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Pulmonary cancers across different histotypes share hybrid tuft
cell/ionocyte-like molecular features and potentially druggable
vulnerabilities
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Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like
gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC),
and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities.
Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor
cohorts using immunohistochemistry (n= 674 and 70). Findings were confirmed, and additional characteristics were explored using
public datasets (RNA seq and immunohistochemical data) (n= 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also
investigated. By immunohistochemistry, 10–20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the
master regulator of tuft cells. These tuft cell-like tumors exhibited “lineage ambiguity” as they co-expressed NCAM1, a marker for
neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed
BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed
these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like
subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional
but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like
SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-
like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a
therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC.
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INTRODUCTION
Tuft cells are epithelial cells with distinct microvilli (tufts) on the
apical side. They occur in multiple organs and regulate immune
functions, e.g., anti-parasitic immunity [1–4], and thymic T-cell
development [5, 6]. In the intestine, they are sensors of chemical
signals, including those from parasites. Through the secretion of
mediators, including interleukin-25 and acetylcholine, they initiate

anti-parasitic immune responses and regulate respiration [1–4].
Thymic tufts cells produce similar mediators and influence the
thymic microenvironment, especially innate immunity [5–7].
Tuft cells have attracted attention in oncology after the

discovery of a tuft cell-like small cell lung cancer (SCLC) subset,
which exhibits a tuft cell-like gene expression signature [8],
including POU2F3, the tuft cell master regulator [9]. Meanwhile,
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four molecular SCLC subtypes were delineated [10], and their
features have been intensively investigated for personalized
treatment options [11–16]. We identified tuft cell-like subsets also
in non-small cell lung cancers (NSCLCs), including adenocarci-
noma, squamous cell carcinoma (SQCC), and large cell neuroen-
docrine carcinoma (LCNEC), and in thymic carcinomas [17, 18].
Ionocytes are rare epithelial cells recently discovered in the lung

[19, 20]. They maintain the fluid and mucus physiology of the
airways and are a major source of CFTR activity (mutations of CFTR
are the most common cause of cystic fibrosis [21]). FOXI1 is the
master regulator of pulmonary ionocytes [19, 20]. To our knowl-
edge, ionocytes have not yet been discussed in relation to lung
cancer.
Here, we elucidated clinicopathological and molecular features

of pulmonary tuft cell-like cancers classified as SCLC, LCNEC, SQCC,
and adenocarcinoma and found them to share an immature
hybrid tuft cell/ionocyte-like and anti-apoptotic signature. Rare
tuft cell-like SCLC cell lines showed susceptibility to inhibitors of
BCL2 and PARP.

MATERIALS AND METHODS
Patient cohorts and immunohistochemistry
We examined two cohorts: (1) one from Japan, Kyoto University Hospital
(cohort-J): 369 adenocarcinomas, 225 SQCCs, 36 SCLC, and 44 LCNECs, and
(2) one from Germany, University Medical Center Göttingen (cohort-G): 47
SCLCs and 23 LCNECs. When SCLC and LCNEC are addressed together, they
will be collectively labeled as neuroendocrine carcinoma (NEC).
We performed immunohistochemistry (IHC) on formalin-fixed, paraffin-

embedded specimens of whole sections or tissue microarrays with the
Benchmark Ultra immunostainer (Ventana Medical Systems, Tucson, AZ,
USA). The primary antibodies used are described in Fig. S1A. The positive
ratio (%) of tumor cells was estimated for each antibody. Considering the
histogram of immunoreactive tumor cells in SQCC (Fig. S1B), the IHC for
POU2F3 was interpreted as positive when ≥10% of the tumor cells
exhibited nuclear staining.

Publicly available datasets and identification of tuft cell-like
subsets
We utilized four centrally reviewed datasets of lung cancers; (1) 230
adenocarcinomas (TCGA, Nature 2014), (2) 178 SQCCs (TCGA, Nature 2012),
(3) 81 SCLCs (U Cologne, Nature 2015), and (4) a dataset of 66 LCNECs [27]
(datasets 1–3 are archived in cBioPortal [cbioportal.org]) [22–27]. As
described previously [17], we extracted tuft cell-like SQCC and adeno-
carcinoma cases from the above datasets with mRNA expression Z scores
of >2 of both POU2F3 and GFI1B, while tuft cell-like SCLC and LCNEC were
extracted by the histogram of POU2F3 and GFI1B expressions [17], and the
subsequent confirmation of strong expression of other tuft cell-markers [8].

