are consecutive s × s diagonal blocks of A
starting from index s

2 + 1;

• C̃ := blkdiag(C
(1)
1 , C

(2)
1 , . . . , C

(1)
k−1, C

(2)
k−1) where C

(1)
1 , . . . , C

(2)
k−1 are the consecutive s

2 ×
s
2

diagonal blocks of A starting from index s
2 + 1;

• B := blkdiag(Z, B̃, Z), C := blkdiag(Z, C̃, Z), where Z := zeros(s2).

The resulting splitting A = D + B − C is illustrated in Figure 4. Note that Algorithm 3 is
embarrassingly parallel and attains nearly perfect weak scalability on k processors.

Algorithm 3 Approximation of f(A) for banded A

Input: Banded matrix A ∈ Rn×n of bandwidth b, block size s, function f

Output: Approximation approx
(s)
f (A) of f(A)

1: Define B̃, B, C̃, C, and split A = D +B − C as explained in Section 5.2
2: Compute f(D), f(B̃), and f(C̃) by evaluating f on each block of D, B̃, and C̃

3: Set fB := blkdiag(Z, f(B̃), Z) and fC := blkdiag(Z, f(C̃), Z), where Z := zeros(s/2)
4: Return f(D) + fB − fC

5.3 Convergence analysis of block diagonal splitting method

Algorithm 3 corresponds to Algorithm 2 where the updates are performed using projection onto
spaces that include polynomial Krylov subspaces of dimension m :=

⌊
s
2b

⌋
; thanks to Remark 1

and Proposition 4 this implies that Algorithm 3 is exact for all f ∈ Πm. This property allows us
to prove convergence results for Algorithm 3. In the following, we let W (A) := {zTAz | |z| = 1}
denote the numerical range of A.

19

D1

D2

D3

D4

D5

C
(1)
1

C
(2)
1

C
(1)
2

C
(2)
2

C
(1)
3

C
(2)
3

C
(1)
4

C
(2)
4

B1

B2

B3

B4

D1

D2

D3

D4

D5

Figure 4: The blocks that are involved in the computation of f(A) for a banded matrix A.

Theorem 11. Let A ∈ Rn×n be a banded matrix with bandwidth b. For a given block size s, the

output approx
(s)
f (A) of Algorithm 3 satisfies

‖f(A)− approx
(s)
f (A)‖2 ≤ 4C min

p∈Πm
‖f − p‖W (A),

where C = 1 if A is normal and C = 1 +
√

2 otherwise, and m :=
⌊
s
2b

⌋
.

Proof. Algorithm 3 is exact for a polynomial in Πm and is linear with respect to f , therefore for
all p ∈ Πm we have

‖f(A)− approx
(s)
f (A)‖2 = ‖f(A)− p(A) + approx(s)

p (A)− approx
(s)
f (A)‖2

= ‖f(A)− p(A)− approx
(s)
f−p(A)‖2

≤ ‖(f − p)(A)‖2 + ‖approx
(s)
f−p(A)‖2.

Using a result by Crouzeix and Palencia [15], we have ‖(f − p)(A)‖2 ≤ C‖f − p‖W (A). Since the
spectral norm of a block diagonal matrix is the maximum spectral norm of its blocks, it holds that

‖approx
(s)
f−p(A)‖2 ≤ max

i
‖(f − p)(Di)‖2 + max

i
‖(f − p)(Bi)‖2 + max

i,j
‖(f − p)(C(j)

i)‖2

≤ 3C‖(f − p)‖W (A).

In the latter inequality, we used again [15] combined with the fact that the numerical range of a
principal submatrix of A is contained in W (A). We conclude that

‖f(A)− approx
(s)
f (A)‖2 ≤ 4C‖(f − p)‖W (A),

and the claim follows from taking the minimum over all polynomials p ∈ Πm.

When considering the approximation of the trace of a matrix function by Algorithm 3, a stronger
convergence result could be proved, because of the exactness of the low-rank updates (and therefore
of the D&C algorithm) for polynomials in Π2m. In the specific case of Algorithm 3, however, we
can prove a stronger result even for the diagonal entries of f(A).

