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REMARKS ON EIGENSPECTRA
OF ISOLATED SINGULARITIES

BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

We introduce a simple calculus, extending a variant of the Steenbrink spec-
trum, to describe Hodge-theoretic invariants for smoothings of isolated
singularities with relative automorphisms. After computing these “eigenspec-
tra” in the quasihomogeneous case, we give three applications to singularity
bounding and monodromy of variations of Hodge structure (VHS).

Introduction

Recent work of M. Kerr and R. Laza on the Hodge theory of degenerations [Kerr
et al. 2021; Kerr and Laza 2023] reexamined the mixed Hodge theory of the
Clemens–Schmid and vanishing-cycle sequences, with an emphasis on applications
to limits of period maps and compactifications of moduli. When a degenerating
family of varieties has a finite group G acting on its fibers, these become exact
sequences in the category of mixed Hodge structures with G ×µk-action, where k
is the order of Tss (the semisimple part of monodromy). These kinds of situations
often show up in generalized Prym or cyclic-cover constructions; for instance,
instead of using the period map attached to a family of varieties, one may want to
use the “exotic” period map arising from a cyclic cover branched along the family
(e.g., [Allcock et al. 2002; 2011; Casalaina-Martin et al. 2012; Deligne and Mostow
1986; Dolgachev and Kondō 2007]).

In this note we explain how to encode the contributions of isolated singularities
with G-action to the vanishing cohomology in terms of G-spectra (Definition 1.11).
These are formal sums (with positive integer coefficients) of triples in Z × Q ×R,
where R is the set of irreducible representations of G. The term eigenspectrum
(Definition 1.12) refers to the specific case of a cyclic group ⟨g⟩ with fixed generator.
(At the end of Section 3 and in most of Section 5 a larger group G nontrivially
permutes the singularities; G always denotes a subgroup stabilizing them.)

In Section 1 this formalism emerges naturally from the general setting of a
proper morphism of 1-parameter degenerations over a disk, by specializing the
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morphism to an automorphism g ∈ Aut(X/1) fixing a singularity x ∈ X0. The
eigenspectrum σ

g
f,x simply records the dimensions of simultaneous eigenspaces

of g∗ and Tss in the (p, q)-subspaces of Vx (Definition 1.12). We give a general
computation in Section 2 of σ g

f,x in the case of a quasihomogeneous singularity, in
terms of a monomial basis for the associated Jacobian ring (Corollary 2.7).

In the remaining sections, we give three applications. The first, in Section 3, is to
bounding the number of nodes on Calabi–Yau hypersurfaces in weighted projective
spaces (Theorem 3.6) by passing to cyclic covers. There is already a large literature
on node-bounding, including [Jaffe and Ruberman 1997; Kerr and Laza 2023;
Miyaoka 1984; Schoen 1985; Varchenko 1983; van Straten 2020]. In the case
of Pn+1, our approach does not improve Varchenko’s bound (e.g., 135 nodes for
a quintic hypersurface in P4), but does yield a simpler proof. However, we do
obtain the interesting result (in Theorem 3.11) that a CY hypersurface in Pn+1

with isolated singularities and symmetric under Sn+2 cannot contain a node whose
Sn+2-orbit has cardinality (n + 2)! (i.e., trivial stabilizer).

The other two applications concern codimension-one monodromy phenomena
for VHSs over moduli of configurations of points and hyperplanes. In Section 4,
the moduli space is M0,2n , with the VHS arising from cyclic covers of P1 branched
along the 2m ordered points. Propositions 4.5–4.6 and Example 4.7 describe
the eigenspectra, LMHS and monodromy types along boundary strata of certain
compactifications M H

0,2n due to Hassett [2003], generalizing a computation of
[Gallardo et al. 2021]. The cases m = 2, 3, 4, and 6 go back to work of Deligne
and Mostow [1986] and feature a period map (isomorphism) to an arithmetic ball
quotient. While the global/extended period map is not as elegant in the remaining
cases, the point is that the codimension-one boundary behavior can be dealt with
uniformly and efficiently using our calculus.

Our other main example, treated in Section 5, is the VHS H → S on the moduli
space of general configurations of (2n + 2) hyperplanes in Pn , arising from the
middle (intersection) cohomology of a 2 : 1 cover X → Pn branched along these
hyperplanes. These are singular Calabi–Yau n-folds admitting a crepant resolution,
and have been studied in [Dolgachev and Kondō 2007; Gerkmann et al. 2007a;
2013; Sheng et al. 2015]. By passing to a smooth complete intersection 22n-cover
of X and applying the Cayley trick (see [Kerr 2003, Section 4.5]), we replace X by
a smooth hypersurface

Y ⊂ P(OP2n+1(2)⊕(n+1))

with automorphisms by a group of order 22n . In codimension-one in moduli,
Y acquires nodes, and a variant of Schoen’s [1985] result ensures that these produce
nontrivial symplectic transvections for H when n is odd. This gives an easy proof
that the geometric monodromy group of H is maximal (for all n), and the period
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map “nonclassical”, a fact first proved by Gerkmann et al. [2013] for n = 3 and by
Sheng et al. [2015] in general.

Notation. In this paper MHS stands for Q-mixed Hodge structure. We shall make
frequent use of the Deligne bigrading on a MHS V [Deligne 1971]. This is (by
definition) the unique decomposition VC =

⊕
p,q∈Z V p,q with the properties that

Fk VC =
⊕
p,q
p≥k

V p,q , WℓVC =
⊕
p,q

p+q≤ℓ

V p,q , and V q,p ≡ V p,q mod
⊕
a<p
b<q

V a,b.

We shall make free use of standard multiindex notation (for n-tuples of variables or
field-elements) to simplify formulas, viz. z = (z1, . . . , zn), C[z] = C[z1, . . . , zn],
zm

=
∏

i zmi
i , m ·w=

∑
i mi wi , |m| =

∑
i mi , e(i) = i-th standard basis vector, etc.

1. G-spectra and eigenspectra

Morphisms and mixed spectra. We begin in the general setting of a proper morphism

(1.1)

Y π
//

f ′
��

X

f��

1

of complex analytic spaces over a disk, which we assume is the restriction to 1 of a
proper morphism of quasiprojective varieties over an algebraic curve. (In particular,
at the level of fibers we have that πt : Yt → X t is a proper algebraic morphism of
quasiprojective varieties.) Let K•

∈ Db MHM(X ) and L•
∈ Db MHM(Y) be given,

with a morphism ρ : K•
→ Rπ∗L•. Writing ı : X0 ↪→ X for the inclusion, the

vanishing cycle triangle

(1.2) ı∗ sp
−→ ψ f

can
−→ φ f

δ

[+1]
−−→

consists of functors from Db MHM(X ) to Db MHM(X0), with natural transforma-
tions between them; also, monodromy T = Tss eN induces natural automorphisms
of ψ f and φ f . By proper base-change and faithfulness of rat : Db MHM(X0)→

Db
c (X0), Rπ∗ : Db MHM(Y0) → Db MHM(X0) intertwines the corresponding

triangle (and monodromy actions) for (Y, f ′). Taking hypercohomology on X0

yields:

1.3. Proposition. We have the commutative diagram

→ Hk(X0, ı∗K•)
sp
//

ρ

��

Hk(X0, ψ f K•)
can
//

ρ

��

Hk(X0, φ f K•)
δ
//

ρ

��

Hk+1(X0, ı∗K•)→

ρ

��

→ Hk(Y0, ı∗L•)
sp
// Hk(Y0, ψ f ′L•)

can
// Hk(Y0, φ f ′L•)

δ
// Hk+1(Y0, ı∗L•)→
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with rows the vanishing-cycle (long-exact) sequences, in which all arrows are
morphisms of MHS. Moreover, the diagram intertwines the actions of Tss (by
automorphisms of MHS) and N (by nilpotent (−1,−1)-endomorphisms of MHS),
which are trivial (Id resp. 0) on the end terms.