Cell culture and MTT assay
Six SCLC cell lines, i.e., NCI-H69, NCI-H211, NCI-H526, NCI-H1048, UHGc5,
and SCLC26A, were used in the study. MTT assays were performed with
cells that were plated in 96-well plates at 1 × 104 cells/well with 100 μl of
appropriate media containing variable concentrations of Olaparib (Axon
Medchem, Groningen, The Netherlands), Talazoparib (Selleck, Houston, TX,
USA), Venetoclax (Selleck), and Navitoclax (Selleck). The details and
evaluation of IC50 of drugs and the combined effects of two drugs are
described in the supplement.

Western Blotting and real-time quantitative PCR
Details of Western blotting and real-time quantitative PCR are given in the
supplement.

Statistical analyses
Statistical analyses that were performed in the study are described in the
supplement.

Ethical approval
The study was approved by the local Ethics Committee II, University of
Heidelberg (2018-516N-MA), and the Medical Ethics Committees of the

Kyoto University Graduate School of Medicine and Kyoto University
Hospital (R3081).

RESULTS
Clinicopathological features of tuft cell-like lung cancers in
two independent cohorts
Clinicopathological features of tuft cell-like lung cancers were
investigated in a Japanese cohort (cohort-J) and a German cohort
(cohort-G) and are reported separately to account for differences
between them (Fig. S2A, B).
In cohort-J, 18 tuft cell-like lung cancers by POU2F3-IHC were

identified (i.e., ≥10% of the tumor cells exhibited nuclear staining
in 18 cases): 0/369 in adenocarcinoma, 5/220 (2.3%) in SQCC, 6/36
(16.7%) in SCLC, and 7/44 (15.9%) in LCNEC (Fig. 1A and Fig. S3).
Tuft cell-like LCNEC had a larger size and an inferior prognosis
(both P < 0.05) compared with non-tuft cell-like LCNEC (Fig. 1B, C),
while the respective subsets of SCLCs and SQCCs showed no
prognostic differences (Figs. S4 and S5). Patients with tuft cell-like
NECs had a worse prognosis than patients with tuft cell-like SQCC
(P < 0.05) (Fig. 1D).
Cohort-G (47 SCLCs and 23 LCNECs) contained 18 (38.3%) and 6

(26.1%) tuft cell-like SCLC and LCNECs, respectively. Tuft cell-like
SCLC rather than tuft cell-like LCNEC were larger than their non-
tuft cell-like counterparts (Fig. S6A), but there were no prognostic
differences between tuft cell-like and non-tuft cell-like SCLC and
LCNEC (Fig. S6B, C).
In both cohorts, tuft cell-like SCLC and tuft cell-like LCNEC

showed no significant prognostic differences (Figs. S4D, S6D).
However, multiple Cox regression analyses detected an interaction
of tuft cell-like phenotype and histology (i.e., SCLC or LCNEC) with
respect to patients’ prognoses in Cohort-J (Fig. S2C).
Overall, these results suggest that the tuft cell-like phenotype of

pulmonary NECs may be associated with clinicopathologic features
and prognosis; however, further studies are needed to support this
hypothesis, as the number of cases was not large enough and the
clinical characteristics of the two cohorts differed substantially.
Conversely, histotype apparently remains important, as patients
with tuft cell-like NECs and SQCCs showed different survival.

Tuft cell-like lung cancers exhibit “lineage ambiguities”
To understand the biased prevalence of tuft cell-like tumors
among histotypes (SCLC ≥ LCNEC ≫ SQCC, and absence in
adenocarcinoma), we examined the expression of a marker of
squamous differentiation (CK5) and a common marker of
neuroendocrine tumors (CD56) [28]. Interestingly, CK5 was
diffusely expressed in almost all tuft cell-like SQCCs as expected
but focally also in tuft cell-like NECs, and the difference in the
expression between tuft cell-like and non-tuft cell-like NECs was
significant (P < 0.01) (Fig. 2A, B). Conversely, CD56 was expressed
in most tuft cell-like NECs, but also in a subset of tuft cell-like
SQCCs, in which the percentages of CD56-positive cells were
significantly higher than in non-tuft cell-like SQCC (P < 0.001)
(Fig. 2C).
In contrast, most tuft cell-like lung cancers were negative for the

highly specific neuroendocrine markers, chromogranin A and
synaptophysin, and TTF1, a marker of pulmonary adenocarcinoma
and SCLC (Fig. S3). These results resembled those reported for tuft
cell-like SCLCs [29] and suggest “lineage ambiguities” of tuft cell-
like lung carcinomas: while tuft cell-like NECs exhibited an
attenuated neuroendocrine and a stronger squamous phenotype,
tuft cell-like SQCC showed a stronger neuroendocrine phenotype
than their non-tuft cell-like counterparts.