Theorem 12. Let A ∈ Rn×n with bandwidth b, let us fix a block size s, let m := b s2bc. Then the

output approx
(s)
p (A) of Algorithm 3 satisfies

diag(p(A)) = diag(approx(s)
p (A)) (12)

for all polynomials p ∈ Π2m+1.

20

Proof. The proof is in the spirit of [46, Lemma 5.1], but the aim is different. By linearity of
Algorithm 3, it is sufficient to prove (12) when p(x) = xk, with 0 ≤ k ≤ 2m + 1, that is, to

prove that the diagonal entries of Ak and approx
(s)
p (A) coincide. To study the entries of Ak, it is

helpful to consider the associated directed graph G(A) with vertices 1, . . . , n and adjacency matrix
A. The jth diagonal entry of Ak is given by the sum of the weights of all the paths of length
exactly k that start and end at vertex i; we recall that the weight of a path v1 → v2 → . . .→ vk of
length k is defined as the product of the weights of the edges

∏k−1
h=1Avhvh+1

. We also consider the

graphs G(Bi), G(Di), G(C
(1,2)
i). The diagonal entries of approx

(s)
p (A) are obtained by summing the

weights of the paths of length exactly k in the graphs G(Di) and G(Bi) and subtracting the weights

of the paths of length exactly k in the graphs G(C
(1)
i) and G(C

(2)
i) for all indices i. Therefore, it

is sufficient to prove that this sum coincides with the sum of the weights of the paths of length
exactly k in G(A).

Note that, for all indices i, G(C
(1)
i) is a subgraph of G(Di) and G(Bi); G(C

(2)
i) is a subgraph

of G(Di+1) and G(Bi); all these are subgraphs of G(A). The distance from a vertex in G(Di) and
one in G(Bi+1) or G(Bi−2) is at least m + 1. Therefore, for each vertex v ∈ {1, . . . , n} each path
in G(A) of length at most 2m + 1 from v to itself satisfies one (and only one) of the following
conditions for some i ∈ {1, . . . , ns − 1}:

1. It is contained in G(C
(1)
i), G(Bi), and G(Di), but in no other subgraph.

2. It is contained in G(C
(2)
i), G(Bi), and G(Di+1), but in no other subgraph.

3. It is contained in G(Bi) but in no other subgraph.

4. It is contained in G(Di) but in no other subgraph.

In all these four cases, the weight of the path is counted exactly once in approx
(s)
p (A); we conclude

that the diagonal entries of approx
(s)
p (A) coincide with the ones of p(A) for p(x) = xk for k ≤ 2m+1

and therefore for all polynomials in Π2m+1.

A convergence result for the diagonal elements of the output of Algorithm 3 follows from
Theorem 12 similarly to Theorem 11.

Corollary 13. With the same assumptions of Theorem 11 it holds that

|f(A)ii − approx
(s)
f (A)ii| ≤ 4C min

p∈Π2m+1

‖f − p‖W (A)

for all i = 1, . . . , n and therefore

|tr(f(A))− tr(approx
(s)
f (A))| ≤ 4Cn min

p∈Π2m+1

‖f − p‖W (A),

where C = 1 for normal matrices A, and C = 1 +
√

2 otherwise.

Proof. According to Theorem 12, for all polynomials p ∈ Π2m+1 we have that

|f(A)ii − approx
(s)
f (A)ii| = |(f − p)(A)ii − approx

(s)
f−p(A)ii| ≤ ‖(f − p)(A)− approx

(s)
f−p(A)‖2.

From here one proceeds as in the proof of Theorem 11.

In Figure 5 we illustrate the convergence of approx
(m)
f (A) for the exponential of two banded

matrices and we observe that the diagonal – and therefore the trace – converges much faster than
the full matrix function.

21

2 4 6 8 10 12

m

10 -15

10 -10

10 -5

10 0

e
rr

o
r

Full f(A)

Diagonal

Trace

(a) Normalized random symmetric tridiag-
onal matrix.

2 4 6 8 10 12

m

10 -15

10 -10

10 -5

10 0

e
rr

o
r

Full f(A)

Diagonal

Trace

(b) Normalized random non-symmetric
pentadiagonal matrix.