1.4. Remark. If f, f ′ are themselves projective (hence proper), and K•,L• semisim-
ple with respect to the perverse t-structure (e.g., K•

= IC•

X , L•
= IC•

Y ), then the
decomposition theorem applies, yielding Clemens–Schmid sequences (see [Kerr
et al. 2021, Section 5]) which are then automatically compatible under ρ. The main
consequence is that the local invariant cycle theorem holds, i.e., sp surjects onto
the T -invariants.

Next, assume X ,Y, {X t }t ̸=0, and {Yt }t ̸=0 are smooth, and take L•
= QY and

K•
= QX ; then the diagram in Proposition 1.3 becomes

(1.5)

→ H k(X0)
sp
//

π∗

��

H k
lim(X t)

can
//

π∗

��

H k
van(X t)

δ
//

π∗

��

H k+1(X0)→

π∗

��

→ H k(Y0)
sp
// H k

lim(Yt)
can
// H k

van(Yt)
δ
// H k+1(Y0)→

Now if n = dim X0 and 6 := sing(X0) is finite, then H k
van(X t)= {0} for k ̸= n and,

defining Vx := H 0 ı∗
xφ f QX [n],

(1.6) H n
van(X t)∼=

⊕
x∈6

Vx

as MHS. We have of course π−1(6) ⊂ 6̃ := sing(Y0), and if dim Y0 = n and
|6̃|<∞ then, writing Ṽy := H 0 ı∗

y φ f ′ QY [n] for y ∈ 6̃, π∗ restricts to morphisms

(1.7) [π∗
]x : Vx →

⊕
y∈π−1(x)

Ṽy

of T -MHS — i.e., morphisms of MHS intertwining T (hence Tss and N ). These
are local invariants.

Recall that Tss acts through finite cyclic groups on each Vx (and Ṽy), and let κ
be the least common multiple of their orders. Write ζκ := e2π i/κ and V p,q

x,e(a/κ) for
the e(a/κ) := e2π i(a/κ)

= ζ a
κ -eigenspace of Tss in V p,q

x ⊂ Vx,C. The explicit choice
of ζκ ∈ C is needed to make the following.

1.8. Definition. The mixed spectrum σ f,x of the isolated singularity x ∈ 6 is
the element

∑
α,w m f,x

α,w(α,w) of the free abelian group Z⟨Q × Z⟩, where we put
m f,x
α,w = dim(V ⌊α⌋,w−⌊α⌋

x,e(α) ).1

1Here ⌊ · ⌋ is the greatest integer (floor) function; note also that e(α) is equivalent to taking the
fractional part {α} := α− ⌊α⌋ of α.
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Evidently (1.7) must be compatible with the decompositions recorded by the
mixed spectra.

Automorphisms and eigenspectra. Now let G ≤ Aut(X/1), with X and {X t }t ̸=0

smooth and |6| <∞. Applying the foregoing results with Y = X , f = f ′, and
π := g ∈ G, together with [Kerr et al. 2021, Proposition 5.5(i)], yields:

1.9. Corollary. The vanishing-cycle sequence

(1.10) 0 → H n(X0)
sp

−→ H n
lim(X t)

can
−→

⊕
x∈6

Vx
δ

−→ H n+1
ph (X0)→ 0

is an exact sequence of G × µκ -MHS,2 where the ⟨Tss⟩ ∼= µκ -action on the end
terms is trivial. If X/1 is proper, then H n+1

ph (X0) := ker(sp)⊆ H n+1(X0) is pure
of weight n + 1.

The decomposition of terms in (1.10) into irreducible representations for G ×µκ

only becomes useful if we understand the action on the vanishing cohomology⊕
x∈6Vx for a given collection of singularities. In particular, if gx = x then we

need to further refine the spectrum under the resulting automorphism g∗
: Vx → Vx

of T -MHS.

1.11. Definition. Write G ≤ stab(x)≤G, and RG for the set of complex irreducible
representations of G. The G-spectrum σG

f,x of x is the element∑
(α,w,U )

m f,x,G
α,w,U (α,w,U )

of the free abelian group Z⟨Q × Z ×RG⟩, where (for each (α,w))

V ⌊α⌋,w−⌊α,⌋

x,e(α)
∼=

⊕
U∈RG

U⊕m f,x,G
α,w,U

as G-representations.

In the special case where G = ⟨g⟩ ∼= µℓ is cyclic, the C-irreps are characters
indexed by the power ζ c

ℓ = e2π i(c/ℓ) of ζℓ to which g is sent.

1.12. Definition. The eigenspectrum of an isolated singularity x with automor-
phism g is the element

σ
g
f,x =

∑
(α,w,γ )

m f,x,g
α,w,γ (α,w, γ ) ∈ Z⟨Q × Z × Q/Z⟩,

where m f,x,g
α,w,γ is the dimension of the eigenspace (V ⌊α⌋,w−⌊α,⌋

x,e(α) )e(γ ) ⊆ V ⌊α⌋,w−⌊α⌋

x,e(α)
for g∗ with eigenvalue e(γ )= e2π iγ .

2Again, this means that the action of G and Tss on the MHSs (as automorphisms of MHS) commute
with each other and with sp, can, and δ.
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1.13. Remark. For X/1 proper (with hypotheses as in Corollary 1.9), H n(X t) is
a VHS on 1∗ whose automorphism group contains G. For any field extension K/Q,
this decomposes as K -VHS into a direct sum of G-isotypical components, cor-
responding to K -irreps of G. The G-action on and decomposition of H n

lim(X t)

obtained by taking limits are the same as those arising from the G-MHS structure
on H n

lim(X t) in Corollary 1.9.

We now turn to the explicit computation of these eigenspectra in the simplest case.

2. Quasihomogeneous singularities with automorphism

Let F ∈ C[z1, . . . , zn+1] (with n > 0) be a quasihomogeneous polynomial with
an isolated singularity at the origin 0. That is to say, choosing a weight vector
w = (w1, . . . , wn+1) ∈ Qn+1

>0 and setting

Mw := {m ∈ Zn+1
≥0 | m ·w = 1},

we have

(2.1) F =
∑

m∈Mw

am zm

for some am ∈ C. We recall that the degree κF of F is the least integer such that
κF wi ∈ N for i = 1, . . . , n + 1; define wi := κF wi and set κ := (κ1, . . . , κn+1).

Next recall the setting of Definition 1.8, where f : X → 1 is a holomorphic
map with quasiprojective fibers and smooth total space, with X t smooth for t ̸= 0
and sing(X0)=:6 finite. A singularity x ∈6 ⊂ X0 is quasihomogeneous if f can
be locally analytically identified with (2.1) for some w. In that case, Vx and σ f,x

identify with the vanishing cohomology

(2.2) VF := H 0 ı∗

0 φF QCn+1

of F : Cn+1
→ C at 0, and its mixed spectrum σF . These were first computed by

Steenbrink [1977], and we briefly review the treatment from [Kerr and Laza 2023,
Section 2] before passing to eigenspectra.

Writing
JF :=

(
∂F
∂z1

, . . . ,
∂F
∂zn+1

)
⊆ C[z]

for the Jacobian ideal, let B ⊂ Zn+1
≥0 be chosen so that the monomials {zβ}β∈B

provide a basis of C[z]/JF . Write µF := |B| for the Milnor number of F , and
ℓ(β) :=

1
κF

∑n+1
i=1 κi (βi + 1)=

∑n+1
i=1 wi (βi + 1).

2.3. Proposition. We have µF = dim VF for the Milnor number and

σF =
∑
β∈B

(α(β),w(β)) ∈ Z⟨Q × Z⟩
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for the mixed spectrum, where α(β) := n + 1 − ℓ(β) and w(β) := n (resp. n + 1) if
α(β) /∈ Z (resp. ∈ Z).

Sketch. Perform a base-change followed by weighted blow-up at 0:

(2.4)

Cn+1

F ��

X

F̂ ��

oo Y
Blκ
oo

F̃zz
C 1oo

tκF t�oo

with exceptional divisor E = {T κF = F(Z)} ⊂ WP[1 : κ] =: P (in weighted
homogeneous coordinates T, Z1, . . . , Zn+1). The singular fiber Y0 := F̃−1(0) is
the union of E and the proper transform X̃0 of X0 := F−1(0)= F̂−1(0), meeting in

E := E ∩ X̃0 = {F(Z)= 0} ⊂ H := {T = 0} (∼= WP[κ])⊂ P .