Strong protein expression of BCL2, KIT, and MYC in
pulmonary tuft cell-like cancers
We next analyzed the protein expression of oncogenes known to
be transcriptionally upregulated in tuft cell-like lung cancer
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Fig. 1 Clinicopathological findings of tuft cell-like large cell neuroendocrine carcinoma (LCNEC) and patients’ prognosis with tuft cell-like
cancers (cohort-J). A The histology of a tuft cell-like LCNEC (case no.12 in Fig. S2). The tumor shows a nested growth pattern and vague
rosetting. The tumor cells show non-small cell lung cancer cytology (conspicuous nucleoli, moderate amount of cytoplasm) and are diffusely
positive for POU2F3, and focally positive for CK5 and CD56. The tumor cells are also positive for BCL2, KIT, and MYC. B Clinicopathological
features. Pl, pleural invasion; V, vascular invasion (v0: −, v1: +); Ly, lymphatic invasion (ly0: −, ly1: +) C, D Patients’ prognosis. Tuft cell-like
LCNECs exhibit a significantly poorer prognosis than non-tuft cell-like LCNECs (C). Tuft cell-like NECs (i.e., the joint tuft cell-like SCLCs and
LCNECs, N= 12) exhibit a significantly worse prognosis than tuft cell-like SQCCs (N= 5) (D).
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subsets, i.e., BCL2 [10, 16], MYC [15, 16, 30, 31], and KIT [17],
because their expression might further delineate tuft cell-like
variants and open new therapeutic perspectives.
Most of the pulmonary tuft cell-like cancers of Cohort-J strongly

expressed BCL2 and KIT protein, and the percentages of
immunoreactive cells were significantly higher in the tuft cell-
like than non-tuft cell-like groups (P < 0.05) (Fig. 2A–C). Also, the
percentages of MYC-positive tumor cells were significantly higher
in tuft cell-like than non-tuft cell-like NECs (P < 0.001) (Fig. 2A, B),
but not between tuft cell-like and non-tuft cell-like SQCCs

(P= 0.80) (Fig. 2C). Among tuft-cell-like cancers, the percentage
of MYC-positive cells and the Ki-67 labeling index were
significantly higher in NECs than SQCCs (both P < 0.05) (Fig. 2D).
In Cohort G, the findings resembled those obtained with the NECs
of Cohort-J (Fig. S6E, F).

Comparable prevalence and molecular features of tuft cell-like
tumors in public datasets
We next analyzed publicly available datasets that were centrally
reviewed regarding histological diagnosis, to evaluate the above

Fig. 2 Tuft cell-like lung cancers and their immunohistochemical features (cohort-J). A Small cell lung cancer (SCLC); B large cell
neuroendocrine carcinoma (LCNEC); C squamous cell carcinoma (SQCC); D, tuft cell-like neuroendocrine carcinomas (NECs) and SQCC.
Compared to each non-tuft cell-like counterpart, tuft cell-like SCLCs and LCNECs show significantly higher percentages of cells expressing
MYC, and the squamous differentiation marker, CK5. On the other hand, tuft cell-like SQCCs show significantly higher percentages of cells
expressing CD56, a marker of neuroendocrine cells. All the tuft cell-like SCLCs, LCNECs, and SQCCs exhibit significantly higher positive ratios
for BCL2 and KIT. The positive ratios for MYC and Ki-67 of tuft cell-like neuroendocrine carcinomas (NECs: SCLC+ LCNEC) are significantly
higher than those of SQCCs.
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findings. Similar to our previous study [17], strong co-expression of
POU2F3 and GFI1B, characteristic of non-neoplastic tuft cells, was
the criterion to identify 1 (0.4%) tuft cell-like adenocarcinoma and
3 (1.7%) tuft cell-like SQCCs in the centrally reviewed “bona fide”
cohorts of the TCGA adenocarcinoma and SQCC datasets
[22, 23, 25, 26] (Fig. S7A). These percentages are comparable to

those in our cohort-J. In the LCNEC [27] and SCLC [24] datasets,
there were 12 tuft cell-like LCNECs (18.2%) (as reported previously
[17]) and 11 tuft cell-like SCLS (13.6%) (Fig. S7B, C). All tuft cell-like
cancers identified in this way also strongly expressed other tuft
cell-markers, such as TRPM5, SOX9, ASCL2, and AVIL [8] but not
CHAT (Fig. S7A–C).

