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Abstract
The moduli space of stable surfaces with 𝐾2

𝑋
= 1 and

𝜒(𝑋) = 3 has at least two irreducible components that
contain surfaces with T-singularities. We show that the
two known components intersect transversally in a divi-
sor. Moreover, we exhibit other new boundary divisors
and study how they intersect one another.
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1 INTRODUCTION

Surfaces of general type and their moduli spaces are a classical subject of study that goes back
to the beginning of the 20th century. The moduli spaces 𝔐𝐾2,𝜒 classifying canonical models of

© 2022 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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2 COUGHLAN et al.

F IGURE 1 Schematic picture of (known parts of) the moduli space of I-surfaces

surfaces of general type were constructed by Gieseker [8] and we now have amodular compactifi-
cation𝔐𝐾2,𝜒 , the moduli space of stable surfaces, duemainly to work of Kollár, Shepherd-Barron
and Alexeev [1, 10].
In this paper we continue the investigation of I-surfaces, that is, stable surfaces with 𝐾2

𝑋
= 1

and 𝜒(𝑋) = 3, refining a conjectural picture developed by the last four authors in [7], where I-
surfaces with one T-singularity were studied. Note that T-singularities are precisely the quotient
singularities that can occur in the closure of the Gieseker components of𝔐𝐾2,𝜒 .
Classical I-surfaces, that is, with canonical singularities, or more generally I-surfaces with 𝐾𝑋

Cartier, are very well understood. They are double covers of the quadric cone in ℙ3 branched over
a quintic section and the vertex [6]. Nonetheless, progress on understanding their degenerations,
or better all I-surfaces has been slow.
A philosophically sound method consists of imposing the existence of one T-singularity (that

is, locally of the form 1

𝑑𝑛2
(1, 𝑑𝑛𝑎 − 1)). If the singularity imposes independent conditions on the

stable surface, then we get a stratum whose codimension coincides with the dimension of the
local deformation space of the singularity.
For example, there is a T-divisor in𝔐1,3 consisting of the stratum of I-surfaces with a singular-

ity of type 1

4
(1, 1), obtained by allowing the branch locus of the double cover to pass through the

vertex. In [7] it was shown that the other I-surfaces with one T-singularity do not conform to this
simple pattern.
Our starting point is the observation [7, Corollary 1.2] that 𝔐1,3 has at least two irreducible

components, both of dimension 28: theGieseker component𝔐1,3 and the component𝔐RU whose
general element is an I-surface with a unique 1

25
(1, 14) singularity constructed by Rana andUrzúa

in [13].
Confirming a suspicion from [7] we show that the two components intersect in a divisor

parametrisingRU-surfaces of cuspidal type.We go on to investigate the intersections of the various
T-divisors obtained so far.
The schematic picture in Figure 1 illustrates our results, where we label each stratum by the

singularities of its general element.
More precisely, we prove the following.

(1) I-surfaces with a 1

25
(1, 14) singularity and of cuspidal type are smoothable; they form a divisor

which is the intersection of the two components. (Section 4)
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 3

(2) While the 1

9
(1, 5) singularity does not occur in the closure of the Gieseker component, there is

a divisor in theRU-component of surfaceswithT-singularities 1

9
(1, 5) + 1

25
(1, 14). (Section 5.3)

(3) The divisor of surfaces with an 1

18
(1, 5) singularity, known to be in the closure of the

Gieseker component, intersects the aforementioned divisors in a subset of codimension
two parametrising surfaces with singularities 1

18
(1, 5) + 1

25
(1, 14). (Proposition 5.12 and

Example 5.13)
(4) The divisors parametrising surfaceswith a 1

4
(1, 1) singularity respectively a 1

18
(1, 5) singularity

intersect, as expected, in a subset of codimension two, whose general element is a surfacewith
singularities 1

4
(1, 1) + 1

18
(1, 5). (Section 5.4)

(5) We suspect the remaining intersection to be empty, but can only show that the combination
1

4
(1, 1) + 1

25
(1, 14) cannot occur on an I-surface (Section 5). If the two divisors intersect at all,

then they do so in considerablymore singular surfaces, and presumably in high codimension.

Two complementary approaches are used to establish these claims: geometric study of the mini-
mal resolution and algebraic study of the canonical ring. Both points of view give us descriptions
of the general surface in each stratum. Canonical rings are needed to establish deformations and
(partial) smoothings via explicit equations, and the study of configurations of rational curves on
the minimal resolution gives the non-existence result.
Having established a complicated format for the canonical ring of the RU-surface in Corol-

lary 3.11, we include a very surprising alternative description of the same surface as a hypersurface
in weighted projective space in Section 3.7.

2 PRELIMINARIES

We work over the complex numbers. Linear equivalence is denoted by ∼.
For aHirzebruch surface 𝔽𝑛, we denote by 𝜎∞ the negative section and by Γ the class of a ruling,

so that a section 𝜎0 disjoint from 𝜎∞ is linearly equivalent to 𝑛Γ + 𝜎∞.
An I-surface 𝑋 is a stable surface with 𝐾2

𝑋
= 1, 𝑝g = 2, 𝑞 = 0 (see [7]).†

A curve is an effective divisor, not necessarily irreducible or reduced. For a positive integer 𝑛,
an irreducible (−𝑛)-curve 𝐷 on a smooth surface is a smooth rational curve with 𝐷2 = −𝑛.
A T-singularity 𝑄 is either a rational double point or a 2-dimensional quotient singularity of

type 1

𝑑𝑛2
(1, 𝑑𝑛𝑎 − 1), where 𝑛 > 1 and 𝑑, 𝑎 > 0 are integers with 𝑎 and 𝑛 coprime. These are pre-

cisely the quotient singularities that admit a ℚ-Gorenstein smoothing, that is, that can occur on
smoothable stable surfaces (cf. [10, § 3]).
The exceptional divisor of the minimal resolution of a T-singularity 1

𝑑𝑛2
(1, 𝑑𝑛𝑎 − 1) is a so-

called T-string, a string of rational curves with self-intersections −𝑏1, −𝑏2, … ,−𝑏𝑟 given by the
Hirzebruch–Jung continued fraction expansion [𝑏1, 𝑏2, … , 𝑏𝑟] of

𝑑𝑛2

𝑑𝑛𝑎−1
(see, for example, [5,

Chapter 10]). The index of 𝑋 at 𝑄 is 𝑛.

3 COMPUTING THE CANONICAL RING OF THE RU-SURFACE

For the reader’s convenience we recall the construction of a general RU-surface.

† To exclude some more pathological (non-smoothable) examples (compare [15]) we could be more specific and fix the
Hilbert series of the canonical divisor to be ℎ(𝑡) = 1−𝑡10

(1−𝑡)2(1−𝑡2)(1−𝑡5)
.
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4 COUGHLAN et al.

F IGURE 2 Construction of an RU-surface, nodal case

Example 3.1. Let 𝑌 be an elliptic surface with 𝑝g (𝑌) = 2, 𝑞(𝑌) = 0 such that:

∙ 𝑌 has a (−3)-section 𝐴,
∙ all the elliptic fibres are irreducible.