The claim is then that VF ∼= H n(E \ E), which can be checked using (1.5) with
π = Blκ . Since E [resp. 0] is a deformation retract of Y0 [resp. X0], while Yt = Xt

for t ̸= 0, and φF̃ QY ≃ ı E
∗

QE(−1)[−1] (see [Kerr et al. 2021, 6.3 and 8.3–8.4]),
the diagram becomes

0 // H n
lim(Xt)

∼=
// VF

Bl∗
��

// 0

H n−2(E)(−1) // H n(E) // H n
lim(Yt) // H n−1(E)(−1) // H n+1(E)

whence the result.
Next, one constructs a basis of H n(E \ E) from B, using residue theory. Writing

(with T := Z0)

�P =

n+1∑
j=0
(−1) j Z j d Z0 ∧ · · · ∧ d̂ Z j ∧ · · · ∧ d Zn+1,

for each β ∈ B we set (with Zβ = Zβ1
1 · · · Zβn+1

n+1 )

(2.5) �β :=
T κF Zβ �P

T (F(Z)− T κF )⌈ℓ(β)⌉
∈�n+1(P \ E ∩ H)

and ωβ := ResE\E([�β]) ∈ H n(E \ E). See [Kerr and Laza 2023, Theorem 2.2] for
the proof that this has (p, q)-type (⌊α(β)⌋, ⌊ℓ(β)⌋), and [Steenbrink 1977, Theo-
rem 1] for the assertion that the {ωβ} give a basis. Note that ⌊α(β)⌋+⌊ℓ(β)⌋=w(β).

Finally, the action of Tss is computed by T 7→ ζκF T , or equivalently (in weighted
projective coordinates) by Zi 7→ ζ−κi

κF
Zi = e−2π iwi Zi . Clearly the effect of this

on (2.5) is to multiply it by e2π i
∑
wi (βi +1)

= e2π iα(β), as desired. □
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Now given a finite group G ≤ Aut(X/1) fixing x ∈6, we can always choose
local holomorphic coordinates on which the action is linear [Cartan 1954]. So for
a given g ∈ G, we can choose coordinates to make the action diagonal, through
roots of unity. Accordingly, we shall compute the eigenspectrum in the case where
g ∈ Aut(Cn+1, 0) is given by

(2.6) g(z1, . . . , zn+1) := (ζ
c1
ℓ z1, . . . , ζ

cn+1
ℓ zn+1)

and F ∈ C[z]⟨g⟩ is a g-invariant quasihomogeneous polynomial. In fact, taking
B ⊂ Zn+1

≥0 as above, we have:

2.7. Corollary. The eigenspectrum σ
g
F is given by∑

β∈B
(α(β),w(β), γ (β)) ∈ Z⟨Q × Z × Q/Z⟩,

where γ (β) :=
1
ℓ

∑n+1
i=1 ci (βi + 1).

Proof. We only need to compute the action of g∗ on ωβ , which is to say the effect
of Zi 7→ ζ

ci
ℓ Zi on Zβ �β . This is just multiplication by ζ

∑
ci (βi +1)

ℓ = e2π iγ (β). □

2.8. Example. For a Brieskorn–Pham singularity F =
∑n+1

i=1 zλi
i , λi =1/wi =κF/κi ,

we have B = ×
n+1
i=1 {Z∩[0, di −2]}. Hence, writing 0m =

∑m−1
j=1 [ j/m] in the group

ring Z[Q] (with product ∗), we have∑
β∈B

[α(β)] = 0λ1 ∗ · · · ∗0λn+1 .

This extends to ∑
β∈B

[(α(β), γ (β))] = 0̃λ1

(
c1

ℓ

)
∗ · · · ∗ 0̃λn+1

(
cn+1

ℓ

)
in the group ring Z[Q × (Q/Z)] if we write 0̃m

( c
ℓ

)
=

∑m−1
j=1

[(m− j
m ,

jc
ℓ

)]
.

2.9. Example. As a specific example, consider F = z2
1 + z2

2 + zm+1
3 + z3

4, with
g(z1, z2, z3, z4) := (z1, z2, z3, ζ3 z4). Applying Example 2.8 to compute the eigen-
spectrum gives

m∑
j=1

[(
5
3 +

j
m+1

, 1
3

)]
+

m∑
j=1

[(
4
3 +

j
m+1

, 2
3

)]
.

We can interpret this scenario as a local snapshot of a 3 : 1 cover of P3 branched
over a cubic surface acquiring an Am singularity. So the ζ3-eigenspace of the
(1, 2)-part of vanishing cohomology has rank equal to the number of j’s for which
5
3 + j/(m + 1) < 2. Since the ζ3-eigenspace of the general fiber (= cubic 3-fold)
has Hodge numbers h1,2

= 1 and h2,1
= 4, from 5

3 +
2
7 < 2 we see that m cannot

be ≥ 6. This bound is sharp, since A5 can occur on a cubic surface in the form
z3

1 + z3
2 − z2 z2

3 (see, for example, [Sakamaki 2010]).
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Applying the vanishing-cycle analysis directly on a cubic surface, without passing
to a triple cover and using eigenspectra, does not rule out A6. It was this sort of
phenomenon that motivated this paper.

2.10. Remark. The eigenspectrum of a µ-constant (semiquasihomogeneous) de-
formation of (F, γ ) remains constant. Even in the more general case of [Kerr and
Laza 2023, Section 5.2], one can in principle still use the action of γ ∗ on the (local)
Jacobian ring On+1/JF to refine σF to σ g

F . But Corollary 2.7 (and quasihomogeneous
deformations of Example 2.8) will suffice for our purposes below.

3. Bounding nodes on Calabi–Yau hypersurfaces

It is a classical problem to bound the number of nodes (ordinary double points)
on a projective hypersurface, especially for Calabi–Yau (CY) varieties. In this
section, we use eigenspectra to produce such a bound for hypersurfaces in many
weighted projective spaces (Example 3.8). Though our emphasis is on CY varieties
for illustrative purposes, it is not limited to them. In the special case of projective
space, our formula recovers the bound conjectured by Arnol’d [1981] and proved
by Varchenko [1983] (see also [van Straten 2020]) by applying his semicontinuity
theorem to the Bruce deformation. This includes the famous bound of 135 for a
quintic threefold; see Examples 3.10.

Let W = WP[e0 : · · · : en+1] be a weighted projective (n + 1)-space with finitely
many singularities.3 Suppose we want to bound (numbers and types of) singu-
larities on a hypersurface X0 = {F0(W ) = 0} ⊂ W of degree d, where a smooth
such hypersurface would have Hodge numbers h = (hn,0, hn−1,1, . . . , h0,n). Write
di = d/ei for i = 0, . . . , n + 1.

We shall assume that the singularities of X0 are all isolated. Taking a general
deformation Ft = F0 + tG to produce a family of f : X → 1 with smooth total
space, the vanishing-cycle sequence

(3.1) 0 → H n(X0)→ H n
lim(X t)→

⊕
x∈6

Vx
δ

−→ H n+1
ph (X0)→ 0

offers a naive such bound: first, by Schmid’s nilpotent orbit theorem, the rank
of Grp

F remains constant in the limit, giving the second equality of

(3.2) h p,n−p
= h p,n−p(X t)=

∑
q

h p,q
lim (X t)≥

∑
q

h p,q(ker(δ)).

Moreover, the mixed spectrum σ f,x tells us the h p,q
ζ (Vx) = dim(V p,q

x,ζ ) (for each
eigenvalue ζ of Tss), and only the V p,n+1−p

x,1 can map nontrivially under δ. Since

3We may assume (without loss of generality) that no n + 1 of the ei have a common factor.
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the hyperplane class also has Tss-eigenvalue 1, equation (3.2) forces∑
q

∑
ζ ̸=1

dim(V p,q
x,ζ )≤ h p,n−p

pr .

