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Simple Summary: Captive breeding programs are increasingly valuable for supporting conservation
efforts, provided that captive individuals are genetically similar to their wild counterparts. The North
African subspecies of the declining Eurasian stone-curlew, which inhabits threatened steppe habitats,
is supported by a captive breeding program in Morocco. To assess the origin of the captive birds
and their genetic diversity, we compared captive with wild Moroccan stone-curlews using various
molecular markers. We found that the captive birds exhibited low relatedness and genetic diversity
similar to the wild populations, from which they differed only by marginal genetic differences. This
confirmed the Moroccan origins of captive birds as well as their suitability for providing individuals
for the release and reinforcement of wild populations. Recommendations were provided to enhance
the breeding program’s effectiveness in preserving genetic diversity and supporting wild populations.

Abstract: Although ex situ conservation programs are increasingly valuable support tools for in situ
conservation measures, success depends on these captive individuals to be genetically representative
of the recipient population. The Eurasian stone-curlew (Burhinus oedicnemus) inhabit steppes that
represent some of the most degraded and exploited habitats worldwide. A captive breeding program
was implemented in Morocco as a pre-emptive effort for the conservation of the North African
subspecies Burhinus oedicnemus saharae. However, the genetic origins of the founders of the captive
flock were unknown. We applied a multi-locus approach to characterize the genetic ancestry of the
current captive breeding flock by comparing it to wild populations from both Western and Eastern
Morocco. Mitochondrial DNA and microsatellite markers were employed to assess levels of genetic
diversity and relatedness within each sample, as well as potential genetic differentiation between wild
and captive samples through PCA and admixture analyses. We recovered similar genetic diversity
estimates, low levels of relatedness, and little differentiation between captive and wild samples.
These results confirmed the Moroccan origin of the founders. We provide recommendations for
the optimization of the Eurasian Stone Curlew conservation breeding program but also for future
conservation breeding programs to ensure the effective conservation of genetic diversity and wild
populations.

Keywords: ex situ conservation; genetic management; NADH2; microsatellites; population reinforce-
ment; stone-curlew
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1. Introduction

As part of the One Plan approach [1–3], ex situ Conservation Breeding Programs are
recognized as extremely valuable in supporting efficient in situ conservation actions [4].
Their combined use is recognized as a more efficient strategy than using either one of
them [5]. Thus, ex situ populations offer valuable resources to conservation efforts, serving
as insurance against stochastic events in the wild, providing individuals for conservation
translocations, and facilitating both fundamental and applied research aimed at improv-
ing the survival of wild populations. Ex situ conservation is thus crucial to ensure the
survival of declining species and reinforce populations depleted by human pressure [6–8].
Both demographic and genetic features are to be considered in order to ensure viable
and healthy populations and to prevent loss of genetic diversity [9–13]. These genetic
goals are fundamental and require that captive populations are under strict genetic man-
agement to prevent loss of genetic diversity [9,10]. Indeed, ex situ conservation can be
associated with genetic changes that can affect the eco-evolutionary trajectories of popula-
tions [14], altering their evolutionary potential and their capacity to adapt to environmental
changes [15,16]. These potential changes include a reduction of genetic diversity through
genetic drift [9], inbreeding depression [17], adaptation to captivity [18], relaxed selection
in small populations [19], and loss of local adaptation through outbreeding [20,21]. The first
four concerns can be addressed through pedigree management of captive populations [8,10],
while the latter requires that founders from the captive population are genetically as close
as possible to recipient populations [22]. In addition, a fundamental premise in pedigree
management is that founders are unrelated while the variance in relatedness among them
is nearly zero [23–25].