By [7, Lemma 3.8], the surface 𝑌 is a double cover 𝜋∶ 𝑌 → 𝔽6 branched on a smooth divisor
𝐷 ∈ |𝜎∞ + 3𝜎0|.
Let 𝐹1 be a singular fibre and let 𝑞 be its singular point: blow up 𝐹1 at 𝑞 and then at a point 𝑞1

infinitely near to 𝑞 and lying on the strict transform of 𝐹1 to get a surface �̃�. The strict transform
of 𝐹1 is a (−5)-curve 𝐵, the strict transform of 𝐴 (that we still denote by 𝐴) is a (−3)-curve, the
strict transform of the curve of the first blow-up is a (−2)-curve, which we call 𝐶, so that 𝐴, 𝐵, 𝐶
is a string of type [3, 5, 2]. Note that this is true both for 𝐹1 nodal and for 𝐹1 cuspidal. Then the
string 𝐴, 𝐵, 𝐶 can be blown down to obtain an I-surface with unique singularity of type 1

25
(1, 14),

compare Figure 2.
Since we assumed the fibre 𝐹1 to be irreducible, it is either a nodal curve (type 𝐼1) or a cuspidal

curve (type 𝐼𝐼) and we call 𝑋 a nodal or cuspidal RU-surface, respectively.

We know from [7, Proposition 3.13] that nodal RU-surfaces form an open subset of an irre-
ducible component 𝔐RU of the moduli space. In order to understand the interaction of this
component with the Gieseker component, we study RU-surfaces from the point of view of
canonical rings.

3.1 Strategy

Let us explain the strategy underlying the algebraic computations along the following diagram.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 5

(1) Construct 𝑌 in a toric bundle  over ℙ1.
(2) Blow up to �̃� in a new toric variety ̃ .
(3) Construct the canonical model of 𝑋 by writing 𝑅(𝑋,𝐾𝑋) as a subring of the Cox ring of �̃�.
(4) Study ℚ-Gorenstein deformations of 𝑋 by deforming the canonical ring.

The deformations in Step (4) were originally found by considering all deformations over the base
Specℂ[𝜀]∕(𝜀𝑘) for 𝑘 = 2 and extending them to 𝑘 = 3, 4, etc., according to ideas of Reid [14]. Rather
than reproducing these unwieldy computations, we express the final results using formats for
Gorenstein rings.

3.2 The elliptic surface

Instead of using the double cover 𝑌 → 𝔽6, which leads to an elliptic surface with fibres polarised
in degree 2, we construct 𝑌 via the halfpolarisation 𝐴, so that the fibres have degree 1. Consider
the toric variety  with Cox ring

⎛⎜⎜⎝
𝑡0 𝑡1 𝑠1 𝑠0 𝜁

1 1 −3 0 0

0 0 1 2 3

⎞⎟⎟⎠
and irrelevant ideal 𝐼 = (𝑡0, 𝑡1) ∩ (𝑠0, 𝑠1, 𝜁). Geometrically, this is aℙ(1𝑠1 , 2𝑠0 , 3𝜁)-bundle overℙ

1
𝑡0,𝑡1

.
Alternatively,  ≅ (ℂ5 ⧵ 𝑉(𝐼))∕(ℂ∗)2 where the action is determined by the columns of the above
matrix. The subvariety 𝜁 = 0 is isomorphic to 𝔽6. Write Γ for the fibre of 𝔽6 → ℙ1 with base coordi-
nates 𝑡0, 𝑡1. The fibre coordinates are 𝑠0, 𝑠21; (𝑠0 = 0) being the positive section𝜎0 and (𝑠21 = 0) being
the negative section 𝜎∞. The elliptic surface 𝑌 is a relative sextic in  and the halfpolarisation 𝐴

is a section cutting out one Weierstrass point on each fibre.

Lemma3.2. Let𝑌 be a double cover of𝔽6 branched over a smooth element𝐷 of |−6Γ + 4𝜎0|. Then𝑌
is a hypersurface in of bidegree (0,6). One can choose coordinates so that𝑌 has a nodal or cuspidal
fibre 𝐵 over (0,1) with singularity at the point with coordinates (0, 1; 0, 1, 0). The equation of 𝑌 can
be written in the form:

(𝜁 − 𝜃𝑡31𝑠0𝑠1)𝜁 = 𝑠30 + 𝑡0𝑘
′
11𝑠0𝑠

4
1 + 𝑡0(𝑡0𝑙

′
16 + 𝜏𝑡171 )𝑠61,

where 𝑘′
11
(𝑡0, 𝑡1), 𝑙

′
16
(𝑡0, 𝑡1) are general polynomials in 𝑡0, 𝑡1 of respective degrees 11,16 and 𝜃, 𝜏 are

parameters. In particular, the special fibre is nodal if (𝜃, 𝜏 ≠ 0), cuspidal if (𝜃 = 0), type 𝐼2 if (𝜏 = 0)

and type III if (𝜃 = 𝜏 = 0).†

Proof. The linear system |−6Γ + 4𝜎0| on 𝔽6 decomposes into 𝐴 + |3𝜎0|. By the above discussion,
the branching over𝐴 is inherited from the structure of the toric variety, and thus𝑌 has equation:

𝜁2 = 𝑠30 + 𝑗6(𝑡0, 𝑡1)𝑠
2
0𝑠

2
1 + 𝑘12(𝑡0, 𝑡1)𝑠0𝑠

4
1 + 𝑙18(𝑡0, 𝑡1)𝑠

6
1,

where 𝜁 is the double cover variable and 𝑗, 𝑘, 𝑙 are general polynomials in 𝑡0, 𝑡1 of respective
degrees 6,12,18 so that the right-hand side of the equation cuts out a general element of |3𝜎0|. The
†More precisely, in the latter two cases, the surface 𝑌 is singular and its minimal resolution has a fibre of the given type.
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6 COUGHLAN et al.

coefficient of 𝑠3
0
is non-zero because otherwise two components of 𝐷 would intersect giving a sin-

gularity. We normalise this coefficient to be 1 and then we use the Tschirnhausen transformation
𝑠0 ↦ 𝑠0 +

1

3
𝑗6𝑠

2
1
to remove 𝑗6.

The elliptic fibration 𝑌 → ℙ1 has singular fibres when the discriminant Δ ∶= 4𝑘3 + 27𝑙2 van-
ishes. Assume that the fibre 𝐵∶ (𝑡0 = 0) is singular, so that Δ|𝐵 vanishes. Note that Δ|𝐵 = 4𝛼3 +

27𝛽2, where 𝛼 (respectively, 𝛽) is the coefficient of 𝑡12
1
in 𝑘 (respectively, 𝑡18

1
in 𝑙). Hence there

exists 𝜀 with 𝛼 = −3𝜀2 and 𝛽 = 2𝜀3.
Next we use the coordinate change 𝑠0 ↦ 𝑠0 + 𝜀𝑡6

1
𝑠2
1
to move the singularity of 𝐵 onto the

section 𝜎0 ∶ (𝑠0 = 0), and the equation of �̃� becomes

𝜁2 = 𝑠30 + 3𝜀𝑡61𝑠
2
0𝑠

2
1 + 𝑡0𝑘

′
11(𝑡0, 𝑡1)𝑠0𝑠

4
1 + 𝑡0(𝑡0𝑙

′
16(𝑡0, 𝑡1) + 𝜏𝑡171 )𝑠61.

If 𝜀 is zero, then the fibre 𝐵 is cuspidal. We write now 𝜃2 ∶= 3𝜀 and use the coordinates change
𝜁 ↦ 𝜁 + 𝜃𝑡3

1
𝑠0𝑠1 to move the 3𝜀𝑡61-term to the left side. This gives the claimed equation.