Fig. 3 Expression profiles of tuft cell-like lung cancers. Transcriptional and immunohistochemical features of tuft cell-like lung cancers
retrieved from public datasets (A, B, E [24]. A, C, D, E [27]) (FPKM, fragments per kilobase of exon per million reads mapped).
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Fig. 4 mRNA expression of tuft cell-like small cell lung cancer (SCLC), pulmonary large cell neuroendocrine carcinoma (LCNEC), and
squamous cell carcinoma (SQCC) ([24, 27], TCGA Nature 2012). A Unsupervised mRNA expression clustering with the combined SCLC and
LCNEC cohort. B Significantly expressed genes in both tuft cell-like SCLC and LCNEC, compared with the respective non-tuft cell-like
counterparts (>2 folds, P < 0.05). POU2F3, GFI1B, TRPM5, SOX9, ASCL2, AVIL, representative tuft cell genes; FOXI1, the master regulator of
ionocytes; BCL2, KIT, and MYC, well-known oncogenes; KRT5, a marker of squamous differentiation, were included among the 92 genes. C FOXI1
mRNA expression in tuft cell-like SCLC and LCNEC. The numbers of the y-axis indicate mRNA expression Z score in SCLC and FPKM (fragments
per kilobase of exon per million reads mapped) in LCNEC. D The pathways and gene ontology (GO) analyses for upregulated genes in tuft cell-
like SCLC and LCNEC. Genes related to the Notch signaling pathway were most significantly enriched.
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Consistent with our protein expression analyses, data from
the public datasets [24, 27] confirmed “lineage ambiguities”: In
both tuft cell-like SCLC and LCNEC, KRT5 mRNA expression
levels were significantly higher (Fig. 3A), while expression levels
of specific neuroendocrine markers (CHGA, SYP, and INSM1), and

DLL3, a Notch ligand with therapeutic relevance in SCLC [29],
were significantly lower than in their non-tuft cell counterparts
(Fig. 3B, C). Following the same line, tuft cell-like SQCC tended
to show higher mRNA levels of NCAM1 than non-tuft cell-like
SQCC (Fig. S8A). Moreover, immunohistological features

Y. Yamada et al.
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reported in the public LCNEC dataset [27] confirmed our
findings: tuft cell-like LCNEC expressed chromogranin A,
synaptophysin, and TTF1 less frequently than non-tuft cell-like
LCNECs (P < 0.05), while almost all tuft cell-like LCNECs
expressed CD56 (Fig. 3D). Paradoxically, although tuft cell-like
LCNECs did not express TTF1 protein (Fig. 3D), their TTF1 mRNA
levels were remarkably high (Fig. 3C) for unknown reasons.
Finally, analysis of the public databases [24, 27] confirmed that

BCL2, KIT, and MYC, were upregulated in both tuft cell-like SCLC
and LCNEC (Fig. 3E), and that tuft cell-like compared to non-tuft
cell-like SQCCs expressed higher levels of BCL2 and KIT (P < 0.05),
while expression levels of MYC were not statistically different
(P= 0.09) (Fig. S8A). Importantly, the similar prognosis of tuft cell-
like SCLC and LCNEC was confirmed as well (Fig. S8B).

Tuft cell-like SCLC and LCNEC form a joint cluster on mRNA
hierarchical clustering
To further understand the similarities between tuft cell-like SCLC
and LCNEC, the combined SCLC and LCNEC mRNA datasets
[24–27] were subjected to unsupervised clustering. This revealed
that SCLCs and LCNECs are separated into several clusters and that
one cluster contains all the tuft cell-like SCLCs/LCNECs without
inclusion of any non-tuft cell-like tumors. However, these tuft cell-
like SCLCs and LCNECs were not randomly distributed within the
cluster but formed two subclusters largely according to their small
cell versus large cell histotype (Fig. 4A).
To address the resulting hypothesis that tuft cell-like SCLC and