The Eurasian stone-curlew (Burhinus oedicnemus, Linnaeus, 1758) is the northernmost
species of the Burhinidae family with a very large range from Western Europe and North
Africa to Central Asia and the Middle East [26]. Five subspecies are currently described [26].
It mainly inhabits (pseudo) steppe and agricultural lands that represent some of the most
degraded and exploited habitats in the world [27]. Consequently, and despite presenting
a globally large distribution, as many steppe species, they have small resident popula-
tions isolated in small remnants of suitable habitat, which are often distantly located from
one another [28] and show decreasing population trends. In Europe, the nominate sub-
species (B. o. oedicnemus) suffered a rapid and important population decline over the
second half of the last century, which also led to its disappearance as a breeder from the
Netherlands, Germany, Slovakia, and Belarus and to its extinction in the Czech Republic
and in Slovenia in the 1980s [29]. The main causes of its decline could be attributed to
the transformation and reduction of its habitats due to the intensification of agricultural
practices, the reduction of grazing activities, the urbanization of rural areas with relative
anthropic disturbance, and the widespread use of pesticides [30,31]. The subspecies B. o.
saharae is widely distributed in Morocco [32] with a consistency estimated at approximately
10,000–100,000 individuals [30]. Its status is, however, not well assessed due to the substan-
tial lack of monitoring programs [33]. In several areas of North Africa, including Morocco,
a massive conversion of the natural landscape and rural areas with traditional agricultural
practices to irrigated farmland is taking place [34,35]. This habitat transformation may
have far-reaching consequences for steppe birds like those already recorded in Europe.
Furthermore, in some parts of its range, the species is also subject to hunting, including
falconry [36–38].

In 2012, the IFHC (International Fund for Houbara Conservation) commissioned
Reneco International Wildlife Consultant to develop a preventive strategy for the conserva-
tion of the Eurasian stone-curlew in Morocco (B. o. saharae). This led to the implementation
of a conservation breeding program managed by the ECWP (Emirates Centre for Wildlife
Propagation) with the ultimate objective to supplement wild populations in Eastern Mo-
rocco. The facility is situated at Enjil (Morocco) and is included in a network of specialized
stations for Conservation breeding projects [39]. In 2013, 489 individuals were received
from a breeding facility located near Rabat in Morocco. The number of founding individu-
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als, pairing management, and associated levels of relatedness within the population were
not documented. However, empirical and simulation studies demonstrated that minimiz-
ing mean kinship by selectively breeding individuals descended from underrepresented
founders was an effective method for maximizing genome-wide variation, gene diversity,
and allelic diversity within captive populations [8,16,40,41]. Therefore, once at ECWP, and
to reduce the risk of genetic diversity losses and adaptation to captivity [42], the genetic
management strategy implemented focused on three key principles: minimization of the
mean kinship within the captive population, inbreeding avoidance, and equalizing family
sizes. In addition, birds were housed in pairs, which allowed for clear pedigree records,
and chicks were produced through natural reproduction.

With this study, we aimed to investigate the genetic characteristics (i.e., genetic di-
versity and relatedness levels) of the captive population and compare captive and wild
populations from Morocco to confirm the genetic compatibility of captive stock with native
Moroccan populations. Furthermore, we investigated the origin of the founders and their
level of relatedness. To do so, we applied a multi-locus approach, using both mitochondrial
(i.e., NADH2 gene) and nuclear markers (i.e., microsatellites). The resulting data was
used to provide recommendations to optimize the genetic management strategy of the
conservation program and ensure the efficient conservation of wild populations.

2. Materials and Methods
2.1. Sample Collection

We sampled feathers and blood from 87 individuals of the North African subspecies
B. o. saharae (Table 1). Captive-bred individuals were sampled at ECWP’s facilities in
Enjil (hereafter referred to as CB), randomly selected, and presumably unrelated. Wild
individuals were sampled during the breeding season (spring/summer) over different
years and in two locations: in Western Morocco in 2018 and 2021 (thereafter referred to
as WM) and in Eastern Morocco in 2020 (hereafter referred to as EM) (Figure 1). Samples
were preserved in absolute ethanol and DNA extracted by Blood & Tissue Kit (QIAGEN®,
Hilden, Germany) following the manufacturer’s recommended protocol. Sex was identified
by genetic methods following the protocol of [43] (Table 1).

Table 1. Samples used to compare captive and wild individuals of Eurasian stone-curlew in Morocco.
For each sample, the origin of individuals (i.e., captive-bred or wild), the sampling site, the acronym
used throughout the document, the total sample size as well as the sample size used with each type of
molecular marker are reported. The number of males and females are reported in that order brackets
for each sample (i.e., males, females).