Figure 5: Convergence of the errors ‖f(A)− approx
(m)
f (A)‖F , ‖diag(f(A)− approx

(m)
f (A))‖2, and

|tr(f(A)− approx
(m)
f (A))| for f = exp.

5.4 Adaptive algorithm

In Algorithm 3 the block size s, which determines the accuracy of the approximation of f(A),
needs to be chosen a priori and is uniform across the whole matrix. In the following, we develop a
strategy to choose the block size adaptively and possibly differently in different parts of the matrix.

When f is a polynomial of degree m and A has bandwidth b, f(A) has bandwidth (at most)
bm and the discussion in Section 5.3 implies that Algorithm 4 is exact for block size s = 2bm. This
motivates the following strategy. For a target accuracy ε, we define the ε-approximate bandwidth
of a matrix to be the bandwidth that the matrix has if we discard all the entries with absolute
value smaller than ε. In the first phase, we choose the sizes of the blocks D1, D2, . . . , Dk in such
a way that their sizes are at least twice the ε-approximate bandwidth of f(D1), f(D2), . . . , f(Dk),
and we set F := blkdiag(f(D1), . . . , f(Dk)). In the second phase we compute the “updates”
between each pair of consecutive blocks Dj and Dj+1 corresponding to indices {j1, j1 + 1, . . . , h}
and {h+ 1, h+ 2, . . . , j2} of A, respectively, similarly to (11). More precisely, we take

P := f(B)− blkdiag(f(C(1)), f(C(2))), B := A(J, J), C(1) := A(J1, J1), C(2) := A(J2, J2)
(13)

for J1 :=
{
b j1+h

2 c, b
j1+h

2 c+ 1, . . . , h
}

, J2 :=
{
h+ 1, h+ 2, . . . , d j2+h

2 e
}

, and J := J1 ∪ J2, and

add the matrix P to the submatrix of F corresponding to the indices J . As a heuristic criterion
to check convergence,we check if the absolute value of all the entries corresponding to the first
and last column and row of P is smaller than ε; if this is not the case, the sets J1, J2, and J are
enlarged. The procedure is summarized in Algorithm 4.

6 Numerical tests for Algorithm 4

In this section we test the block diagonal splitting algorithm on a variety of functions of banded
matrices. Both the input and output matrices of Algorithms 3 and 4 are represented in the sparse
format in Matlab.

22

Algorithm 4 Block diagonal splitting algorithm: Adaptive version

Input: Banded matrix A ∈ Rn×n, tolerance ε, function f , minimum block size nmin

Output: Approximation F of f(A)
1: Initialize F ← zeros(n), s← nmin, i← 1 (i denotes where the next diagonal block starts)
2: while i ≤ n do
3: if f(A(i:i+s-1, i:i+s-1)) has ε-approximate bandwidth ≤ s/2 then
4: Set F (i:i+s-1, i:i+s-1) = f(A(i:i+s-1, i:i+s-1)), i← i+ s, s← min{s/2, nmin}
5: else
6: Choose a larger block size s← min{2s, n− i+ 1}
7: end if
8: end while
9: for each pair of consecutive diagonal blocks do

10: Compute P using matrices B, C(1), C(2) corresp. to indices J , J1, and J2 as in (13)
11: while the update has not converged do
12: Enlarge matrices B, C(1), C(2) in (13) corresp. to indices J , J1, and J2, and recompute P
13: end while
14: Sum F (J, J)← F (J, J) + P
15: end for

6.1 Fermi-Dirac density matrix of one-dimensional Anderson model

As a first numerical experiment, we test Algorithm 4 on the function f(z) = (exp(β(z − µ)) + 1)
−1