Close to (0, 1; 0, 1, 0) we can set 𝑡1 = 𝑠1 = 1 so that the equation becomes

𝜁2 = 𝑠30 + 3𝜀𝑠20 + 𝑡0𝑘
′
11(𝑡0, 1)𝑠0 + 𝑡0(𝑡0𝑙

′
16(𝑡0, 1) + 𝜏)

= 𝜏𝑡0 +
(
3𝜖𝑠20 + 𝑡0𝑠0𝑘

′
11(0, 1) + 𝑡20𝑙

′
16(0, 1)

)
+ h.o.t.,

which defines a smooth surface if 𝜏 ≠ 0. Otherwise, if 𝜏 = 0 (respectively, 𝜀 = 𝜏 = 0), we get a fibre
of type 𝐼2, respectively, 𝐼𝐼𝐼 after resolving the 𝐴1 surface singularity. □

Note that the choice of square-root 𝜃 corresponds to a choice of branch for the second blow-up of
the nodal fibre (cf. Figure 2). The curious change of coordinates on 𝜁 ensures that the blow-ups are
at torus fixed points, and thus, in the next section they can be expressed in terms of toric geometry.

3.3 The resolution �̃�

Consider now the toric variety ̃ with Cox ring

⎛⎜⎜⎜⎜⎜⎝

𝑡0 𝑡1 𝑠1 𝑠0 𝜁 𝑐 𝑒

1 1 −3 0 0 0 0

0 0 1 2 3 0 0

2 0 0 1 1 −1 0

1 0 0 0 1 1 −1

⎞⎟⎟⎟⎟⎟⎠
(1)

and irrelevant ideal

(𝑡0, 𝑡1) ∩ (𝑠0, 𝑠1, 𝜁) ∩ (𝑐, 𝑡1) ∩ (𝑐, 𝑠1) ∩ (𝑡0, 𝑠0, 𝜁)

∩ (𝑒, 𝑡1) ∩ (𝑒, 𝑠0) ∩ (𝑒, 𝑠1) ∩ (𝑡0, 𝜁, 𝑐).

This is the toric blow-up of  at the subscheme 𝑡2
0
= 𝑠0 = 𝜁 = 0 with exceptional divisor

(𝑐 = 0) ≅ ℙ(1, 1, 2), followed by the toric blow-up at the subscheme 𝑡0 = 𝜁 = 𝑐 = 0 with excep-
tional divisor (𝑒 = 0) ≅ ℙ2. Indeed, consider the subvariety (𝑒 = 0). The structure of the irrelevant
ideal implies that 𝑡1, 𝑠0, 𝑠1 are non-zero. Thus we apply part of the (ℂ∗)4-action (first three rows of
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 7

F IGURE 3 A cross section of the fan Σ(̃), with the origin and 𝑣𝑡1 behind the page

thematrix (1)) to rescale these three coordinates 𝑡1 = 𝑠0 = 𝑠1 = 1. We are left with theℂ∗-quotient
of ℂ3

𝑡0,𝜁,𝑐
induced by the last rowwith irrelevant ideal (𝑡0, 𝜁, 𝑐). In the same way, (𝑐 = 0) is the toric

subvariety with Cox ring

⎛⎜⎜⎝
𝑡0 𝑠0 𝜁 𝑒

2 1 1 0

1 0 1 −1

⎞⎟⎟⎠
and irrelevant ideal (𝑠0, 𝑒) ∩ (𝑡0, 𝜁). That is, the blow-up of ℙ(2𝑡0 , 1𝑠0 , 1𝜁) at the point (0,1,0).

Remark 3.3. A reference for this approach to toric varieties is Chapter 14 of the book [5]. The
generators of the Cox ring (columns of (1)) correspond to primitive generators of the rays in the
fan Σ of ̃ via Gale duality, and the irrelevant ideal encodes the cones of Σ. For example, the
generator 𝑐 gives a ray inside the cone 𝜎 spanned by primitive vectors 𝑣𝑡0 , 𝑣𝑠0 , 𝑣𝜁 with primitive
generator 𝑣𝑐 = 2𝑣𝑡0 + 𝑣𝑠0 + 𝑣𝜁 determined by the third row. The components of the irrelevant ideal
involving 𝑐 ensure that the cones of Σ include the barycentric subdivision of 𝜎, with respect to the
ray generated by 𝑣𝑐 (Figure 3).

Lemma 3.4. The double blow-up �̃� of 𝑌 is a hypersurface in ̃ of multidegree (0,6,2,1). The
equation of �̃� can be written in the form:

(𝑒𝜁 − 𝜃𝑡31𝑠0𝑠1)𝜁 = 𝑐𝑠30 + 𝑐𝑒𝑡0𝑘
′
11𝑠0𝑠

4
1 + 𝑡0(𝑐

2𝑒3𝑡0𝑙
′
16 + 𝜏𝑡171 )𝑠61, (2)

where

𝑘′11 = 𝑘′11(𝑐
2𝑒3𝑡0, 𝑡1), 𝑙

′
16 = 𝑙′16(𝑐

2𝑒3𝑡0, 𝑡1).

Proof. The first blow-up is at the subscheme 𝑡2
0
= 𝑠0 = 𝜁 = 0which is supported at the singularity

of 𝐵. We add one new variable 𝑐 to the Cox ring of  and read off the blow-up map using the third
row of the Cox grading (1). We use the same labels for the new coordinates:

𝑡0 ↦ 𝑐2𝑡0, 𝑡1 ↦ 𝑡1, 𝑠0 ↦ 𝑐𝑠0, 𝑠1 ↦ 𝑠1, 𝜁 ↦ 𝑐𝜁.

Note the weighting on 𝑡0. The equation of the first blow-up 𝑌(1) is obtained by pulling back the
equation of 𝑌 under this map and dividing by 𝑐2:

(𝜁 − 𝜃𝑡61𝑠0𝑠1)𝜁 = 𝑐𝑠30 + 𝑐𝑡0𝑘
′
11(𝑐

2𝑡0, 𝑡1)𝑠0𝑠
4
1 + 𝑡0(𝑐

2𝑡0𝑙
′
16(𝑐

2𝑡0, 𝑡1) + 𝜏𝑡171 )𝑠61.
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8 COUGHLAN et al.

The second blow-up is at 𝜁 = 𝑐 = 𝑡0 = 0 and the map is read off from the fourth row of the Cox
grading (1):

𝑡0 ↦ 𝑒𝑡0, 𝑡1 ↦ 𝑡1, 𝑠0 ↦ 𝑠0, 𝑠1 ↦ 𝑠1, 𝜁 ↦ 𝑒𝜁, 𝑐 ↦ 𝑒𝑐.

The equation of the second blow-up �̃� = 𝑌(2) is then as claimed in (2). Note that themultidegree of
this equation is (0,6,2,1) since, for example, themonomial 𝑐𝑠3

0
has such degree (seematrix (1)). □

Remark 3.5. According to the discussion before Lemma 3.4, the exceptional curve𝐶 = �̃� ∩ (𝑐 = 0)

is obtained by substituting 𝑐 = 0 and 𝑡1 = 𝑠1 = 1 into Equation (2):

𝐶∶ ((𝑒𝜁 − 𝜃𝑠0)𝜁 = 𝜏𝑡0) ⊂ Bl(0,1,0) ℙ(2𝑡0 , 1𝑠0 , 1𝜁).

Recall that the parameter 𝜏 is the coefficient of 𝑡17
1
in 𝑙′

17
.