Group Sampling
Area Acronym Total Sample

Size
Mitochondrial
Sample Size

Microsatellite
Sample Size

Captive-bred ECWP CB 32 (16, 16) 31 (15, 16) 32 (16, 16)

Wild Western
Morocco WM 39 (22, 17) 29 (16, 13) 39 (22, 17)

Eastern
Morocco EM 16 (5, 11) 13 (4, 9) 16 (5, 11)

Total 87 (43, 44) 73 (36, 37) 87 (43, 44)
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 Figure 1. Sampling locations for the genetic assessment of the Emirates Centre for Wildlife Prop-
agation’ Eurasian stone-curlew Conservation Breeding Program in Morocco. CB: Captive-bred
individuals sampled at ECWP’s facilities in Enjil; EM: wild individuals sampled in Eastern Morocco;
WM: wild individuals sampled in Western Morocco.

2.2. Mitochondrial DNA

We amplified a 652 bp fragment of the NADH2 dehydrogenase using primers L5216
and H6313 [44]. PCR-reaction conditions were described previously [45]. We ran PCR
products on a 1.5% agarose gel and were purified by ExoSAP-IT (Amersham Biosciences
Piscataway, NJ, USA) and sequenced with an ABI SeqStudio Genetic Analyzer. Electro-
pherograms were visualized with CHROMAS 1.45 (http://www.technelysium.com.au,
URL (last access: 1 August 2024)). We manually corrected and aligned all sequences using
CLUSTALX [46] and used the following steps to determine if sequences were nuclear
(NUMTs, [47,48]) or mitochondrial copies. We first checked all sequence chromatograms for
double signals. Next, we inspected coding sequence alignments for frameshift mutations
and/or stop codons. Finally, we compared the corrected sequences to those in the NCBI
database using BLASTX and BLASTN (http://www.ncbi.nlm.nih.gov/BLAST/, URL (last
access: 1 August 2024)). We uploaded all haplotypes to the NCBI database (Table S1).
GenBank accession numbers are reported in Table S1.

We calculated the number of haplotypes (Nh), haplotypic diversity (h), and nucleotide
diversity (π) for each sample using DnaSP v.6.5 [49]. We estimated private allele richness
after rarefaction to overcome differences in sample sizes with HP-RARE 1.0 [50]. We used
ARLEQUIN v.3.5 [51] to characterize the genetic differentiation among samples using
ΦST. We constructed a phylogeographic network to determine relationships and relative
frequencies in each sample using a Minimum Spanning Network [52] as implemented
in PopART 1.7 [53]. We used DnaSP v.6.5 to compute mismatch distribution plots from
frequencies of the observed number of nucleotide differences for all pairs of individuals.
A multimodal distribution is expected for a population that has maintained a long-term,
stable, effective population size. Multimodality reflects the stochastic nature of gene

http://www.technelysium.com.au
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trees under neutral evolution at a stable demographic equilibrium. Although a mismatch
plot is convenient for interpreting the demographic history, there are limited statistics
for testing hypotheses about its shape, and most of these simply test a null hypothesis of
unimodality. Consequently, we considered the raggedness index (rg) and the mean absolute
error (MAE) computed with DnaSp. Raggedness [54] is a measure of the smoothness of the
distribution, and its value is expected to decrease with the increased flatness expected under
a hypothesis of expansion, while positive values reflect equilibrium. Its confidence intervals
were provided by computer simulations using the coalescent algorithm in DnaSP. The MAE
describes the difference between the observed mismatch distribution and that generated
from a simulated expansion event. Like rg, MAE is expected to decrease with an increased
probability of expansion. Furthermore, we used DnaSP to investigate demographic history
by Tajima’s D [55], Fu and Li’s F [56], and Fu’s Fs [57] tests. Significant negative D, F, and
Fs values were considered indicative of a population expansion (following a bottleneck or
a selective sweep) or purifying selection.

2.3. Microsatellites
2.3.1. Genetic Variability

A total of 22 autosomal microsatellites were used: 18 specifically developed for the
Eurasian stone-curlew (BOE series Table S2; [58]) and four obtained, through heterologous
amplifications, for a wide range of birds (TG0 series Table S2; [59]. We amplified these
markers in multiplex reactions using QIAGEN Multiplex PCR following the manufacturer
standard protocol with an annealing temperature (Ta) of 57 ◦C. We analyzed PCR products
with Genemapper v.3.7 (Applied Biosystems Inc., Foster City, CA, USA). We controlled for
genotyping errors with multiple blind runs of 7% of individuals [60] to confirm an error rate
lower than 0.8–1% [61]. We also checked for scoring errors and large allele dropouts using
Microchecker v.2.2.3 [62]. We used Cervus v.3.0 [63] to estimate polymorphic information
content and the frequency of null alleles for each locus in each sample. We used 0.2 as a
threshold above which the frequency of a null allele is considered high [64–66], especially
considering the large number of markers used here [67].