When x is a node, i.e., f
loc
∼

∑n+1
i=1 z2

i , Proposition 2.3 gives Vx,C = V (n/2),(n/2)
x,−1 for

n even and V (n+1)/2,(n+1)/2
x,1 for n odd. In the latter case, (3.2) yields no immediate

bound on the number of nodes (though one does have results like [Kerr and Laza
2023, Theorem 2.9 and Corollary 2.11]). For n = 2m even, (3.2) yields4

(3.3) h(n/2),(n/2)pr (X t)= coefficient of
[

n
2

+ 1
]

in 0d0 ∗0d1 ∗ · · · ∗0dn+1

as a bound, which while better than nothing is rather weak.

3.4. Example. The simplest nontrivial case is given by W = P3 (n = 2) and
(d0 = d1 = d2 = d3) d = 4, where

(3.5) 0∗4
4 =

([1
4

]
+

[ 1
2

]
+

[3
4

])∗4

= [1] + 4
[5

4

]
+ 10

[ 3
2

]
+ 16

[ 7
4

]
+ 19[2] + 16

[9
4

]
+ 10

[ 5
2

]
+ 4

[11
4

]
+ [3]

correctly gives 19 = h1,1
pr (X t). This is also a poor bound for the number of nodes

on a quartic surface (see Example 3.8).

However, a simple trick can improve the bound while also giving one for odd n:

3.6. Theorem. The number of nodes on X0 is bounded by the coefficient, in
0d0 ∗ 0d1 ∗ · · · ∗ 0dn+1 , of

[ n+1
2 +

1
2d

]
if n is even and d is odd, or of

[ n+1
2 +

1
d

]
otherwise.

Proof. Let Yt = {Ft(W )+ W d
n+2 = 0} ⊂ WP[e : 1] =: W̃ be the cyclic d : 1-cover

of W branched over X t , with g : Wn+2 7→ ζd Wn+2 the cyclic automorphism. By
Dolgachev’s extension of the Griffiths residue theorem [Dolgachev 1982], a basis
for the g∗-eigenspace H n−q+1,q

pr (Yt)
ζ̄

j
d (t ̸= 0, 0 ≤ j < d) is given by the Poincaré

residue classes
ResYt

(
W k−1 W d− j−1

n+2 �W̃

(Ft + W d
n+2)

q+1

)
,

with ki ∈ Z∩(0, di ) for i = 0, . . . , n +1 and weights of numerator and denominator
equal, that is,

∑n+1
i=0 ei ki + (d − j)= (q + 1) d , or equivalently (dividing by d)

n+1∑
i=0

ki

di
= q +

j
d
.

Hence dim Grn−q+1
F H n+1

lim (Yt)
ζ̄

j
d = hn−q+1,q(Yt)

ζ̄
j

d is given (for 0< j < d) by the
coefficient of [q + j/d] in 0d0 ∗ · · · ∗0dn+1 .

4This is by the same residue theory as used in the proof of Theorem 3.6 below. The notation ∗ is
from Example 2.8.
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Each node x ∈ X0 becomes an Ad−1 singularity y ∈ Y0, with eigenspectrum∑d−1
j=1((n +1)/2+ j/d, n +1,− j/d) unless n is even and d is even (in which case

the middle entry is n+2 at j = d/2). If r is the number of nodes, applying equations
(3.1)–(3.2) to Y and refining by g∗-eigenspaces therefore yields h p j ,q j (Yt)

ζ̄
j

d ≥ r
(for 0< j < d), where p j = ⌊(n + 1)/2 + j/d⌋ and q j = n + 1 − p j . Taking j = 1
if n is odd and j = ⌈(d + 1)/2⌉ if n is even (so that p j = (n + 1)/2 resp. n/2 + 1)
yields q j + j/d = (n +1)/2+1/d resp. n/2+(1/d)⌈(d +1)/2⌉, hence the claimed
bound. □

3.7. Remark. As mentioned above, when W = Pn+1 this recovers Varchenko’s
[1983] bound. While Varchenko also uses the “cyclic-cover trick”, our approach
avoids the use of deformations and semicontinuity.

3.8. Example. For CY hypersurfaces in Pn+1 (d = n + 2), Theorem 3.6 yields
the bounds 3, 16, 135, 1506, and 20993 for n = 1, 2, 3, 4, 5, the first two of which
are sharp.5 (This is also better than what (3.3) yields for n = 2 and 4, namely 19
and 1751.) It is still not known whether 135 is sharp for quintic 3-folds. The well-
known Fermat pencil has fiber W 5

0 +· · ·+W 5
4 = 5W0 · · · W4, with 125 = |(Z/5Z)3|

nodes, while the example of van Straten [1993] with 130 nodes remains the record.

3.9. Remark. For n = 2, the following bound by Miyaoka [1984] sometimes yields
better results. If X is any smooth projective surface which is smooth except at
r nodes, and K X is nef, then r ≤ 8χ(OX )−

8
9 K 2

X .

(a) For X ⊂ P3 a surface of degree d, this yields the bound

4
3(d − 1)(d − 2)(d − 3)+ 8 −

8
9 d(d − 4)2 =

4
9 d(d − 1)2,

which is better than Theorem 3.6 for d ≥ 6 even or d ≥ 15 odd. A case in point is
d = 6, where we get 85 by (3.3), 68 by Theorem 3.6, and 66 by [Miyaoka 1984];
this was further reduced to 65 (which is sharp) by a clever use of coding theory
[Jaffe and Ruberman 1997]. Another is d = 8, where we get r ≤ 174.

(b) As a weighted projective example, one can consider surfaces X of degree 10 in
WP[1 : 1 : 1 : 2]. We have χ(OX )= 1 + h2(OX )= 35 and

(K X · K X )X = (X · (X + KW)
2)W =

10(10−5)2

1·1·1·2
= 125,

and hence r ≤
⌊1520

9

⌋
= 168.

3.10. Examples. We consider some CY 3-fold hypersurfaces with r nodes in
weighted projective 4-folds.

5The union of 3 lines in P2 has 3 nodes, and a Kummer quartic K 3 in P4 has 16 nodes. The
bounds here are the coefficients of

[ n+1
2 +

1
n+2

]
in 0∗(n+2)

n+2 , e.g., 16 is the coefficient of
[ 7

4
]

in (3.5).
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(i) X0 ⊂ WP[1 : 1 : 1 : 1 : 2] of degree 6: Theorem 3.6 yields r ≤ 137, while
the “Fermat pencil” type example W 6

0 + · · · + W 6
3 + W 3

4 = 3 · 22/3W0 · · · W4 has
|((Z/6Z)3 × Z/3Z)/(Z/6Z)| = 108 nodes.

(ii) X0 ⊂ WP[1 : 1 : 1 : 1 : 4] of degree 8: the Theorem yields r ≤ 180, while W 8
0 +

· · ·+ W 8
3 + W 2

4 = 4W0 · · · W4 has |((Z/8Z)3 × Z/2Z)/(Z/8Z)| = 128 nodes. Here
we can improve both the bound and example, since X0 is (by the quadratic formula)
a double-cover of P3 branched along an r-nodal octic surface. So Remark 3.9(a)
gives r ≤ 174, while the Endrass [1997] example has r = 168.

(iii) X0 ⊂ WP[1 : 1 : 1 : 2 : 5] of degree d = 10: Theorem 3.6 yields r ≤ 169, but
because these are double covers of WP[1 : 1 : 1 : 2] branched along an r-nodal
dectic surface, Remark 3.9(b) reduces the bound to 168. The standard example is
W 10

0 + W 10
1 + W 10

2 + W 5
3 + W 2

4 = 24/5 51/2 W0 · · · W4, but this has only 100 nodes.
One can do somewhat better by taking the preimage of a Togliatti quintic [Beauville
1980] (with 31 nodes avoiding the coordinate axes) under

WP[1 : 1 : 1 : 2]
1:2
−↠WP[1 : 1 : 2 : 2]

1:2
−↠WP[1 : 2 : 2 : 2] ∼= P3,

to get 4 · 31 = 124.