Thus 𝐶 is usually an irreducible rational curve. If 𝜃 = 0, then nothing especially interesting
happens to 𝐶. On the other hand, if 𝜏 = 0, then 𝐶 breaks into two rational curves meeting in a
singularity on �̃�. In this situation, 𝑌 has an 𝐴1-singularity at the node of the fibre 𝐵. This case is
treated in more detail later. If 𝜃 = 𝜏 = 0, then 𝐶 is a non-reduced double curve and 𝑌 has an 𝐴1

singularity at the node of 𝐵.
In a similar way, we find that the second exceptional curve is 𝐸∶ (𝑒 = 0), which implies 𝑡1 =

𝑠0 = 𝑠1 = 1 with equation

𝐸∶ (𝜃𝜁 = 𝑐 + 𝜏𝑡0) ⊂ ℙ2
𝑡0,𝜁,𝑐

.

3.4 Canonical rings from Cox rings

We denote the Cox ring of ̃ by 𝑆. This is a ℤ4-graded polynomial ring with generators 𝑡0, 𝑡1, 𝑠0,
𝑠1, 𝜁, 𝑐, 𝑒. There is a ℤ-linear coordinate change on 𝐴1(̃), that is, applied to the degrees, which
shifts the ℤ4-grading on 𝑆 to:

⎛⎜⎜⎜⎜⎜⎝

𝑠1 𝑡0 𝑐 𝑒 𝑡1 𝑠0 𝜁

1 0 2 3

1 1 6 9

1 2 11 17

1 3 17 25

⎞⎟⎟⎟⎟⎟⎠
. (3)

This can be obtained from matrix (1) by multiplication on the left with the 4 × 4matrix

⎛⎜⎜⎜⎜⎝
−3 1 0 0

1 0 0 0

0 2 −1 0

0 1 1 −1

⎞⎟⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎜⎝
0 1 0 0

1 3 0 0

2 6 −1 0

3 9 −1 −1

⎞⎟⎟⎟⎟⎠
and a permutation of the columns.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 9

By Lemma 3.4, for 𝑑 ∈ ℤ4 we have maps

𝑆𝑑 → 𝐻0(𝑌, 𝑑1𝐴 + 𝑑2𝐵 + 𝑑3𝐶 + 𝑑4𝐸),

where the divisor classes are

𝐴∶ (𝑠1 = 0), 𝐵∶ (𝑡0 = 0), 𝐶 ∶ (𝑐 = 0), 𝐸 ∶ (𝑒 = 0), Γ∶ (𝑡1 = 0)

on �̃�. Note that (𝑠1 = 0) cuts out 𝐴 because 𝐴 is pulled back from the irreducible component
(𝑠2
1
= 0) of the branch locus of the double cover 𝑌 → 𝔽6. Thus the grading records the various

linear equivalences on �̃�:

𝐵 ∼ Γ − 2𝐶 − 3𝐸,

(𝑠0 = 0) ∼ 2𝐴 + 6𝐵 + 11𝐶 + 17𝐸,

(𝜁 = 0) ∼ 3𝐴 + 9𝐵 + 17𝐶 + 25𝐸.

The pullback of 𝐾𝑋 to �̃� is

Γ + 𝐶 + 2𝐸 + 1

5
(3𝐴 + 4𝐵 + 2𝐶) ∼ 𝐵 + 3𝐶 + 5𝐸 + 1

5
(3𝐴 + 4𝐵 + 2𝐶)

∼ 5𝐸 + 1

5
(3𝐴 + 9𝐵 + 17𝐶).

3.5 Generators

We want to construct the canonical ring 𝑅(𝑋,𝐾𝑋) as the image of a map from the Cox ring 𝑆. To
avoid having to keep track of corrections to multiplication maps in 𝑅(𝑋,𝐾𝑋) due to rounding, we
introduce formal fifth roots of 𝑠1, 𝑡0, 𝑐: 𝛼5 = 𝑠1, 𝛽5 = 𝑡0, 𝛾5 = 𝑐. The extension 𝑆[𝛼, 𝛽, 𝛾] is then
a ( 1

5
ℤ)3 ⊕ ℤ-graded polynomial ring generated by 𝛼, 𝛽, 𝛾, 𝑒 (note that 𝑒 belongs to 𝑆). In what

follows, we consider the ring homomorphism

𝜄 ∶
⨁
𝑛⩾0

𝑆[𝛼, 𝛽, 𝛾]
( 3
5
𝑛, 9

5
𝑛, 17

5
𝑛,5𝑛)

→
⨁
𝑛⩾0

𝐻0(�̃�, 𝑛𝑓∗𝐾𝑋) ≅ 𝑅(𝑋,𝐾𝑋).

The proof that this ring homomorphism is in fact surjective is Corollary 3.12.
Let 𝑅′ be the image of 𝜄 and 𝑋′ = Proj(𝑅′).

Lemma 3.6. The graded ring

𝑅′ ⊆
⨁
𝑛⩾0

𝐻0
(
�̃�, 𝑛

(
5𝐸 + 1

5
(3𝐴 + 9𝐵 + 17𝐶)

))
is generated by

𝑥0 = 𝛼3𝛽9𝛾17𝑒5 deg 1,

𝑥1 = 𝛼3𝛽4𝛾7𝑒2𝑡1 deg 1,
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10 COUGHLAN et al.

𝑦 = 𝛼6𝛽3𝛾4𝑒𝑡31 deg 2,

𝑤 = 𝛼9𝛽2𝛾𝑡51 deg 3,

𝑢0 = 𝛼2𝛽6𝛾13𝑒3𝑠0 deg 4,

𝑢1 = 𝛼2𝛽𝛾3𝑡1𝑠0 deg 4,

𝑧 = 𝜁 deg 5,

𝑡 = 𝛼𝛽3𝛾9𝑒𝑠20 deg 7,

g = 𝛼𝛽3𝛾14𝑠50 deg 17.

Proof. The generators can be determined algorithmically as follows. The grading on 𝑆[𝛼, 𝛽, 𝛾] is
induced by the map 𝛿∶ ℤ7 → (1

5
ℤ)3 ⊕ ℤ,

𝛿(𝑛1, … , 𝑛7) =
(
𝑛1
5
,
𝑛2
5
,
𝑛3
5
, 𝑛4, 𝑛5, 𝑛6, 𝑛7

) ⎛⎜⎜⎜⎜⎝
1 0 2 3

1 1 6 9

1 2 11 17

1 3 17 25

⎞⎟⎟⎟⎟⎠

𝑡

via deg(𝛼𝑛1𝛽𝑛2𝛾𝑛3𝑒𝑛4𝑡𝑛5
1
𝑠
𝑛6
0
𝜁𝑛7) = 𝛿(𝑛1, … , 𝑛7). Let Σ = ℤ+ ⋅ ( 3

5
, 9
5
, 17
5
, 5) be the cone in ( 1

5
ℤ)3 ⊕ ℤ

generated by 1

5
(3𝐴 + 9𝐵 + 17𝐶) + 5𝐸, the pullback of 𝐾𝑋 . Then the intersection of the preimage

𝛿−1Σ with the positive octant ( 1
5
ℤ+)3 ⊕ ℤ+ is the cone of monomials in 𝑅′. The primitive gener-

ators of this cone can be found using standard Hilbert basis algorithms for lattice cones (see, for
example, [12, Chapter 7]) and these are the generators of 𝑅′. □

Remark 3.7. It follows from Lemma 3.9 below that the generator g in degree 17 is eliminated
by relations.