We performed all subsequent analyses using R v.4.2.1 [68]. We used hierfstat
v.0.5.11 [69] to compute the number of alleles, allelic richness, observed and expected
heterozygosity values as well as FIS values. We used Genepop v.1.1.7 [70] to evaluate
departures from Hardy–Weinberg equilibrium (excess and deficit tests), linkage dise-
quilibrium, population F-statistics, and genic and genotypic differentiations. All tests
were performed at the population level with Genepop using 10,000 dememorizations,
1000 batches, and 10,000 iterations per batch. For all multiple comparisons, levels of signifi-
cance were corrected for multiple tests using the Benjamini–Yekutieli [71] technique [72,73]
using the p.adjust of the stats v.4.2.1 package [68]. The level of significance was considered
at 0.05.

2.3.2. Relatedness Between Captive Individuals

We used related v.1.0 [74] to compute the Queller and Goodnight relatedness R [75]
among captive and wild individuals, assuming no previous inbreeding and employing
population-specific allele frequencies. We used relatedness methods since they make no a
priori assumption on kinship levels and provide a continuous value of R. A relatedness
close to 0 should be obtained for dyads of unrelated individuals, 0.25 for half-sibs, and
0.5 for full sibs [75]. To compare the mean relatedness between groups, we determined
the mean values and bootstrapped 95% confidence intervals. Specifically, we performed
the bootstrap sampling using the boot v.1.3–28 package, and two-sided non-parametric
confidence intervals for the means were generated using the ‘boot.ci’ function with 1000
resamples for each group [76,77].
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2.3.3. Analyses of Population Structure and Admixture

We used adegenet v.2.1.8 [78] to carry out PCA analyses, and the ‘find.clusters’ func-
tion and Bayesian Information Criterion (BIC) to estimate K. Discriminant analysis of
principal components (i.e., DAPC), a method that aims at maximizing variation between
samples while minimizing variation within sample, was conducted with the package ade-
genet v.2.1.8 [78]. We estimated the appropriate number of principal components (PCs)
through cross-validation replicates on a training dataset containing 90% of the individu-
als randomly chosen. Because of significant variations in results with the default value
(i.e., rep. = 30), a total of 10,000 replicates were performed for each level of PC retention [79].
The optimal number of principal components retained in our analyses was evaluated as 45,
which was associated with the lowest root mean squared error (RMSE). We investigated ad-
mixture levels using LEA v.3.8.0 [80]. Computations were performed for K = 1–5 ancestral
populations, with 1000 replications per value of K. Values of the cross-entropy criterion for
each K were plotted to identify K.

3. Results
3.1. Mitochondrial DNA

We successfully retrieved 652-bp mtDNA sequences from 31 captive and 42 wild
individuals. We found 22 polymorphic sites, 6 parsimony informative sites, and 6 singleton
variable sites; these polymorphic sites identified 19 haplotypes (Table S1, Figure 2). In the
minimum-spanning network (Figure 2), the most common haplotypes were shared by both
captive and wild samples. All haplotypes together constituted a single haplogroup, with
private haplotypes present in both captive and wild samples. Genetic diversity indexes
were comparable among captive and eastern Morocco samples, whereas Western Morocco
exhibited the highest values of genetic diversity (Table 2). Private allele richness after
rarefaction showed values higher in wild samples compared to the captive ones. There was
no significant genetic differentiation between samples (Table 3).
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Figure 2. Minimum Spanning Network of haplotypes identified in three samples of Eurasian stone-
curlew. The pie chart indicates samples in which the haplotype is found, whereas the size of the pie
segments is proportional to the haplotype frequency in the dataset. CB: Captive Bred individuals
sampled at ECWP’s facilities in Enjil; EM: wild individuals sampled in Eastern Morocco; WM: wild
individuals sampled in Western Morocco.
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Table 2. Polymorphism for the mitochondrial NADH2 region (652 bp) measured for three samples of
Eurasian stone-curlew. Number of individuals per sample (N), number of haplotypes (Nh), number
of private haplotypes (NhaP), haplotype diversity (H), nucleotide diversity (π) and its standard
deviation, and private allele richness after rarefaction (PAr) for each sample.