In the case of a symmetric hypersurface X0 ⊂ Pn+1, cut out by F0 ∈ C[W ]
Sn+2

(homogeneous of degree d), one can consider the family Y →1 of d-fold cyclic
covers branched along an Sn+2-invariant smoothing X → 1. A full accounting
of this story gets into G-spectra (G ∼= µd × stabSn+2(x)) of the resulting Ad−1

singularities of Y0. This leads to constraints, via character theory of Sn+2, on how
6 can be built out of Sn+2-orbits. (However, it does not, for example, rule out the
possibility of 135 nodes on an S5-symmetric quintic threefold.) Here we shall only
give the simplest result in this direction:

3.11. Theorem. A symmetric CY hypersurface in Pn+1 (of degree d = n + 2) with
isolated singularities cannot contain a node with trivial stabilizer in Sn+2.

Proof. Suppose otherwise; then Y0 has a set of (n + 2)! An+1 singularities with
eigenspectra

n+1∑
j=1

(
n+1

2
+

j
n+2

, n + 1, − j
n+2

)
,

contributing a subspace V of dimension (n+2)! to the g∗-eigenspace6 H n+1
van (Yt)

ζn+2 .
It is closed under the action of Sn+2, and the triviality of the stabilizers of these
An+1 singularities means that the trace of any σ ∈ Sn+2 \ {1} is zero. So V is a
copy of the regular representation of Sn+2, which belongs to

ker(δ)⊆ H (n+1)/2,(n+1)/2
van (Yt)

ζn+2 .

6As before, g : Wn+2 7→ ζn+2Wn+2 denotes the cyclic automorphism of Yt .
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By the compatibility7 of the vanishing-cycle sequence for Y with g∗ and Sn+2,
this forces a copy of the regular representation in H (n+1)/2,(n+1)/2

lim (Yt)
ζn+2 , hence

H (n+1)/2,(n+1)/2(Yt)
ζn+2 for t ̸= 0 (as Sn+2 acts on the VHS, compatibly with taking

limits, see Remark 1.13).
Now U := H(n+1)/2,(n+1)/2(Yt)

ζn+2 has a basis of the form

ηk := ResYt

(
W k−1�Pn+2(

F0(W )+ W n+2
n+2

)(n+3)/2

)
,

where 0< ki < n+2 (for i = 0, . . . , n+1) and (for equality of weights of numerator
and denominator)

(∑n+1
i=0 ki

)
+ 1 =

n+3
2 (n + 2). Here Sn+2 acts trivially on the

denominator, through the sign representation χ on �Pn+2 , and by permutations of
the Wi on W k−1. We claim that U contains no copy of the trivial representation,
a fortiori of the regular representation, furnishing the desired contradiction.

Clearly it is equivalent to show that the representation of Sn+2 on the C-span
Ũ (∼= U ⊗ χ) of the monomials {W k

}k as above contains no copy of χ . Suppose
o := Sn+2.W k is an orbit and Ũo ⊆ Ũ its span. By Burnside’s lemma,

1
(n+2)!

∑
g∈Sn+2

|og
| = 1.

On the other hand, k = (k0, . . . , kn+1) contains a repeated entry since there are
only n + 1 choices for each ki ; hence for some transposition τ , |oτ | ̸= 0. Since
sgn(τ )= −1, this forces

1
(n+2)!

∑
g∈Sn+2

sgn(g) |og
|,

which computes the number of copies of χ in Ũo, to be zero. □

For n = 1 or 2 this result is obvious (since 6> 3 and 24> 16), but for n = 3, 4,
or 5 it is less so (as 120< 135, 720< 1506, and 5040< 20993). In particular, since
the examples of quintic 3-folds with 125 and 130 nodes are S5-symmetric, and the
latter has a 60-node orbit, it is interesting that a 120-node orbit is impossible.

4. Cyclic covers of P1

In the final two sections we turn to “codimension-one” monodromy phenomena for
period maps arising from cyclic covers. We begin with a story that generalizes ellip-
tic curves and goes back to Deligne and Mostow [1986] (see also [Moonen 2018]).
Given distinct points t1, . . . , t2m ∈ P1 (with projective coordinates [Si : Ti ]), define

Ct :=

{
[Z0 : Z1 : Z2] ∈ P[1 : 1 : 2] | Zm

2 =

2m∏
i=1
(Si Z1 − Ti Z0)

}
,

7This is nothing but Corollary 1.9 with G = ⟨g⟩ ×Sn+2.
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with automorphism g([Z0 : Z1 : Z2]) := [Z0 : Z1 : ζm Z2]. For m = 2, 3, 4, or 6,
the sum of g∗-eigenspaces H 1(Ct)

ζm ⊕ H 1(Ct)
ζ̄m produces a Q-VHS over M0,2m ,8

and hence a period map to an arithmetic ball quotient 0\B2m−3. This turns out to
be injective,9 and extends to an isomorphism between GIT resp. Hassett/KSBA
compactifications of M0,2m and Baily–Borel resp. toroidal compactifications of the
ball quotient [Deligne and Mostow 1986; Gallardo et al. 2021].

So what if m ̸= 2, 3, 4, or 6? In the discussion that ensues, we will not be
concerned with ball quotients or even the period map per se, but only with

• the Q-VHS V over M0,2m arising from H 1(Cx),

• its sub-C-VHSs Vζ
j

m := ker(g∗
− ζ

j
m I ) (1 ≤ j ≤ m − 1), and

• their limiting behavior along the boundary of the Hassett compactifications
M0,[(1/m)+ϵ]2m (see below).

The point is that these can be considered uniformly for all m ≥ 2, not just m = 2, 3, 4,
and 6. Moreover, using eigenspectra, we can easily compute LMHS and monodromy
types along the Hassett boundary strata, as we demonstrate in Propositions 4.5–4.6
and Example 4.7. This is the first step toward a global study of the extended period
map for this series of examples, which will necessarily go beyond the arithmetic ball
quotient setting (see Remark 4.8). We also refer the reader to [Deng and Gallardo
2023], where global partial compactifications of the period maps for some other
non-Deligne–Mostow cases are constructed.

To begin with, in affine coordinates x = Z1/Z0, y = Z2/Z0, Ct takes the form

ym
= ft(x) :=

2m∏
i=1
(x − ti )

[resp.
∏

i ̸= j (x − ti ) if t j = ∞]. While there are three possibilities for the Newton
polytope 1, they all have the same interior integer points

(1 \ ∂1)∩ Z2
= {(i, j) | 1 ≤ j ≤ m − 1, 1 ≤ i ≤ 2(m − j)− 1},

which provide a basis of �1(Ct) via

ω(i, j) := ResCt

(
x i−1 y j−1 dx ∧ dy

ym − ft(x)

)
.

Since g∗ω(i, j) = ζ
j

mω(i, j), we find that

(4.1)

{
rk(Vζ

j
m )1,0 = 2(m − j)− 1, rk(Vζ

j
m )0,1 = 2 j − 1,

rkVζ
j

m = 2m − 2, rkV = 2(m − 1)2.

8 M0,n parametrizes ordered n-tuples of distinct points on P1 modulo the action of PSL2(C).
9For m = 6 one has to quotient M0,12 by S12; see [Gallardo et al. 2021].
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For example, if m = 5, then Ct has genus 12; and VC decomposes into four C-VHSs
{Vζ

j
5 }

4
j=1 with respective Hodge numbers (7, 1), (5, 3), (3, 5), and (1, 7).

4.2. Definition [Hassett 2003]. A weighted stable rational curve for the weight
µ := (µ1, . . . , µn) ∈ {(0, 1] ∩ Q}

×n is a pair10 (C,
∑
µi pi ) with:

• C a nodal connected projective curve of arithmetic genus 0.

• Each pi a smooth point of C.

• If pi1 = · · · = pir , then µi1 + · · · +µir ≤ 1.

• The Q-divisor KC +
∑n

i=1 µi pi is ample (i.e., on each irreducible component,
the sum of weights plus number of nodes is > 2).