Remark 3.8. At this stage, we already note that the fixed part of the canonical linear system is the
image of the curve 𝐸, because both 𝑥0 = 𝛼3𝛽9𝛾17𝑒5 and 𝑥1 = 𝛼3𝛽4𝛾7𝑒2𝑡1 are divisible by powers
of 𝑒. The other common factors correspond to curves𝐴, 𝐵, 𝐶 which are contracted to the 1

25
(1, 14)-

point. A more precise description of the fixed part can be found in Remark 3.14.

3.6 Relations

There are 10 binomial relations between the generators found in Lemma 3.6 (excluding those
involving g). These define a cone over the degree 5 generator 𝑧 in ℙ(1, 1, 2, 3, 4, 4, 5, 7):

𝑅1 ∶ 𝑥0𝑦 − 𝑥31 = 0, 𝑅2 ∶ 𝑥0𝑤 − 𝑥21𝑦 = 0,

𝑅3 ∶ 𝑥1𝑤 − 𝑦2 = 0, 𝑅4 ∶ 𝑥0𝑢1 − 𝑥1𝑢0 = 0,

𝑅5 ∶ 𝑥21𝑢1 − 𝑦𝑢0 = 0, 𝑅6 ∶ 𝑥1𝑦𝑢1 − 𝑤𝑢0 = 0,

𝑅7 ∶ 𝑥0𝑡 − 𝑢20 = 0, 𝑅8 ∶ 𝑥1𝑡 − 𝑢0𝑢1 = 0,

𝑅9 ∶ 𝑥1𝑢
2
1 − 𝑦𝑡 = 0, 𝑅10 ∶ 𝑦𝑢21 − 𝑤𝑡 = 0.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 11

Equation (2) defining �̃� induces several relations which cut out 𝑋′ inside this cone.

Lemma 3.9. There are four relations induced by (2) and these can be written as:

𝑅11 ∶ 𝑥0𝑃 + 𝑥21(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑢0𝑡 = 0,

𝑅12 ∶ 𝑥1𝑃 + 𝑦(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑢1𝑡 = 0,

𝑅13 ∶ 𝑦𝑃 + 𝑤(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑢31 = 0,

𝑅14 ∶ 𝑢0𝑃 + 𝑥1𝑢1(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑡2 = 0,

where 𝑃10 = 𝑧2 +⋯ is a general homogeneous form of degree 10 and 𝜃 and 𝜏 are parameters. The
generator g of degree 17 is eliminated by a fifth relation 𝑡𝑃 = ⋯ + g .

Proof. The leading term of Equation (2) cutting out �̃� in ̃ is 𝑒𝜁2. By Lemma 3.6 the unique
generator involving 𝜁 is 𝑧, and 𝑒 appears in 𝑥0, 𝑥1, 𝑦, 𝑢0, 𝑡; thus, we expect five relations induced
by (2).
We first study the relation 𝑅11 more precisely. Using Lemma 3.6 we can write in 𝑆[𝛼, 𝛽, 𝛾]

𝑥0𝑧
2 =

(
𝛼3𝛽9𝛾17𝑒5

)
𝜁2 =

(
𝛼3𝛽9𝛾17𝑒4

)(
𝑒𝜁2

)
,

and multiplying (2) with the excess monomial 𝛼3𝛽9𝛾17𝑒4, we get for the left-hand side

𝛼3𝛽9𝛾17𝑒4
(
𝑒𝜁 − 𝜃𝑡31𝑠0𝑠1

)
𝜁 = 𝑥0𝑧

2 − 𝜃
(
𝛼3𝛽4𝛾7𝑒2𝑡1

)2(
𝛼2𝛽𝛾3𝑡1𝑠0

)
𝜁

= 𝑥0𝑧
2 − 𝜃𝑥21𝑢1𝑧

and for the right-hand side

𝛼3𝛽9𝛾17𝑒4
(
𝑐𝑠30 + 𝑐𝑒𝑡0𝑘

′
11𝑠0𝑠

4
1 + 𝑡0(𝑐

2𝑒3𝑡0𝑙
′
16 + 𝜏𝑡171 )𝑠61

)
=
(
𝛼2𝛽6𝛾13𝑒3𝑠0

)(
𝛼𝛽3𝛾9𝑒𝑠20

)
+ 𝜏

(
𝛼3𝛽4𝛾7𝑒2𝑡1

)2(
𝛼9𝛽2𝛾𝑡51

)3
+
(
𝛼3𝛽9𝛾17𝑒5

)(
𝑠21
(
𝑐𝑡0𝑘

′
11𝑠0𝑠

2
1 + 𝑡20𝑐

2𝑒2𝑙′16𝑠
4
1

))
= 𝑢0𝑡 + 𝜏𝑥21𝑤

3 + 𝑥0�̃�.

Setting the two expressions equal and rearranging the terms we get a relation of the form

𝑥0𝑃 + 𝑥21(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑢0𝑡 = 0.

Note that themonomial 𝑢0𝑡 corresponds to the term 𝑐𝑠3
0
from (2), andmost of the terms (including

𝑥0𝑧
2 itself) are wrapped up in the general element 𝑃 of degree 10.
We can repeat this procedure to get the remaining relations, but it is easier to derive them from

𝑅11. Using𝑅1 and𝑅4 we have: 𝑥0 ∶ 𝑥1 = 𝑥2
1
∶ 𝑦 = 𝑢0 ∶ 𝑢1. Thus writing𝑅12 =

𝑥1
𝑥0
𝑅11 and applying

these ratios gives the claimed relation.
The relation 𝑡𝑃 = … always eliminates g , because g corresponds to the term 𝑐𝑠3

0
in (2), which

always appears with non-zero coefficient. □
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12 COUGHLAN et al.

Remark 3.10. Recall the following characterisation of 𝑇-singularities via their index 1 canonical
covers:

1

𝑑𝑛2
(1, 𝑑𝑛𝑎 − 1) ≅

[
(𝑥𝑦 − 𝑧𝑑𝑛) ⊂

1

𝑛
(1𝑥, −1𝑦, 𝑎𝑧)

]
,

see, for example, [10, Proposition 3.10] or [9, Example 2.1.8].

Corollary 3.11. The 14 relations defining 𝑋′ ⊂ ℙ(1, 1, 2, 3, 4, 4, 5, 7) fit into a Pfaffian presentation
as follows:

Pf4 𝑀 = 𝑀𝑉 = 0,

where

𝑀 =

⎛⎜⎜⎜⎜⎜⎝

0 0 𝑥0 𝑥2
1

𝑢0
0 𝑥1 𝑦 𝑢1

𝑢0 𝑥1𝑢1 𝑡

𝑡 −(𝜏𝑤3 + 𝜃𝑢1𝑧)

−sym 𝑃

⎞⎟⎟⎟⎟⎟⎠
, 𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎝

0

−𝑢2
1

0

𝑤

−𝑦

0

⎞⎟⎟⎟⎟⎟⎟⎠
,

and we omit the diagonal zero entries of the 6 × 6 skew matrix𝑀. For general choices of 𝑃10 and 𝜏
the singular locus of 𝑋′ is one point of type 1

25
(1, 14).