and a symmetric tridiagonal matrix with diagonal entries uniformly randomly distributed in [0, 1]
and all other nonzero elements equal to −1, as in [9, Section 5]; this is the Fermi–Dirac density
matrix corresponding to a one-dimensional Anderson model. We use µ = 0.5 and β = 1.84. We
set ε = 10−5, nmin = 32, and we consider values of n ranging from 29 to 219. For each value of
n, we compare the approximation F returned by Algorithm 4 to the approximation p(A) where p
is a Chebyshev polynomial interpolating f on [−2, 3] of degree d := dnnz(F)/(2n)e; choosing the
degree in this way gives a banded approximation of f(A) with roughly the same storage cost and
a comparable accuracy. The results are reported in Table 7; the approximation errors (relative
errors in the Frobenius norm) and the timings are comparable. Note that we could have used
as well Algorithm 2 with infinite poles to compute f(A); however, Algorithm 4 is much faster.
For instance, for the matrix A of size n = 32, 768 Algorithm 2 implemented with the trick from
Remark 6, block size 256, and tolerance ε = 10−5 took 4.21 seconds while Algorithm 4 took 0.51
seconds. We refer to Section 6.4 for a more detailed comparison of the timings of Algorithms 2
and 4.

6.2 Spectral adaptivity: Comparison with interpolation by Chebyshev
polynomials

An advantage of (polynomial) Krylov subspace over polynomial interpolation on the spectral in-
terval of A is the fact that Krylov methods are less impacted by outliers in the spectrum of A. In
the next experiment, we consider three 2048× 2048 matrices:

• The exponential of A1 = tridiag[−1, 2,−1];

• The exponential of the matrix A2 which is obtained from A1 by changing the entry in position
(1, 1) to 10;

23

A Splitting algorithm Chebyshev interpolation Dense
Size Time Err nnz/n Time Err Time

512 0.02 4.42 · 10−7 47.00 0.01 1.59 · 10−7 0.03
1,024 0.03 4.56 · 10−7 47.50 0.02 1.59 · 10−7 0.12
2,048 0.04 4.56 · 10−7 47.75 0.02 1.61 · 10−7 0.60
4,096 0.06 4.58 · 10−7 47.88 0.05 1.61 · 10−7 3.34
8,192 0.16 4.59 · 10−7 47.94 0.12 1.61 · 10−7 21.51
16,384 0.36 4.60 · 10−7 47.97 0.27 1.61 · 10−7 150.50
32,768 0.51 47.98 0.59
65,536 1.07 47.99 1.11
131,070 2.23 48.00 2.67
262,140 4.68 48.00 5.38
524,290 9.24 48.00 11.48

Table 7: Computation of f(A) by Algorithm 4, where f(z) = (exp(β(z − µ)) + 1)
−1

and the ma-
trices A are symmetric tridiagonal matrices with diagonal entries uniformly randomly distributed
in [0, 1] and all other nonzero elements equal to −1, as discussed in Section 6.1.

• The square root of the matrix A3 which is the tridiagonal matrix with linspace(2, 3, n)

on the diagonal and −1 on the first super- and sub-diagonals.

We run Algorithm 3 with different block sizes and Chebyshev interpolation with different de-
grees of Chebyshev polynomial and we plot in Figure 6 the relative error in the Frobenius norm
versus the number of nonzero entries in the approximation of the matrix functions described above.
For the matrix A1, Chebyshev outperforms Algorithm 3. However, for the matrix A2 which has an
outlier in the eigenvalues, and for the matrix A3 for which it is difficult to find a good polynomial
approximation on the whole spectral interval, Algorithm 3 achieves a smaller error with the same
number of nonzero entries.

0 5 10 15

nnz 10
4

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

Alg. 3

Cheb. interp.

0 5 10 15

nnz 10
4

10
-20

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

Alg. 3

Cheb. interp.

0 1 2 3

nnz 10
5

10
-8

10
-6

10
-4

10
-2

re
la

ti
v
e
 e

rr
o
r

Alg. 3

Cheb. interp.

Figure 6: Relative error in the Frobenius norm of the approximations of exp(A1), exp(A2), and√
A3 from Section 6.2 obtained by Algorithm 3 and by Chebyshev interpolation.

We do not report the timings: In general, Chebyshev interpolation is faster than our splitting
algorithm; however, Chebyshev interpolation is only suitable for symmetric matrices (for non-
symmetric matrices one needs more refined techniques such as using Faber polynomials as discussed,
e.g., in [9]), while the splitting method works for any banded matrix, can automatically adapt

24

to different spectral distributions, and could exploit the Toeplitz structure of A producing an
approximation in constant time (as the matrices D, B, and C are made of equal blocks, we could
compute only a constant number of matrix functions of the small blocks).