We will write (µ, . . . , µ)=: [µ]n for repeated weights.

4.3. Theorem [Hassett 2003]. (i) There exists a smooth projective fine moduli
space M0,µ parametrizing µ-weighted stable rational curves, and containing M0,n

as a Zariski-open subset.

(ii) Given weights µ = (µ1, . . . , µn) and µ̃ = (µ̃1, . . . , µ̃n) with µi ≤ µ̃i (∀i),
there exists a birational reduction morphism πµ̃,µ : M0,µ̃↠ M0,µ contracting all
components which violate the ampleness property in Definition 4.2 for the weight µ̃.

4.4. Remark. (a) M0,[1]n reproduces the Deligne–Mumford–Knudsen compactifi-
cation M0,n .

(b) Although the ampleness property forces
∑
µi > 2, if for |µ| = 2 we define

M0,µ to be the GIT quotient (P1)n//µ SL2, then Theorem 4.3(ii) extends to this
case; and if we take µ̃i = µi + ϵ (ϵ ∈ Q, 0< ϵ ≪ 1) then πµ̃,µ is Kirwan’s partial
desingularization which blows up the strictly semistable locus.

Our interest henceforth is in the equal-weight Hassett compactification

M H
0,2m := M0,[(1/m)+ϵ]2m

and its morphism π to MGIT
0,2m := M0,[1/m]2m . As the reader may check, the irreducible

components of M H
0,2m \ M0,2m are of two types, parametrizing11 stable weighted

curves as shown (up to reordering of the {pi }):

10Despite the sum notation, the order of points with equal weights is retained.
11More precisely, it is a dense open subset of each component that parametrizes the displayed

objects.
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p1 = p2

p3

. . .

pn

type (A)

p1

p2

. . .

pm

pm+1

pm+2

. . .

p2m

type (B)

It is also clear that π preserves the type (A) strata whilst contracting the type (B)
ones to a (strictly semistable) point parametrizing the object

p1 = · · · = pm pm+1 = · · · = p2m

The C-VHSs Vζ
j

m admit canonical extensions across the smooth part of M H
0,2m\M0,2m ,

and we and we shall now compute the LMHS types there.

4.5. Proposition. Along type (A) strata:

• Vζ
j

m
lim is pure of weight 1, with h1,0

= 2m − 2 j − 1 and h0,1
= 2 j − 1, unless

j = m/2.
• If j = m/2, then h1,1

= h0,0
= 1, h1,0

= h0,1
= m − 1, and T = eN (with N an

isomorphism from the (1, 1) to (0, 0 part).
• If j > m/2 (resp. < m/2), then we have the decomposition

Vζ
j

m
lim = Vζ

j
m

lim,1 ⊕Vζ
j

m

lim,ζ̄ 2 j
m

into T = Tss-eigenspaces, where Vζ
j

m

lim,ζ̄ 2 j
m

is 1-dimensional of type (0, 1) (resp. (1, 0)).

Proof. Begin by locally modeling (the effect on Ct of) the collision of two points
by ym

+ z2
= s, as s → 0. This has eigenspectrum

m−1∑
j=1

(
3
2 −

j
m
, w( j), j

m

)
,

where w( j)= 2 if j = m/2 and 1 otherwise. Next, we apply the vanishing-cycle
sequence (with H 2

ph ={0} since the degenerate curve remains irreducible) to compute
the LMHS. Finally, we perform a base-change by s 7→ s2 to preserve ordering of
points, which squares the eigenvalues of the Tss-action; in other words, we replace
3
2 −

j
m by

{
2
( 3

2 −
j

m

)}
+

⌊ 3
2 −

j
m

⌋
({·} denoting the fractional part), which gives the

result. □

4.6. Proposition. Along the type (B) strata, for each 1 ≤ j ≤ m − 1, Vζ
j

m
lim has

Hodge numbers h1,1
= h0,0

= 1, h1,0
= 2m − 2 j − 2, and h0,1

= 2 j − 2; N is an
isomorphism from the (1, 1) to (0, 0) part, and T = eN is unipotent.
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Proof. In the GIT compactification for unordered points, the degeneration is locally
modeled by two copies of ym

+ xm
= s, each with eigenspectrum

m−1∑
j=1

(
1, 2, j

m

)
+

m−1∑
j=2

j−1∑
k=1

(
k+m− j

m
, 1, j

m

)
+

m−2∑
j=1

m−1∑
k= j+1

(
k+m− j

m
, 1, j

m

)
.

At this point one applies the vanishing-cycle sequence to deduce the form of the
LMHS, noting that the degenerate curve is a union of m P1’s and H 2

ph
∼=Q(−1)⊕m−1.

For M H
0,2m , one then applies the base-change by s 7→ sm , which trivializes Tss,

allowing the extension class to vary along the type (B) stratum. □

4.7. Example. Combining (4.1) with the two propositions, V ζ̄m has Hodge–Deligne
diagrams

1Tss = ζ 2
m

1

2m − 4

type (A)

lim

1

2m − 3

lim N

1
2m − 4

1

type (B)

For m = 4 (resp. 6), the monodromy in type (A) is thus given by a complex reflection
(resp. “triflection”).

4.8. Remark. For any m, we have that V ζ̄m (⊕Vζm ) induces a map from the universal
cover M̃un

0,2m to a ball B2m−3. Moreover, both LMHS types have 2m − 4 complex
moduli. However, for m different from 2, 3, 4, or 6, this does not lead to a tidy
extended period map: as the projection of the monodromy to U (1, 2m − 3) is not
discrete [Mostow 1988], the quotient of B2m−3 by this is not Hausdorff.

To circumvent this problem, we must replace B2m−3 by its product with other
(nonball) symmetric domains, which receives the image of the period map for the
Q-VHS ⊕( j,m)=1Vζ

j
m . For instance, if m = 5 then the real points of the generic

Mumford–Tate group of V take the form U (1, 7)×U (3, 5), and the full period map
lands in a discrete quotient of the product B7 × I3,5.

5. Hyperplane configurations and Dolgachev’s conjecture

Both differential and asymptotic methods in Hodge theory can be used to establish
that a VHS is “generic” in some sense. In [Gerkmann et al. 2013], differential
methods (characteristic varieties and Yukawa couplings) were employed to show
that the period map for the family of CY 3-folds X 2:1

−↠ P3 branched over 8 planes
does not factor through a locally symmetric variety of the form 0\SU(3, 3)/K .
Indeed, the geometric monodromy and Mumford–Tate groups of the corresponding
VHS turn out to be as large as they can be (with both equal to the symplectic
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group Sp20). This was later extended to similarly constructed CY n-fold families
[Sheng et al. 2015], see below. Our goal here is to quickly deduce these results
using eigenspectra and local monodromy, demonstrating the effectiveness of the
asymptotic approach.

Let L0, . . . , L2n+1 ⊂ Pn be hyperplanes defined by linear forms ℓi , in general
position in the sense that

⋃
L i is a normal crossing divisor. Consider the 2 : 1 cover

X π
−↠ Pn branched along

⋃
L i , and the rank-1 Q-local system L on

U = Pn
\
(⋃

L i
) ȷ
↪→ Pn,

with monodromy −1 about each L i . Since X has finite quotient singularities, we
have IC•

X = QX [n] and12

(5.1) H := H n
pr(X) :=

H n(X)
π∗H n(Pn)

∼= H n(Pn, ȷ∗ L)∼= IHn(Pn, L)

is a pure HS of weight n. By [Dolgachev and Kondō 2007, Lemma 8.2], it has
Hodge numbers

(5.2) h p,n−p
pr (X)=

( n
p

)2
=⇒ hn

pr(X)=

(2n
n

)
.

It is polarized by the intersection form Q, which presents no difficulties as X has a
smooth finite cover.