Proof. Write out the matrix product and the Pfaffians and compare this with the list of relations.
For the singular locus,𝑋′ has a covering by orbifold affine charts𝑈𝑚∶ (𝑚 ≠ 0) centred at each

coordinate point 𝑃𝑚 of the ambient space. Despite the number of equations, it is straightforward
to show the non-singularity (except𝑈𝑧) of each chart. Here are a couple of sample computations.
The chart𝑈𝑦 is contained in𝑈𝑥1

∩ 𝑈𝑤 because 𝑅3|𝑦=1 gives 𝑥1𝑤 = 1; thus, we ignore𝑈𝑦 . In fact,
similar considerations show that𝑈𝑥1

= 𝑈𝑦 ⊂ 𝑈𝑥0
∩ 𝑈𝑤 and𝑈𝑢0

⊂ 𝑈𝑥0
∩ 𝑈𝑡. Hencewe only need

to check non-singularity of four charts𝑈𝑥0
,𝑈𝑤,𝑈𝑢1

and𝑈𝑡. For𝑈𝑥0
, we use 𝑅1, 𝑅2, 𝑅4, 𝑅7 to elim-

inate 𝑦, 𝑤, 𝑢1, 𝑡, respectively, giving a hypersurface in ℂ4
𝑥1,𝑢0,𝑧

induced by any one of 𝑅11, … , 𝑅14. It
is then easy to show that this chart is non-singular. The other three charts work in a similar way.
Since we know that the other charts of 𝑋′ are non-singular, we only need to consider the

orbifold chart 𝑈𝑧 in an analytic neighbourhood of 𝑃𝑧 ∈ 𝑋. We use 𝑅11, 𝑅12, 𝑅13, 𝑅14 to elimi-
nate 𝑥0, 𝑥1, 𝑦, 𝑢0, respectively. Thus the local coordinates near 𝑃𝑧 are 𝑤, 𝑢1, 𝑡 and 𝑅10 defines

𝑋′ locally as the hypersurface 𝑢5
1
− 𝑤𝑡 + h.o.t = 0 in 1

5
(3𝑤, 4𝑢1 , 2𝑡)

⋅2
≅ 1

5
(1, 3, 4) after substituting

𝑦 = 𝑢3
1
+ h.o.t. using 𝑅13. By Remark 3.10, this is a

1

25
(1, 14) singularity. □

Corollary 3.12. The coordinate ring 𝑅′ of 𝑋′ ⊂ ℙ(1, 1, 2, 3, 4, 4, 5, 7) described in Corollary 3.11 is
the canonical ring 𝑅(𝑋,𝐾𝑋) and𝑋′ ≅ 𝑋 is an RU-surface of nodal type if 𝜃 ≠ 0 and of cuspidal type
if 𝜃 = 0.

Proof. A standard computer calculation (for instance, the command MinimalFreeResolution in
MAGMA applied to the equations given by Corollary 3.11) shows that the minimal free resolution
of 𝑋′ as an ℙ-module is

0 → (−28) → (−28) ⊗ ∨
1
→ (−28) ⊗ ∨

2
→ 2 → 1 →  → 𝑋′ ,
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 13

F IGURE 4 A birational map from ̃ to ℙ(1, 3, 17, 25). The origin and 𝑣𝑡1 are behind the page.

where 1 =
⨁

𝑑∈𝐿1
(−𝑑) with

𝐿1 = (3, 42, 5, 6, 7, 82, 9, 10, 112, 12, 14)

and 2 =
⨁

𝑑∈𝐿2
(−𝑑) with

𝐿2 = (5, 6, 72, 83, 92, 103, 114, 123, 134, 143, 153, 162, 17, 182, 19).

Thus the coordinate ring 𝑅′ is Cohen–Macaulay by the Auslander–Buchsbaum formula
[4, § 1.3]. Combining this with regularity in codimension 1, which follows from Corollary 3.11, we
see that 𝑋′ is projectively normal by Serre’s criterion for normality. The dualising sheaf of 𝑋′ is
𝜔𝑋′ = 𝑥𝑡5


(𝑋′ , 𝜔ℙ) = 𝑋′(28 − 1 − 1 − 2 − 3 − 4 − 4 − 5 − 7) = 𝑋′(1)where 𝑥𝑡5


(𝑋′ ,) =

(28) can be read off from the resolution above [4, § 3.6]. By projective normality, we obtain
𝐻0(𝑋, 𝑛𝐾𝑋) ≅ 𝐻0(𝑋′,𝑋′(𝑛)). Hence we have 𝑋′ ≅ 𝑋, 𝑝g (𝑋) = ℎ0(𝑋′(1)) = 2, and 𝐾2

𝑋
= 1

follows from 𝑃2(𝑋) = ℎ0(𝑋′(2)) = 4 and the Riemann–Roch formula of Blache [3]. □

Remark 3.13. The vanishing of 𝜃 corresponds to a cuspidal singular fibre as explained above.
The vanishing of 𝜏 imposes an extra 1

9
(1, 5) point on 𝑋′ (these are two independent conditions in

moduli).

Remark 3.14. As promised in Remark 3.8, we describe the fixed part 𝐹 of |𝐾𝑋|. Indeed, 𝑒 divides
all generators except𝑤, 𝑢1, 𝑧. Thus the image of 𝐸 is obtained by restricting the relation 𝑅13 to the
locus 𝑥0 = 𝑥1 = 𝑦 = 𝑢0 = 𝑡 = 0:

𝐹∶
(
𝑤(𝜃𝑢1𝑧 + 𝜏𝑤3) + 𝑢31 = 0

)
⊂ ℙ(3𝑤, 4𝑢1 , 5𝑧).

For general 𝜃, 𝜏, the curve 𝐹 passes through the index 5 point and has a node there. If 𝜃 = 0, then
𝐹 is a cone with vertex 𝑃𝑧. If 𝜏 = 0, then 𝐹 has two components each passing through 𝑃𝑤 and 𝑃𝑧.
If 𝜃 = 𝜏 = 0, then 𝐹 is the triple line joining 𝑃𝑤 and 𝑃𝑧.

3.7 A hypersurface in weighted projective space

We give an alternative description of the general RU-surface, which is algebraicallymuch simpler.
The following result is inspired by the observation that ̃ is birational to ℙ(1, 3, 17, 25), as can be
read off from the last row of the weight matrix (3). The decomposition of this map into extremal
contractions is briefly described in Figure 4, where the red loci denote the exceptional locus of
each factor (formore details on how to compute this, see [5, Chapter 15]). Indeed,modulo flips, the
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14 COUGHLAN et al.

birational map is a composition of three divisorial contractions𝐷𝑠1
,𝐷𝑐 and𝐷𝑡0

whose restrictions
to �̃� contract the T-chain 𝐴 + 𝐵 + 𝐶.

Proposition 3.15. A general quasismooth hypersurface 𝑆 of weighted degree 51 in ℙ(1, 3, 17, 25) is
an RU-surface (here quasismooth means that the affine cone is smooth outside of the vertex).

Proof. By adjunction we have 𝐾𝑆 = 𝑆(51 − 25 − 17 − 3 − 1) = 𝑆(5) which has two global
sections and 𝐾2

𝑆
= (51 ⋅ 52)∕(1 ⋅ 3 ⋅ 17 ⋅ 25) = 1.