6.3 Adaptivity in the size of blocks

The matrix square root of A3 has slower off-diagonal decay in the upper-left region, as shown in
Figure 7(b). We run Algorithm 4 to compute

√
A3, setting ε = 10−8. The sparsity pattern of the

output is shown in Figure 7(a), where different block sizes are selected for different parts of the
matrix; the relative error of the computed approximation is 2.6 · 10−10 in the Frobenius norm.

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Sparsity structure of the output of Al-
gorithm 4 applied to A3 and f =

√
.

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000
-16

-14

-12

-10

-8

-6

-4

-2

0

(b) Logarithm of absolute values of entries
of

√
A3.

Figure 7: The matrix A3 is the tridiagonal matrix with linspace(2, 3, n) on the diagonal and
−1 on the first super- and sub-diagonals.

6.4 Comparison with HSS algorithm

10 2 10 3 10 4 10 5 10 6

n

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

ti
m

e

Matlab expm

Algorithm 4

Algorithm 2 (banded case)

O(n) bound

O(n log(n)) bound

Figure 8: Timings of Algorithms 4 and 2 for
exp(−tridiag(−1, 2,−1)).

We expect Algorithm 4 to be faster than the general
D&C algorithm (Algorithm 2) as the first one should
scale as O(n) and the latter as O(n log n), plus the
fact that we have no overhead computations needed
for HSS arithmetic. We compare the timings of the
two algorithms for the computation of exp(−A) for
A = tridiag(−1, 2,−1). For Algorithm 4 we use a
minimum block size of 64, while for Algorithm 2 we
set nmin = 128 and we write each low-rank update
as a rank-1 update as discussed in Remark 5; in both
cases we set the tolerance parameter ε = 10−8. We
report the results in Figure 8, together with the tim-
ings of Matlab’s expm, for matrix dimensions rang-
ing from n = 28 to n = 218.

7 Conclusions

In this work we have proposed two new algorithms for computing matrix functions of structured
matrices, based on a D&C paradigm. The algorithms have been tested on a wide range of examples
of practical relevance that require to compute, for a medium- to large-scale matrix, the whole matrix
function, its diagonal or its trace. The numerical results demonstrate that, most of the time, the

25

proposed methods outperform state-of-art techniques with respect to time consumption and offer
a comparable accuracy.

For the convergence analysis of our algorithms, we have also expanded the framework of low-
rank updates of matrix functions [3, 4] towards several directions. In the Hermitian case, we have
shown that the approximation of the trace of the update, computed by projection on the polynomial
Krylov subspace, has a higher convergence rate with respect to the full update. For the splitting
algorithm, we have provided a convergence analysis that highlights stronger convergence properties
for the entries located on the main diagonal, which applies also to non-Hermitian matrix arguments.

The block diagonal splitting approach from Section 5 can, in principle, be applied to matrices
arising from the discretization of two-dimensional partial differential equations. On the one hand,
the bandwidth becomes much larger, on the other hand these matrices have additional sparsity
structure that is not exploited by our algorithm. It would be interesting to explore whether there
is a variant of Algorithm 3 that also covers this case efficiently.

Acknowledgments. The authors would like to thank Bernhard Beckermann, Paola Boito, and
Stefan Güttel for helpful discussions on topics related to this work, and the referees for helpful
remarks that improved the presentation of the paper.

References

[1] J.-E. Andersson. Approximation of e−x by rational functions with concentrated negative poles.
J. Approx. Theory, 32(2):85–95, 1981.

[2] B. Beckermann, J. Bisch, and R. Luce. Computing Markov functions of Toeplitz matrices.
arXiv preprint arXiv:2106.05098, 2021.

[3] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer. Low-rank updates of matrix
functions II: rational Krylov methods. SIAM J. Numer. Anal., 59(3):1325–1347, 2021.

[4] B. Beckermann, D. Kressner, and M. Schweitzer. Low-rank updates of matrix functions. SIAM
J. Matrix Anal. Appl., 39(1):539–565, 2018.

[5] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Appl.
Numer. Math., 57(11-12):1214–1229, 2007.

[6] M. Benzi and P. Boito. Decay properties for functions of matrices over C∗-algebras. Linear
Algebra Appl., 456:174–198, 2014.