Group Sampling Location N Nh NhaP H π PAr

Captive-bred ECWP (CB) 31 8 4 0.643 0.0014
(0.0003) 5.07

Wild Western Morocco (WM) 29 12 8 0.862 0.0026
(0.0005) 7.50

Eastern Morocco (EM) 13 5 3 0.628 0.0020
(0.0009) 4.57

Table 3. Results from genetic differentiation analyses between three samples of Eurasian stone-
curlew. Pairwise ΦST values using the mitochondrial DNA NADH2 region (652 bp) are presented
above the diagonal. Pairwise FST values and associated exact test of genetic differentiation using 22
microsatellite loci are presented below diagonal. CB: Captive Bred individuals sampled at ECWP’s
facilities in Enjil; EM: wild individuals sampled in Eastern Morocco; WM: wild individuals sampled
in Western Morocco. Significance (p < 0.05) after the Benjamini-Yekutieli correction is indicated by *.

CB EM WM

CB −0.0011 0.0517
EM 0.0078 * 0.0720
WM 0.0098 * 0.0102 *

Raggedness values were low but not significant for any population. A bimodal distri-
bution was observed for all wild populations in the mismatch (Figures S1–S3). However,
the demographic tests showed significant D, F, and Fs values for the population WM
(Table 4), which can be a marker of a recent expansion.

Table 4. Results of demographic inferences through mitochondrial tests using rg (raggedness) MAE
(Mean Absolute Error), Tajima’s D, Fu and Li’s F, and Fu’s Fs tests, as well as Mismatch Distribution
(MD). Significance (p < 0.05) is indicated by *.

Group Sampling Location Rg MAE F FS D MD

Captive-bred ECWP (CB) 0.095 0.471 −1.537 −1.634 −1.435 Unimodal
Wild Western Morocco (WM) 0.133 0.696 −3.026 * −2.828 * −1.889 * Multimodal

Eastern Morocco (EM) 0.139 0.491 −1.402 −1.495 −1.551 Multimodal

3.2. Microsatellites

We obtained genotypes from 32 captive and 55 wild individuals. All loci exhibited
an estimated frequency of null alleles below the threshold of 0.2. The number of alleles
ranged from 4 to 20, the polymorphic information content ranged from 0.137 (BOE01) to
909 (BOE04) (Table S2).

Genetic diversity measures were similar between samples (Table 5) with an allelic
richness ranging from 6.35 (CB) to 6.54 (EM) and observed heterozygosities ranging from
0.695 (WM) to 0.705 (CB). FIS values were low (ranging from −0.039 to 0.004); none of the
heterozygote excess or deficit tests were statistically significant.

FST values ranged from −0.0078 to 0.0102 and were significant between the captive
and wild samples with both genic and genotypic differentiations (Tables 3 and S3). Both
the ‘find.clusters’ function and admixture analyses with LEA provided congruent results
with all individuals belonging to a single cluster (i.e., K = 1, Figure S4), and PCA analyses
did not result in significant clustering of individuals at a given location (Figure 3). DAPC,
however, did identify three subgroups matching each sample (Figure 4).

Relatedness values are very low with mean relatedness ranging from 0.013 within CB
to −0.017 in EM (Table 7). Except for the captive individuals, 95% confidence intervals of
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each group encompass 0, nevertheless, the lower limit for the captive sample was 0.002.
Furthermore, confidence intervals computed from bootstrapped data overlapped between
all samples analyzed (Table 7) and did not identify any differences in mean relatedness
between captive and wild samples.

Table 5. Summary statistics computed from 22 microsatellite loci among three samples of Eurasian
stone-curlew. Sample size (N), Na: average number of alleles per locus and per sample, KAR: allelic
richness, heterozygosity (He: expected and Ho: observed), FIS: inbreeding coefficient, p values for
the Hardy-Weinberg disequilibrium exact test (excess and deficit tests). CB: Captive Bred individuals
sampled at ECWP’s facilities in Enjil; EM: wild individuals sampled in Eastern Morocco; WM: wild
individuals sampled in Western Morocco.