LCNEC are more closely related to each other than to their non-
tuft cell-like histological counterparts, we extracted upregulated
genes in both tuft cell-like SCLC and LCNEC compared with the
respective non-tuft cell-like counterparts (>2 folds, P < 0.05) and
performed GO (gene ontology) analysis.
Consistent with the criteria of tuft cell-like tumors and our

above findings, representative tuft cell genes (e.g., POU2F3, GFI1B,
and TRPM5) [8], as well as KRT5, BCL2, KIT, and MYC were among
the 92 genes that were upregulated both in tuft cell-like SCLC and
tuft cell-like LCNEC (Fig. 4B-C). As to pathways differentially
enriched both in tuft cell-like SCLC and LCNECs, the Notch
signaling pathway was top-ranked among the activated pathways
(Fig. 4D). This fits the classification of all tuft cell-like LCNECs as
type II LCNECs [17], which typically exhibit active Notch signaling
[27]. Moreover, the top-ranked activated pathways in pulmonary
tuft cell-like NECs reflect the conditions required for tuft cell
development from pulmonary basal cells (active NOTCH and
inactive WNT signaling) [32], and hint to potential vulnerability
towards inhibitors of NOTCH pathway constituents [33], Bruton’s
tyrosine kinase [12], Ephrin receptor signaling [34], and receptor
tyrosine kinases [16].
Subsequently, we focused on genes with differential expression

between tuft cell-like SCLC and tuft cell-like LCNEC (n= 96 and
142, respectively [>2 folds, P < 0.05]). On the GO analyses (Fig.
S8C), genes related to inflammation and cytokines were enriched
in tuft cell-like SCLC, while genes related to neural differentiation/

development were enriched in tuft cell-like LCNEC (Fig. S8D). Thus,
tuft cell-like NECs form a distinct tumor group among pulmonary
NECs, but tuft cell-like SCLC and tuft cell-like LCNEC remain
distinguishable tumor types.

Tuft cell-like lung cancers exhibit a hybrid tuft cell/ionocyte-
like signature
Unexpectedly, we found that FOXI1, the ionocyte master regulator
[19, 20], and CD9, an ionocyte-specific gene [20], were among the
92 significantly upregulated genes in tuft cell-like NECs compared
to non-tuft cell-like NECs (Fig. 4B, C and S8E). HEPACAM2, a marker
of renal intercalated cells [35], which functionally resemble
ionocytes, was also included (Fig. S8E). On the other hand, CFTR,
the most representative marker of mature ionocytes [20] was not
contained (Fig. S8E). Significant expression of FOXI1 and
HEPACAM2 was also observed in tuft cell-like SQCCs in the TCGA
dataset (Fig. S8E).

Tuft cell-like SCLC cell lines are sensitive to PARP and BCL2
inhibitors
Last, we asked whether different tuft cell-like lung cancers might
share the same vulnerabilities towards anti-cancer drugs in vitro.
We had to restrict this study to SCLC because, among all published
cell lines, there are only four with a tuft cell-like phenotype in the
NCI collection, and all are derivatives of SCLCs [8]. Having spotted
three of them among 67 SCLCs with known sensitivities towards a
broad drug library (the fourth cell line, COR-L311, was not
included in the study) [36], we identified PARP inhibitors as the
only class of inhibitors to which the three tuft cell-like SCLC cell
lines (NCI-H211, NCI-H526, NCI-H1048) were significantly more
sensitive than the non-tuft cell-like SCLC lines (Fig. 5A). This
conclusion is consistent with a recent report by Gay et al. [12].
However, when validating this in silico finding in an in vitro
experiment, we observed only moderate effects at therapeutically
relevant [37] Olaparib concentrations (Fig. 5B).
Thus, we speculated whether combining with another inhibitor

might improve the killing effect. Among the two candidates with
high expression in tuft cell-like lung cancers, i.e., BCL2 (Fig. 5C and
S9a) and KIT, we selected BCL2 because (1) BCL2 inhibitors (e.g.,
Venetoclax [ABT-199]) are in clinical use; (2) KIT inhibition is
ineffective in KIT-wildtype tumors [38], while such a relationship
has not been established in BCL2; (3) BCL2 inhibition has been
proposed for SCLC [39], especially ASCL1-SCLC [12], suggesting
that it may be clinically relevant in tuft cell-like SCLC as well. When
combining Olaparib with Venetoclax, we observed synergistic
effects (i.e., CIs < 1) in five of the six SCLC cell lines by the Chou
Talalay method, but the effects were most obvious in two of the
three tuft cell-like SCLC cell lines (CI= 0.10 in NCI-H1048, and 0.17
in NCI-H211) (Fig. 5B).
Treatment with another approved PARP-inhibitor, Talazoparib

that is presumably more potent than Olaparib due to alternative
targets [40–42], showed a strikingly higher sensitivity to Talazo-
parib in tuft cell-like NCI-H1048 cells (for unknown reasons) and, to