[7] M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with applications
to electronic structure. SIAM Rev., 55(1):3–64, 2013.

[8] M. Benzi and G. H. Golub. Bounds for the entries of matrix functions with applications to
preconditioning. BIT, 39(3):417–438, 1999.

[9] M. Benzi and N. Razouk. Decay bounds and O(n) algorithms for approximating functions of
sparse matrices. Electron. Trans. Numer. Anal., 28:16–39, 2007/08.

[10] M. Benzi and V. Simoncini. Decay bounds for functions of Hermitian matrices with banded
or Kronecker structure. SIAM J. Matrix Anal. Appl., 36(3):1263–1282, 2015.

[11] M. Berljafa, S. Elsworth, and S. Güttel. A rational Krylov toolbox for MATLAB. 2014.

26

[12] D. A. Bini, S. Dendievel, G. Latouche, and B. Meini. Computing the exponential of large
block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra Appl.,
502:387–419, 2016.

[13] D. A. Bini and B. Meini. On the exponential of semi-infinite quasi-Toeplitz matrices. Numer.
Math., 141(2):319–351, 2019.

[14] S. Chandrasekaran, M. Gu, and T. Pals. A fast ULV decomposition solver for hierarchically
semiseparable representations. SIAM J. Matrix Anal. Appl., 28(3):603–622, 2006.

[15] M. Crouzeix and C. Palencia. The numerical range is a (1+
√

2)-spectral set. SIAM J. Matrix
Anal. Appl., 38(2):649–655, 2017.

[16] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Software, 38(1):Art. 1, 25, 2011.

[17] W. Dawson and T. Nakajima. Massively parallel sparse matrix function calculations with
NTPoly. Computer Physics Communications, 225:154–165, 2018.

[18] S. Demko, W. F. Moss, and P. W. Smith. Decay rates for inverses of band matrices. Math.
Comp., 43(168):491–499, 1984.

[19] V. Druskin, S. Güttel, and L. Knizhnerman. Near-optimal perfectly matched layers for indef-
inite Helmholtz problems. SIAM Rev., 58(1):90–116, 2016.

[20] E. Dudley, A. K. Saibaba, and A. Alexanderian. Monte Carlo Estimators for the Schatten
p-norm of Symmetric Positive Semidefinite Matrices. arXiv preprint arXiv:2005.10174, 2020.

[21] S. Elsworth and S. Güttel. The block rational Arnoldi method. SIAM J. Matrix Anal. Appl.,
41(2):365–388, 2020.

[22] E. Estrada. Characterization of 3D molecular structure. Chemical Physics Letters, 319(5):713–
718, 2000.

[23] E. Estrada and D. J. Higham. Network properties revealed through matrix functions. SIAM
Rev., 52(4):696–714, 2010.

[24] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems, volume 2018-December, pages 7576–7586, 2018.

[25] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. H-matrix approximation for the
operator exponential with applications. Numer. Math., 92(1):83–111, 2002.

[26] S. Goedecker. Linear scaling electronic structure methods. Reviews of Modern Physics,
71(4):1085, 1999.

[27] G. H. Golub and G. Meurant. Matrices, moments and quadrature with applications. Princeton
Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2010.

[28] L. Grasedyck, W. Hackbusch, and B. N. Khoromskij. Solution of large scale algebraic matrix
Riccati equations by use of hierarchical matrices. Computing, 70(2):121–165, 2003.

[29] S. Güttel. Rational Krylov approximation of matrix functions: numerical methods and optimal
pole selection. GAMM-Mitt., 36(1):8–31, 2013.

27

[30] W. Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49 of Springer Series
in Computational Mathematics. Springer, Heidelberg, 2015.

[31] N. J. Higham. Functions of matrices. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008. Theory and computation.

[32] M. Ilić, I. W. Turner, and D. P. Simpson. A restarted Lanczos approximation to functions of
a symmetric matrix. IMA J. Numer. Anal., 30(4):1044–1061, 2010.

[33] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[34] D. Kressner and R. Luce. Fast computation of the matrix exponential for a Toeplitz matrix.
SIAM J. Matrix Anal. Appl., 39(1):23–47, 2018.