Sampling
Location N Na KAR Ho He FIS

Heterozygote
Deficit Test

Heterozygote
Excess Test

CB 32 7.59 6.35 0.705 0.679 −0.039 0.389 0.6103
WM 39 7.86 6.34 0.695 0.69 −0.007 0.497 0.526
EM 16 6.68 6.54 0.697 0.699 0.004 0.474 0.504Biology 2024, 13, x  8 of 15 
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Table 6. Queller and Goodnight (1989) relatedness estimates using 22 microsatellite loci for three
samples of Eurasian stone-curlew. The sample size refers to the number of dyads analyzed. Means are
presented, along with their standard deviation and median values. A thousand bootstrap replicates
were generated to compute 95% confidence intervals (CI) of average relatedness per group; lower and
upper limits are presented. CB: Captive Bred individuals sampled at ECWP’s facilities in Enjil; EM:
wild individuals sampled in Eastern Morocco; WM: wild individuals sampled in Western Morocco.

Sampling
Location

Sample
Size Mean Standard

Deviation Median CI (Lower
Limit)

CI (Upper
Limit)

CB 496 0.013 0.132 0.007 0.002 0.025
WM 741 −0.004 0.131 −0.01 −0.012 0.007
EM 120 −0.017 0.131 −0.034 −0.044 0.007
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Figure 4. Scatter plot of the first of axes of the Discriminant Analysis after Principal Components
(DAPC) calculated on microsatellites data collected on the three samples of Eurasian stone-curlew.
CB: Captive Bred individuals sampled at ECWP’s facilities in Enjil; EM: wild individuals sampled in
Eastern Morocco; WM: wild individuals sampled in Western Morocco.

Table 7. Queller and Goodnight (1989) relatedness estimates using 22 microsatellite loci for three
samples of Eurasian stone-curlew. The sample size refers to the number of dyads analyzed. Means are
presented, along with their standard deviation and median values. A thousand bootstrap replicates
were generated to compute 95% confidence intervals (CI) of average relatedness per group; lower and
upper limits are presented. CB: Captive Bred individuals sampled at ECWP’s facilities in Enjil; EM:
wild individuals sampled in Eastern Morocco; WM: wild individuals sampled in Western Morocco.

Sampling
Location

Sample
Size Mean Standard

Deviation Median CI (Lower
Limit)

CI (Upper
Limit)

CB 496 0.013 0.132 0.007 0.002 0.025
WM 741 −0.004 0.131 −0.01 −0.012 0.007
EM 120 −0.017 0.131 −0.034 −0.044 0.007

4. Discussion

Our results include multiple genetic analyses carried out on mitochondrial DNA and
microsatellites of Eurasian stone-curlew populations in Morocco, a captive bred (CB) and
two wild ones, from South-western Morocco close to Agadir (WM) and Eastern Morocco
near Enjil (EM). The objective was to investigate the captive flock’s genetic characteristics
and compare them to those in the wild. The lack of mitochondrial genetic differentiation
between captive and wild samples, and the results of PCA and admixture analyses on
microsatellite data indicated no significant clustering. Conversely, pairwise FST and DAPC
results from microsatellite data were concordant and exhibited low but significant differ-
ences between captive and wild samples. These results were supported by a large number
of markers, thus compensating for the relatively reduced number of individual samples in
Western Morocco [81–84]. FST values, as measured with microsatellite markers, between
the captive and all wild samples did not exceed 0.01, a level considered to be an indicator
of a very low genetic differentiation [85,86]. Very low but significant FST levels could result
from changes in allelic frequencies during the captive phase or reflect a scenario of isolation
by distance. Discriminant Analysis of Principal Components (DAPC) aims at maximizing
variation between samples while minimizing variation within samples; thus, it relies on the
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maximum discrimination of individuals into groups. In our case, and with such low genetic
differentiation, over-discrimination sample populations may have occurred, translating
small-scale genetic structures and/or some level of genetic drift in captivity [9,87,88].