Fig. 5 PARP and BCL2 inhibitors preferentially affect tuft cell-like compared to non-tuft cell-like small cell lung cancers (SCLC) in vitro (A:
Polley et al., 2016. B-D: our data). A Sensitivity of SCLC cell lines to PARP inhibitors (PARPi) [35] (Tuft cell-like SCLCs, 3 cell lines; Non-tuft cell-
like SCLCs, 64; Non-SCLCs, 3). The vertical line means unit Delta LogIC50 (−1 to 1); the smaller the number, the better the response of the cell
line. Tuft cell-like SCLC cell lines showed significantly better response to all five different PAPRi (AZD-2461, Niraparib, Olaparib, Rucaparib, and
Talazoparib) than non-tuft cell-like SCLC cell lines. B MTT assay-based survival analysis of our limited set of SCLC cell lines (n= 6). Tuft cell-like
SCLC cell lines (n= 3) showed a better response to the BCL2-inhibitor (BCL2i), Venetoclax (V), the PARPi, Olaparib (O) (except for NCI-H526
cells), and their combination (Mix) than the non-tuft cell-like cell lines (n= 3). Combination indexes (CIs) <1 by the Chou-Talalay Method
indicate synergistic effects of the combination therapy in 5 of the 6 cell lines, especially for NCI-1048 and NCI-H211. C Western blotting for
POU2F3 and BCL2 in the six SCLC cell lines (with Beta-actin as housekeeping). Tuft cell-like SCLC cell lines clearly express POU2F3 and BCL2 at
the protein level, while non-tuft cell-like SCLC cell lines do not express POU2F3 or BCL2, except for a weak expression of BCL2 in SCLC26A.
DMTT assay-based survival analysis of the tuft cell-like SCLC cell line, NCI-H1048, showed a striking response to the PARP-inhibitor, Talazoparib
(compare with the much poorer response to Olaparib in Fig. 5B). E Summary of molecular features and clinical behavior of tuft cell-like lung
cancers. The scores (+/−, +, ++, +++) were estimated based on mRNA and protein expression levels.
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a much lesser extent, in non-tuft cell-like UHGc5 cells (Figs. 5D and
S9B). A broadly effective, pre-clinical BCL2 family inhibitor,
Navitoclax, did not change this tendency (Fig. S9C).

DISCUSSION
The new findings here are (i) pulmonary tuft cell-like cancers
across various histotypes have considerably overlapping gene
expression profiles, including a hybrid tuft cell/ionocyte-like
signature; (ii) tuft cell-like NECs and SQCC nevertheless exhibit
distinct histotype-associated clinicopathological features; (iii)
in vitro, tuft cell-like SCLCs show higher vulnerability to PARP/
BCL2 co-inhibition than to either drug alone.
The close kinship among tuft cell-like lung cancers was

highlighted by the clustering analysis with combined SCLC and
LCNEC datasets, because tuft cell-like SCLC and LCNEC formed a
single, small cluster. Also, all the tuft cell-like lung cancer subtypes
significantly expressed BCL2 and KIT, and tuft cell-like NECs unlike
non-tuft cell-like NECs overexpressed MYC. In addition, tuft cell-
like SCLC, LCNEC, and SQCC exhibited “lineage ambiguity”, namely
with expressions of NCAM1 (NECs > SQCC) and KRT5 (SQCC >
NECs) and infrequent expression of most neuroendocrine markers
(Fig. 5D). Another facet of “lineage ambiguity” was the strong
expression of FOXI1 in tuft cell-like cancers of different histotypes
because this is the master regulator of ionocytes, which regulate
airway surface physiology by expressing characteristic functional
molecules, such as CFTR in the lung [19, 20]. Interestingly, co-
expression of POU2F3 and FOXI1 occurs in an immature common
precursor of mature tuft cells and ionocytes in the respiratory tract
[19], and transient Krt5 expression is a feature of maturing murine
ionocytes arising from basal cells [20]. Therefore, “lineage
ambiguity” may actually point to a maturation blockade of lung
cancer cells with a hybrid tuft cell/ionocyte-like molecular
signature compared to mature tuft cells and ionocytes. Three
other observations fit this hypothesis: (i) absence of tuft cell
morphology, namely of brush-type villi on lung cancer cells
[43, 44], (ii) poor expression of rare genes expressed by mature
tuft cells (e.g., CHAT [choline acetyltransferase] (Fig. S7), and
DCLK1 [not shown]) [45], and (iii) poor expression of genes of
mature ionocytes (e.g., CFTR) [20].
On the other hand, we also noticed differences between tuft