Write 𝑒, 𝑡1, 𝑠0, 𝜁 for the coordinates on the weighted projective space and then the equation of
degree 51 can be expressed as

𝑒𝑃50 + 𝜏𝑡171 + 𝜃𝑡31𝑠0𝜁 + 𝑠30, (4)

where 𝑃50(𝑒, 𝑡1, 𝑠0, 𝜁) is a polynomial of weighted degree 50 and 𝜃, 𝜏 are parameters. Note that
there are only three forms of degree 51 that are not divisible by 𝑒. It is easy to check by hand that
𝑆 is quasismooth.
Now 𝑆 contains the index 5 coordinate point (0,0,0,1) and we get a 1

25
(3, 17) ≅ 1

25
(1, 14) singu-

larity there because since 𝑃50 contains the monomial 𝜁2. If 𝜏 is non-zero, then 𝑆 does not contain
the singular point of index 3. We assume that the coefficient of 𝑠3

0
is non-zero (= 1) to avoid the

index 17 point.
By [13, Theorem 3.2 (A1)] the surface constructed is an RU-surface. □

Remark 3.16. In coordinates, the map ̃ ⤏ ℙ(1, 3, 17, 25) is given by:

(𝑠1, 𝑡0, 𝑐, 𝑒, 𝑡1, 𝑠0, 𝜁) ↦ (1, 1, 1, 𝑒, 𝑡1, 𝑠0, 𝜁),

and this maps Equation (2) defining �̃�, to Equation (4) defining 𝑆51. The degree 51 can also be
read off from the multidegree (6,18,34,51) of �̃� with respect to the weight matrix (3). Thus we
have a generically 1-1 map between the moduli spaces parametrising hypersurfaces �̃� ⊂ ̃ and
hypersurfaces 𝑆51 ⊂ ℙ(1, 3, 17, 25). In particular, the general element in𝔐𝑅𝑈 can be realised as
such a hypersurface 𝑆51.
This agrees with the naive parameter count. In ℙ(1, 3, 17, 25), the linear system ℙ(𝐻0((51)))

has dimension 50 and the automorphism group has dimension 22 (an automorphism 𝜑 of
the weighted projective space ℙ(1, 3, 17, 25) is given, up to ℂ∗ action, by 𝜑 = (𝑃0, 𝑃1, 𝑃2, 𝑃3)

where deg(𝑃0) = 1, deg(𝑃1) = 3, deg(𝑃2) = 17, deg(𝑃3) = 25), which suggests that quasismooth
hypersurfaces of weighted degree 51 have 28 moduli.

We now show that the parameters occurring in (4) play the same role as in Section 3.

Proposition 3.17. The RU-hypersurface with 𝜏 = 0 (respectively, 𝜏 = 𝜃 = 0) has an additional
1

9
(1, 5) (respectively, 1

18
(1, 5)) singularity.

Proof. Near the index 3 point (0,1,0,0) the local analytic form of 𝑆 is

(𝜃𝑠0𝜁 + 𝑒3 + h.o.t.) = 0 ⊂
1

3
(1𝑒, 2𝑠0 , 1𝜁),

if we assume that the monomial 𝑒2𝑡18
1
appears in 𝑃50. By Remark 3.10, this is a

1

9
(1, 5) singularity.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 15

Moreover, since 𝑡11
1
𝑠0, 𝜁2 and 𝑒𝑡81𝜁 appear in 𝑃50, if 𝜃 = 0we get (𝑒𝑠0 + 𝑒𝜁2 + 𝑒2𝜁 + h.o.t. = 0) ⊂

1

3
(1, 2, 1) which is a 1

18
(1, 5) singularity. □

Proposition 3.18. The canonical model of an RU-hypersurface is the same as the one described in
Corollary 3.11.

Proof. As shown above,𝐾𝑆 = 𝑆(5) so we canwrite out generators and relations for the canonical
ring directly:

𝑥0 = 𝑒5, 𝑥1 = 𝑒2𝑡1, 𝑦 = 𝑒𝑡31, 𝑤 = 𝑡51, 𝑢0 = 𝑒3𝑠0, 𝑢1 = 𝑡1𝑠0,

𝑧 = 𝜁, 𝑡 = 𝑒𝑠20, g = 𝑠50

in degrees 1,1,2,3,4,4,5,7,17, respectively.
The easy monomial relations between these generators are the same as in Section 3.6 and the

equation of degree 51 can be expressed in terms of these new generators in five different ways
by multiplying it with each of 𝑒4, 𝑒𝑡1, 𝑒3𝑡21, 𝑡

3
1
, 𝑠2

0
(cf. Lemma 3.9). The last of these five equa-

tions involves 𝑠5
0
, and therefore, we can use it to eliminate the spurious generator g of degree

17 in the same way as Lemma 3.9.
Finally, we can fit these relations into the skew-matrix format of Corollary 3.11. □

Remark 3.19. After an appropriate coordinate change,𝑃50 involves only even powers of 𝜁. Thus the
general RU-hypersurface has an involution (𝑒, 𝑡1, 𝑠0, 𝜁) ↦ (𝑒, 𝑡1, 𝑠0, −𝜁) if and only if 𝜃 vanishes.
This is another interpretation of the obstruction to ℚ-Gorenstein smoothing of the general RU-
surface cf. [7, Proposition 3.18].

4 CUSPIDAL RU-SURFACES ARE ℚ-GORENSTEIN SMOOTHABLE

In this section we assume that 𝜃 = 0, that is, we consider the cuspidal RU-surfaces. We exhibit
a ℚ-Gorenstein smoothing of the general cuspidal RU-surface. Since the relations 𝑅11, … , 𝑅14 are
only determined modulo 𝑅1, … , 𝑅10, we use 𝑅3 to rewrite 𝑅14 as

𝑅14 ∶ 𝑢0𝑃 + 𝜏𝑦2𝑤2𝑢1 + 𝑡2 = 0.

The new relation no longer fits into the previous Pfaffian format. This choice of 𝑅14 is crucial in
finding the ℚ-Gorenstein smoothing.

Proposition 4.1. Consider the family ∕Λ defined by relations

�̃�1 ∶ 𝑥0𝑦 − 𝑥31 + 𝜆3𝜏𝑤 = 0, �̃�2 ∶ 𝑥0𝑤 − 𝑥21𝑦 + 𝜆𝑢0 = 0,

�̃�3 ∶ 𝑥1𝑤 − 𝑦2 + 𝜆𝑢1 = 0, �̃�4 ∶ 𝑥0𝑢1 − 𝑥1𝑢0 + 𝜆2𝜏𝑦𝑤 = 0,

�̃�5 ∶ 𝑥21𝑢1 − 𝑦𝑢0 + 𝜆2𝜏𝑤2 = 0, �̃�6 ∶ 𝑥1𝑦𝑢1 − 𝑤𝑢0 − 𝜆𝑡 = 0,

�̃�7 ∶ 𝑥0𝑡 − 𝑢20 + 𝜆𝜏𝑥1𝑦
2𝑤 = 0, �̃�8 ∶ 𝑥1𝑡 − 𝑢0𝑢1 + 𝜆𝜏𝑦𝑤2 = 0,

�̃�9 ∶ 𝑥1𝑢
2
1 − 𝑦𝑡 − 𝜆𝜏𝑤3 = 0, �̃�10 ∶ 𝑦𝑢21 − 𝑤𝑡 + 𝜆�̃� = 0,
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16 COUGHLAN et al.