Genetic diversity levels between wild and captive samples were investigated with both
mtDNA and microsatellite markers. Private allele richness of NADH2 haplotypes in the
captive flock was smaller than in wild samples, whilst haplotype and nucleotide diversity
were comparable. In addition, mtDNA analyses suggest that wild populations in Western
Morocco are showing a recent demographic expansion, a result congruent with a recent
field census study in that area that suggests an increase in individuals over a four-year
period [89]. D, F, and Fs negative significant values indicate population structure with
historical changes, possibly involving expansion only for WM, even though distribution
was multimodal. However, a demographic interpretation of the neutrality tests should be
applied with caution for organisms that exhibit high population handlings and a small
number of breeders or with high variance in reproductive success among breeders. Popula-
tion dynamics in such cases can deviate significantly from the underlying assumptions of
the Wright–Fisher model and Kingman’s coalescent theory [90]. Such population dynamics
are then better described by multiple-merger coalescent models [91], and a standard coa-
lescence model would not translate efficiently recent demographic changes [92,93]. Thus,
a more extensive and prolonged demographic survey would be required to investigate
further the occurrence of potential demographic changes, and the scope of the conservation
program for this population will need to be reevaluated to adjust the reinforcement strategy
accordingly. In addition, microsatellite markers indicated similar levels of genetic diversity
between all samples, with allelic richness of about 5.4 and observed heterozygosities of
about 0.7. Heterozygosity values were also similar to the previous ones reported for other
wild populations of the species throughout its range [45]. Observed levels of genetic di-
versity were similar to other birds’ conservation breeding programs, such as the Siberian
Crane (Grus leucogeranus) [94], Hume’s pheasant (Syrmaticus humiae) [95], or the houbara
bustard (Chlamydotis undulata undulata) [8]. Furthermore, no significant heterozygote deficit
was identified through FIS analyses, which could have suggested a potential Wahlund effect
where an analyzed sample is composed of a mix of individuals from different origins [96,97].
FIS values were marginal in all samples, indicating the absence of any inbreeding. Mean
relatedness was not significantly different from 0 within wild samples, and the captive flock
presented a slightly higher mean relatedness, although it was very small (i.e., 0.013). That
can be expected within a captive/closed population [9,10]; nevertheless, the magnitude of
that difference was marginal. Finally, the overlap of confidence intervals between groups
indicates that there is no significant difference in average relatedness between each sample;
captive-bred individuals are not highly related compared to their wild counterparts.

Strict genetic management through pedigree analyses and pairing selection would
ensure both inbreeding avoidance and maintenance of genetic diversity within the captive
flock [8,10,12]. Nevertheless, the captive flock might have experienced some level of genetic
drift, and we recommend implementing regular additions of a limited number of wild
individuals to circumvent this. In houbara bustard (Chlamydotis undulata undulata), such
an approach of combining strict genetic management of the captive flock with the regular
addition of founders proves successful in maintaining genetic diversity in captivity while
efficiently preventing both inbreeding and adaptation to captivity [8,14].

Finally, the addition of post-release movement studies will deliver valuable insight
into the dispersion and settlement of captive-bred individuals, thus providing crucial
information for the implementation of a holistic and efficient conservation strategy for the
Eurasian stone-curlew in Morocco as part of a One Plan approach where both wild and
captive compartments are integrated into the genetic management strategy to optimize the
conservation outcomes [1,2,98].
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5. Conclusions

It is crucial for a conservation breeding program supporting reinforcement measures
for its founders to be both representative of genetic diversity in the wild and closely related
to recipient populations. Here, we confirmed that the captive flock of Eurasian stone-
curlews at ECWP showed very low genetic differentiation levels from wild populations,
thus confirming the Moroccan origin of the founders. On a broader scale, and with an
increasing number of translocation programs using captive-bred individuals as a source
for translocations, this study highlights essential processes that should be implemented
to ensure effective genetic management of the captive source, preventing both the loss of
genetic diversity and adaptation to captivity.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biology13120982/s1, Table S1: haplotype diversity;
Table S2: microsatellite diversity per locus; Table S3: microsatellite genetic differentiation;
Figure S1: Mismatch distribution plots from frequencies of observed number of nucleotide dif-
ferences for all pairs of individuals within the captive bred population (CB); Figure S2: Mismatch
distribution plots from frequencies of observed number of nucleotide differences for all pairs of
individuals within the eastern Morocco population (EM).; Figure S3: Mismatch distribution plots
from frequencies of observed number of nucleotide differences for all pairs of individuals within the
western Morocco population (WM); Figure S4: Cross entropy plot. Computations were performed
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