[35] D. Kressner, S. Massei, and L. Robol. Low-rank updates and a divide-and-conquer method
for linear matrix equations. SIAM J. Sci. Comput., 41(2):A848–A876, 2019.

[36] D. Kressner and A. Šušnjara. Fast computation of spectral projectors of banded matrices.
SIAM J. Matrix Anal. Appl., 38(3):984–1009, 2017.

[37] S. T. Lee, H.-K. Pang, and H.-W. Sun. Shift-invert Arnoldi approximation to the Toeplitz
matrix exponential. SIAM J. Sci. Comput., 32(2):774–792, 2010.

[38] L. Lin, J. Lu, L. Ying, R. Car, and W. E. Fast algorithm for extracting the diagonal of
the inverse matrix with application to the electronic structure analysis of metallic systems.
Commun. Math. Sci., 7(3):755–777, 2009.

[39] L. Lin, Y. Saad, and C. Yang. Approximating spectral densities of large matrices. SIAM Rev.,
58(1):34–65, 2016.

[40] S. Massei, M. Mazza, and L. Robol. Fast solvers for two-dimensional fractional diffusion
equations using rank structured matrices. SIAM J. Sci. Comput., 41(4):A2627–A2656, 2019.

[41] S. Massei and L. Robol. Decay bounds for the numerical quasiseparable preservation in matrix
functions. Linear Algebra Appl., 516:212–242, 2017.

[42] S. Massei, L. Robol, and D. Kressner. hm-toolbox: MATLAB software for HODLR and HSS
matrices. SIAM J. Sci. Comput., 42(2):C43–C68, 2020.

[43] K. Németh and G. E. Scuseria. Linear scaling density matrix search based on sign matrices.
The Journal of Chemical Physics, 113(15):6035–6041, 2000.

[44] M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.
Phys. Rev. E (3), 74(3):036104, 19, 2006.

[45] S. Pozza and V. Simoncini. Inexact Arnoldi residual estimates and decay properties for
functions of non-Hermitian matrices. BIT, 59(4):969–986, 2019.

[46] S. Pozza and F. Tudisco. On the stability of network indices defined by means of matrix
functions. SIAM J. Matrix Anal. Appl., 39(4):1521–1546, 2018.

[47] A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra
Appl., 58:391–405, 1984.

28

[48] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal., 29(1):209–228, 1992.

[49] M. Shao. On the finite section method for computing exponentials of doubly-infinite skew-
Hermitian matrices. Linear Algebra Appl., 451:65–96, 2014.

[50] J. M. Tang and Y. Saad. A probing method for computing the diagonal of a matrix inverse.
Numer. Linear Algebra Appl., 19(3):485–501, 2012.

[51] L. N. Trefethen. Approximation theory and approximation practice. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2013.

[52] L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos. Estimating the trace
of the matrix inverse by interpolating from the diagonal of an approximate inverse. J. Comput.
Phys., 326:828–844, 2016.

[53] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierarchically semisepa-
rable matrices. Numer. Linear Algebra Appl., 17(6):953–976, 2010.

29

	Introduction
	Low-rank updates of matrix functions
	Exactness results and convergence of Algorithm 1

	Divide-and-conquer for matrix functions
	Divide-and-conquer for matrices with low-rank off-diagonal blocks
	Algorithm 2 for banded matrices
	Storing the output of Algorithm 2 using HSS matrices
	Algorithm 2 for HSS matrices
	Convergence results for D&C algorithm

	Numerical tests for Algorithm 2
	Space-fractional diffusion equation without source
	Sampling from a Gaussian Markov random field
	Merton model for option pricing
	Neumann-to-Dirichlet operator
	Computing charge densities
	Computing subgraph centralities and Estrada index
	The lag parameter

	Block diagonal splitting algorithm for banded matrices
	Block diagonal splitting algorithm from low-rank updates
	The block diagonal splitting algorithm
	Convergence analysis of block diagonal splitting method
	Adaptive algorithm

	Numerical tests for Algorithm 4
	Fermi-Dirac density matrix of one-dimensional Anderson model
	Spectral adaptivity: Comparison with interpolation by Chebyshev polynomials
	Adaptivity in the size of blocks
	Comparison with HSS algorithm

	Conclusions