cell-like NECs and SQCCs, e.g., overexpression of MYC in tuft cell-
like NECs but not in tuft cell-like SQCC. Between the two groups,
Ki-67 immunohistochemistry was also significantly different. These
findings may be related to the poorer prognosis of tuft cell-like
NECs compared with SQCCs and underscore that pathological
classification remains essential for patient management. Regard-
ing tuft cell-like SCLC and LCNEC, inflammatory signals were
enriched in the former and neural differentiation programs in the
latter. A more differentiated nature of LCNEC seems consistent
with its morphological features, such as the more abundant
cytoplasm than SCLC. The inflammatory nature of tuft cell-like
SCLC may warrant further studies under (immuno-)therapeutic
perspectives [16].
Last, we proposed a therapeutic option for tuft cell-like lung

cancers, i.e., co-inhibition of PARP and BCL2. The efficacy of PARP
inhibitors for tuft cell-like SCLC was also recently proposed and
discussed (e.g., concerning SLFN11, a biomarker of PARP inhibition
[36, 46–50]) [12], but is not fully understood. Considering our
in vitro findings, PARPi alone may not be sufficient to kill tuft cell-
like SCLCs but be effective as part of a combination therapy [51].
Our findings suggest that tuft cell-like SCLCs with strong BCL2
expression might be particularly suitable for PARP/BCL2 co-
inhibition, which may provide a rationale for applying this strategy
to NSCLCs, especially LCNEC.
In parallel, functional studies with tuft cell-like SCLC cell lines,

and comprehensive genetic and epigenetic profiling of tuft cell-
like lung cancers are necessary to provide mechanistic evidence

for the unique drug sensitivity of tuft cell-like SCLC; publicly
available databases, e.g., SCLC-CellMiner [16] will be of help for
such analyses. The hypersensitivity of H1048 cells to Talazoparib
compared to Olaparib, which was unrelated to abnormal PARP16
levels [40] (Fig. S10), should also be investigated, because it
remains unclear whether this hypersensitivity is attributable to the
tuft cell-like phenotype. Finally, HPF1, a novel PARP1/2-interacting
protein [41] and strong modifier of PARPi sensitivity [52], warrants
study in tuft cell-like NECs, although on average, they did not
show abnormal HPF1 expression levels or HPF1 mutations in
public datasets [24, 27] (not shown).
The current study has limitations. The restriction to resection

specimens implies a selection bias, as most lung cancers are
inoperable but biopsied before neoadjuvant approaches [53]. This
bias may contribute to the clinicopathological differences
between cohorts-J and -G (Fig. S2), although ethnic differences
cannot be excluded. To resolve these issues, prospective clinical
studies should include core needle biopsies from the full spectrum
of lung cancers for molecular testing. Furthermore, only six SCLC
cell lines were used in the drug experiments, which may be
insufficient to infer the unique drug sensitivity of tuft cell-like lung
cancers. Given the paucity of tuft cell-like cancer cell lines
[12, 16, 36], in vivo cell line-based and patient-derived xenograft
experiments are needed to validate the particular in vitro drug
sensitivity of tuft cell-like SCLC.
Accumulating evidence suggests that tuft cell-like SCLCs are

biologically distinct from the other SCLC subtypes
[11, 16, 29, 54, 55]. Our study further underlines the uniqueness
of this variant. Although further pre-clinical studies should be
conducted, strong similarities of tuft cell-like LCNEC to tuft cell-like
SCLC may justify their eligibility for inclusion in future SCLC clinical
studies, particularly trials including PARP inhibitors or co-inhibition
of PARP and BCL2.
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