Taking S ⊂ (P̌n)2n+2/PGLn+1(C)=: S to be the (n2-dimensional) moduli space
of 2n + 2 ordered hyperplanes in Pn in general position, this construction yields a
Z-PVHS H → S of CY-n type with H as reference fiber. Let

ρ : π1(S)→ Aut(H, Q)◦ =: Mmax

be the monodromy representation of H,13 5 its geometric monodromy group,
and M its Hodge (special Mumford–Tate) group. Here 5 is the identity connected
component of 5̃ := ρ(π1(S))Q-Zar, and 5≤ M ≤ Mmax. A conjecture attributed by
[Sheng et al. 2015] to Dolgachev states that the period map for H factors through a
locally symmetric variety (also n2-dimensional) of type In,n ,14 which would imply
that mR

∼= su(n, n). This is equivalent to saying that,

up to finite data (i.e., after passing to a finite cover),
H is the n-th wedge power of a VHS of weight 1 and rank 2n.(5.3)

12See [Hotta et al. 2008, Proposition 8.2.30] for the statement that IC•

Pn L = ȷ∗ L[n].
13Here ( · )◦ means the identity component as algebraic group (i.e., SO(H) instead of O(H) if n is

even).
14Note that the “tautological VHS” over In,n is already geometrically realized by the n-th primitive

cohomology of a universal family of Weil abelian 2n-folds.
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The conjecture does hold for n = 1 and n = 2, but this merely reflects exceptional
isomorphisms of Lie groups in low rank, namely

SU(1, 1)∼= SL2(R) and SU(2, 2)∼= Spin(2, 4)+.

That is, in both of these cases we also have 5∼= Mmax (= SL2 resp. SO(2, 4)). For
n ≥ 3, in contrast, the conjecture would have5<Mmax a proper algebraic subgroup.
In [Sheng et al. 2015, Proposition 8.2.30] (and earlier works [Gerkmann et al. 2007a;
2007b; 2013]), it was shown via quite computationally involved differential methods
that in fact the monodromy is maximal for all n, and the conjecture fails for n ≥ 3:

5.4. Theorem. 5= M = Mmax for all n ≥ 1.

In the remainder of this section, we explain how asymptotic methods provide
a much simpler approach to these results. First we will give a careful argument
disproving the conjecture for n ≥ 3 odd, which a priori is a weaker statement than
the Theorem in that case. (The relation to the main theme of his paper — specifically,
to the setting of Corollary 1.9 — enters when we pass to the smooth finite cover X̂
of X .) Then we sketch a proof of Theorem 5.4 using a more topological and
monodromy-theoretic approach.

Disproof of (5.3) for n odd. Most of the analysis that follows works for all n,
though the last step is inconclusive for even n.

To begin, consider a pencil P1 ε
↪→ S of hyperplane configurations given by fixing

L0, . . . , L2n (in general position) and letting L2n+1 := Ls vary along a line in P̌n

(chosen to avoid linear spans of any n − 2 L i in P̌n).15 Writing 6 = ε−1(S \ S),
we have |6| =

(2n+1
n

)
; and degenerations Xσ →1σ of our double-covers at σ ∈6

are locally modeled (with t = s − σ ) by

(5.5) w2
=
loc

x1 · · · xn(t − x1 − · · · − xn)

after a PGLn+1(C)-action. Accordingly, writing X0, . . . , Xn for projective coor-
dinates on Pn , we take ℓi = X i for 0 ≤ i ≤ n and ℓn+1 = t X0 −

∑n
i=1 X i , and

ℓn+2, . . . , ℓ2n+1 “general”.
Let ℓ : Pn ↪→ P2n+1 denote the linear embedding

[X0 : · · · : Xn] 7→ [ℓ0(X) : · · · : ℓ2n+1(X)]

and φ : P2n+1
→ P2n+1 denote the map sending

[Z0 : · · · : Z2n+1] 7→ [Z2
0 : · · · : Z2

2n+1].

15It already follows from Zariski’s theorem [Voisin 2003, Theorem 3.22] that ρ(π1(P
1
\6))=

ρ(π1(S)) but we won’t need this.
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Then the variety X̂ := φ−1(ℓ(Pn))⊂ P2n+1 is a smooth complete intersection on
which16 A := (Z/2Z)2n+2/∆(Z/2Z) acts via e(i) 7→ {Zi 7→ −Zi }, with quotient Pn;
explicitly, we have

(5.6) X̂ =

n⋂
k=0

{0 = Fk(Z) := −Z2
n+k+1 + ℓn+k+1(Z2

0, . . . , Z2
n)}.

Write χ ∈ X∗(A) for the character sending each e(i) 7→ −1, A◦
:= ker(χ) ≤ A,

and q : X̂ ↠ X for the quotient by A◦; then H ∼= q∗H n
pr(X)∼= H n(X̂)χ . Since

F0(Z)= t Z2
0 −

n+1∑
i=1

Z2
i ,

we have thus replaced our original non-isolated degeneration (5.5) by a nodal one.
Next, we use the “Cayley trick” to replace the complete intersection X̂ by a

hypersurface

(5.7) Y :=

{
0 = F :=

n∑
k=0

Yk Fk(Z)
}

⊂ P(OP2n+1(2)⊕n+1)=: P

of dimension 3n. We have an A-equivariant isomorphism H 3n(Y )(n)∼= H n(X̂) of
HSs, so that H ∼= H 3n(Y )χ (n). In affine coordinates (z1, . . . , z2n+1; y1, . . . , yn),
notice that F = 0 becomes17

(5.8) 0 = t − z2
1 − · · · − z2

n+1 +

n∑
k=1

yk(bk − zn+k+1)(bk + zn+k+1)+ h.o.t.,

where bk :=
√

Fk(1, 0, . . . , 0). So at t = 0, the singular fiber Yσ has 2n nodes at

(5.9) (Z0; Z1, . . . , Zn+1; Zn+2, . . . , Z2n+1; Y0; Y1, . . . , Yn)

=
(
1; 0, . . . , 0; (−1)a1b1, . . . , (−1)an bn; 1; 0, . . . , 0

)
, a ∈ (Z/2Z)n,

and the degeneration Yσ → 1σ has smooth total space. The mixed spectrum of
each node is [((3n + 1)/2, 3n + 1)] for n odd and [((3n + 1)/2, 3n)] for n even; so
Tσ acts through multiplication by (−1)n+1 on

(5.10) H 3n
van(Yt)∼= Q

(
−

⌊
3n+1

2

⌋)⊕2n

.

Moreover, since the summands of (5.10) are represented by

ηa = (−1)|a|(dz1 ∧ · · · ∧ dz2n+1 ∧ dy1 ∧ · · · ∧ dyn)/F⌈(3n+1)/2⌉

near the nodes (5.9) (in the sense of [Kerr and Laza 2023, Section 2]), it has a 1-
dimensional subspace (generated by ηχ :=

∑
(−1)|a|ηa) on which A acts through χ .

16Here ∆ denotes the diagonal embedding.
17Here “h.o.t.” means terms vanishing to order 3 at the nodes.
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Taking χ -eigenspaces of the vanishing-cycle sequence for Yσ →1σ and twisting
by Q(n) now yields

(5.11) 0 → H 3n(Yσ )χ (n)
spχ
−→

H 3n
lim(Yt)

χ (n)︸ ︷︷ ︸
∼=Hlim

canχ
−−→ Q

(
−

⌊
n+1

2

⌋)
δχ

−→ H 3n+1
ph (Yσ )χ (n)→ 0.

We claim that δ = 0. For n even, this is clear, since Tσ acts trivially on H 3n+1
ph (Yσ )

and by −1 on Q(−⌊(n + 1)/2⌋). So we conclude that Tσ acts on Hlim via an
orthogonal reflection. This doesn’t factor through

∧n of any automorphism of C2n ,
but because it is finite (of order 2), this does not (yet) disprove the conjecture.

On the other hand, for n odd, it is not automatic that δ = 0. (This is a well-
known problem with nodal degenerations in odd dimensions, see [Kerr and Laza
2023, Section 2.2]; and as we saw in the proof of (5.5), our degenerations are
finite quotients of nodal ones.) But if we can show δ = 0, then the conjecture is
immediately disproved (for odd n ≥ 3). Here is why: by (5.6), Hlim then has a class
of type (n + 1, n + 1), which must go to an (n, n) class by Nσ ,

Nσ1

1

p

q

forcing rk(Nσ ) = 1 (rather than 0). (In different terms, each Tσ is a nontrivial
symplectic transvection.) But this is impossible for

∧n of a nilpotent endomorphism
of C2n .

To complete the (dis)proof, then, we apply [Kerr and Laza 2023, Theorem 2.9]:
for a nodal degeneration Y ⇝ Yσ of an odd-dimensional hypersurface of a smooth
projective variety P satisfying Bott vanishing, the rank of δ is the number m of
nodes minus the rank of the map

ev : H 0
(

P, KP

(
3n+1

2
Yσ

))
→ Cm

given by evaluation at the nodes. The proof in [loc. cit.] is equivariant in A, and so
we find that δχ = 0 ⇐⇒ ev is nonzero on H 0

(
P, KP

( 3n+1
2 Yσ

))χ , which can be
checked at any node. Writing

e1 :=

n∑
i=0

Yi
∂

∂Yi
, e2 :=

2n+1∑
j=0

Z j
∂

∂Z j
− 2e1, and � := ⟨e2, ⟨e1, d Z ∧ dY ⟩⟩,
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one checks that

(5.12) Y0 Z2
0�/(Ft=0)

(3n+1)/2

is a well-defined section of KP
( 3n+1

2 Yσ
)

(see [Kerr 2003, Section 4.5]); and evi-
dently A acts on it through χ . Clearly, it is nonzero on the fiber of KP

(3n+1
2 Yσ

)
at

any of the nodes (5.9).

Sketch of proof of Theorem 5.4. Returning to the local picture (5.5), we now seek
a more concrete topological description of the orthogonal reflections (n even) and
symplectic transvections (n odd) through which Tσ acts on H . So let U0 ⊂ An

be the complement of the hyperplanes x1 = 0, . . . , xn = 0 and x1 + · · · + xn = 1,
and L0 the rank-1 local system on U0 with monodromies −1 about each of them.
While the singularity xσ

ıσ↪→ Xσ “at 0” in (5.5) isn’t isolated, the vanishing-cycle
complex φt QX is nothing but ıσ

∗
V [−n], where V := IHn(An, L0) (as MHS). We

begin with a local analogue of the covering argument just seen.

5.13. Lemma. (i) IHn(An, L0)∼= Q(−⌊(n + 1)/2⌋).

(ii) Local monodromy Tσ acts on V through multiplication by (−1)n+1.

(iii) The canonical map canσ : Hlim → V is onto.

Proof. Define maps

• f0 : An ↪→ An+1 by x 7→
(
x, 1 −

∑n
i=1 xi

)
and

• φ0 : An+1
→ An+1 by squaring all coordinates zi .

Then X̂0 := φ−1
0 ( f0(A

n)) ⊂ An+1 is the quadric hypersurface
∑n+1

i=1 z2
i = 1. The

group A0 := (Z/2Z)n+1 acts on X̂0 (multiplying coordinates by ±1), with quo-
tient An . The quotient q0 : X̂0↠ X0 by the augmentation subgroup A◦

0 yields the
obvious 2 : 1 branched cover of An , with H n(X0)∼= IHn(An, L0).

By the localization sequence for X̂0 (relative to its closure X̂0 ⊂ Pn+1) and weak
Lefschetz, one easily shows that H j (X̂0)= 0 for j ̸= n,18 and

H n(X̂0)∼= Q
(
−

⌊
n+1

2

⌋)
.

(Writing ∂ X̂0 = X̂0 \ X̂0, this is H n(X̂0)/H n−2(∂ X̂0)(−1) for n even, and for n
odd ker{H n−1(∂ X̂0)(−1)→ H n+1(X̂0)}.) A generator for the dual group H n

c (X̂0)

is given by the real (vanishing) n-sphere Sn
1 :=

{∑
z2

i = 1
}
∩ Rn+1, whose class is

invariant under A◦

0 hence comes from H n
c (X0). This gives (i).

The degeneration is modeled by replacing
∑

z2
i = 1 by

∑
z2

i = t ; as the spectrum
of

∑
z2

i is [(n + 1)/2], the monodromy is as described in (ii). Finally, (iii) follows
from the last subsection since canσ identifies with canχ in (5.11). □

18This simply recovers perversity of φ f QX [n].
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The vanishing sphere Sn
t :=

{∑
z2

i = t
}
∩ Rn+1 in X̂0 has image in X0 (by q0)

given by the double cover of
(⋂n

i=1{xi ≥ 0}
)
∩

{∑
xi ≤ t

}
. Let its image in X

(essentially via canχ : H n
c (X0)→ H n(X)) be denoted by νσ ; this is the vanishing

cycle at σ , a “double simplex” branched along Hs and n additional hyperplanes.
It follows from (iii) that Tσ is a transvection/reflection in νσ . More precisely,
rescaling Q to have Q(νσ , νσ )=

1
2(1 + (−1)n),

(5.14) Tσ (u)= u − 2Q(u, νσ ) νσ

for u ∈ H .
Now consider the general setting where L2n+1 = Ls , L0 = {X0 = 0}, and the

remaining L i are in general position. An easy extension of (5.1) gives

H ∼= IHn
c (A

n, L)∼= H n
c (X \ L0),

whence H n
pr(X) is spanned by double simplices branched along n + 1 of the L i≥0.

Obviously all of these can be rewritten as Z-linear combinations of double simplices
branched along Ls and n of the {L i }1≤i≤2n; call these νI , where I ⊂ {1, . . . , 2n}

with |I | = n. Since rk H =
(2n

n

)
and there are

(2n
n

)
of these vanishing cycles, they

form a Q-basis of H = H n
pr(X). Write TI for the corresponding monodromies,

and 0 ≤ Aut(HC, Q) for the smallest C-algebraic group containing them; clearly
0≤ 5̃C. Moreover, we note that if |I ∩ I ′

| = n −1, then Q(νI , νI ′)= ±1 (rescaling
as above, compatibly with (5.14)).

Suppose then that |I ∩ I ′
|= n−1. If n is odd, then TI (νI ′)= νI ±νI ′ =±T −1

I ′ (νI ),
whence νI ′ is in the 0-orbit of νI ; so all the νJ are in the 0-orbit of νI . If n is
even, then reasoning as in [Deligne 1980, Section 4.4] (see the paragraph after
Lemme 4.4.3s), TI T ±1

I ′ is a transvection and its Zariski closure a Ga including
transformations which send νI 7→ νI ′ and vice versa; once again, all the νJ are in
the 0-orbit of a single νI .

Let R := 0.νI denote this orbit. Obviously it spans HC. Furthermore, for any
δ ∈ R, we have that 0 contains the transvection/reflection Tδ: writing δ = γ.νI

(γ ∈ 0), we have Tδ = Tγ.νI = γ TI γ
−1

∈ 0. So 0 is in fact the C-algebraic
closure of the {Tδ}δ∈R , and we are exactly in the situation of [Deligne 1980,
Lemme 4.4.2]. Conclude that 0 = Aut(HC, Q), and hence 5̃ = Aut(H, Q), and
thus 5= Aut(H, Q)◦, proving Theorem 5.4.

5.15. Remark. After writing this paper we encountered the article [Xu 2018] which
treats the more general setting of r-covers of Pn branched along hyperplanes by
considering local monodromies (as we have just done). The argument is necessarily
more complicated and technical than ours. However, in the case r = 2 (i.e., our
setting) it appears to be incomplete.

If r = 2 and n is odd, Proposition 3.4 of [Xu 2018] does not actually establish that,
in the notation of [loc. cit.], e(1) is nonzero; this is exactly the issue regarding possible
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nonvanishing of δ dealt with above. One could read [Xu 2018, Proposition 4.2] as
confirming this in retrospect, but this makes the argument quite convoluted.

If r = 2 and n is even, the proof of [Xu 2018, Proposition 4.2] is wrong, as
it makes use of the (false) statement that Sp2n(R) “does not admit any nontrivial
one-dimensional invariant subspace” in its action on

∧n
R2n .
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