�̃�11 ∶ 𝑥0�̃� + 𝜏𝑥21𝑤
3 + 𝑢0𝑡 − 𝜆2𝜏𝑤𝑢21 = 0,

�̃�12 ∶ 𝑥1�̃� + 𝜏𝑦𝑤3 + 𝑢1𝑡 = 0,

�̃�13 ∶ 𝑦�̃� + 𝜏𝑤4 + 𝑢31 = 0,

�̃�14 ∶ 𝑢0�̃� + 𝜏𝑦2𝑤2𝑢1 + 𝑡2 = 0,

where 𝜆 is the coordinate on 0 ∈ Λ ⊂ ℂ and �̃� is a general polynomial of degree 10 satisfying �̃�|𝜆=0 =
𝑃. If 𝜏 ≠ 0, then the central fibre 0 is a cuspidal Rana–Urzúa surface with a single

1

25
(1, 14) point,

and ∕Λ is a ℚ-Gorenstein smoothing of 0.

Proof. By construction, the fibre over 𝜆 = 0 is a Rana–Urzúa surface because the relations match
those of § 3.6. By Lemma 4.2 below, the general fibre with 𝜆 ≠ 0 is a smooth surface. Hence ∕Λ

is flat.
The ℚ-Gorenstein condition is only relevant near the singular point of  at 𝑃𝑧 over 𝜆 = 0.

Substituting 𝑧 = 1 into the equations �̃�10, �̃�11, �̃�12, �̃�13, �̃�14 allows us to eliminate 𝑥0, 𝑥1, 𝑦, 𝑢0,
respectively, in the same way as the proof of Corollary 3.11, so that we are left with (𝑢5

1
− 𝑤𝑡 +

𝜆 + h.o.t. = 0) in 1

5
(1, 3, 4) × Λ. Thus the family ∕Λ induces a ℚ-Gorenstein smoothing of the

1

25
(1, 14) point on the fibre over 𝜆 = 0 (see, for example, [9, Example 2.1.8]). □

Lemma 4.2. The family ∕Λ fits into the matrix format

Pf4 𝑀1 = Pf4 𝑀2 = 𝑀1𝑉1 = 𝑀2𝑉2 = 0,

where

𝑀1 =

⎛⎜⎜⎜⎜⎝
𝜆 𝑥1 𝑤 𝑢1

𝑢0 𝑦𝑢1 𝑡

𝑡 −𝜏𝑦𝑤2

−sym �̃�

⎞⎟⎟⎟⎟⎠
, 𝑀2 =

⎛⎜⎜⎜⎜⎝
𝜆 𝑥1 𝑦 𝑡

𝑦 𝑤 𝑢2
1

−𝑢1 𝜏𝑤3

−sym −�̃�

⎞⎟⎟⎟⎟⎠
,

𝑉1 =
𝑡
(
−𝜆𝜏𝑦2𝑤, 𝑢0, −𝑥1𝑦, 𝑥0, 0

)
,

𝑉2 =
𝑡
(
𝑢0, −𝜆2𝜏𝑤, 𝑥2

1
, −𝑥0, 0

)
.

If 𝜆 ≠ 0, then the fibre 𝜆 is isomorphic to a non-singular hypersurface of weighted degree 10 in
ℙ(1, 1, 2, 5).

Proof. Up to sign, the Pfaffians of𝑀1 are �̃�10, �̃�14, �̃�12, �̃�6, �̃�8 and the Pfaffians of𝑀2 are �̃�10, �̃�13,
�̃�12, �̃�3, �̃�9. The product𝑀1𝑉1 gives �̃�2, 𝑦�̃�4, �̃�7, 𝑦�̃�8, �̃�11 + 𝜏𝑤(𝑥1𝑤 − 𝜆𝑢1)�̃�3 and𝑀2𝑉2 gives �̃�1,
�̃�2, �̃�4, �̃�5, �̃�11. Thus taken all together these generate the ideal defining ∕Λ.
Assume now that 𝜆 ≠ 0. We perform row and column operations on𝑀𝑖 preserving antisymme-

try, and apply the complementary row operations to 𝑉𝑖 so that the products𝑀𝑖𝑉𝑖 are preserved.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 17

This gives new matrices𝑀′
𝑖
and 𝑉′

𝑖
:

𝑀′
1 =

⎛⎜⎜⎜⎜⎝
𝜆 0 0 0

0 0 0
�̃�6
𝜆

�̃�8
𝜆

−sym �̃�10
𝜆

⎞⎟⎟⎟⎟⎠
, 𝑀′

2 =

⎛⎜⎜⎜⎜⎝
𝜆 0 0 0

0 0 0
�̃�3
𝜆

�̃�9
𝜆

−sym �̃�10
𝜆

⎞⎟⎟⎟⎟⎠
𝑉′
1 =

𝑡
(
𝑦�̃�4
𝜆
,

�̃�2
𝜆
, −𝑥1𝑦, 𝑥0, 0

)
, 𝑉′

2 =
𝑡
(
�̃�2
𝜆
,

�̃�1
𝜆
, 𝑥2

1
, −𝑥0, 0

)
.

Thus the format reduces to �̃�1, �̃�2, �̃�3, �̃�6, �̃�8, �̃�9, �̃�10, 𝑦�̃�4.
Moreover, the assumption 𝜆 ≠ 0 enables us to rewrite 𝑤, 𝑢0, 𝑢1, 𝑡 using relations �̃�1, �̃�2, �̃�3, �̃�6,

respectively:

𝑥0𝑦 − 𝑥31 = −𝜆3𝜏𝑤, 𝑥0𝑤 − 𝑥21𝑦 = −𝜆𝑢0,

𝑥1𝑤 − 𝑦2 = −𝜆𝑢1, 𝑥1𝑦𝑢1 − 𝑤𝑢0 = 𝜆𝑡.

Doing this transforms �̃�8, �̃�9, 𝑦�̃�4 into identities rather than relations. For example, �̃�4 reduces to
the identity:

𝑥0𝑢1 − 𝑥1𝑢0 + 𝜆2𝜏𝑦𝑤

≡ 𝑥0

(
𝑥1𝑤 − 𝑦2

−𝜆

)
− 𝑥1

(
𝑥0𝑤 − 𝑥2

1
𝑦

−𝜆

)
+ 𝜆2𝜏𝑦

(
𝑥0𝑦 − 𝑥3

1

−𝜆3𝜏

)

≡
1

𝜆

(
−𝑥0𝑥1𝑤 + 𝑥0𝑦

2 + 𝑥1𝑥0𝑤 − 𝑥31𝑦 − 𝑥0𝑦
2 + 𝑥31𝑦

)
≡ 0.

The remaining relation is �̃�10. By repeatedly using �̃�1, �̃�2, �̃�3, �̃�6 to eliminate 𝑤, 𝑢0, 𝑢1, 𝑡 as above,
we are left with a relation between generators 𝑥0, 𝑥1, 𝑦, 𝑧, which we display here, multiplied by
𝜆11 for readability:

𝑥0(𝑥0𝑦 − 𝑥31)
3 − 3𝜆3𝑥21𝑦(𝑥0𝑦 − 𝑥31)

2 + 3𝜆6𝜏−1𝑥1𝑦
3(𝑥0𝑦 − 𝑥31) + 𝜆9𝑦5 + 𝜆12�̃� = 0.

Since �̃� is general, this is a non-singular surface. □

The last equation in the proof can be interpreted as follows.

Corollary 4.3. Let  → Λ be the 1-parameter smoothing of a cuspidal RU-surface 𝑋0 constructed
above. Then there is a diagram

where 𝜙 is birational and an isomorphism outside the central fibres 𝑋0 and
�̃�0 = (𝑥0(𝑥

3
1
− 𝑥0𝑦)

3 = 0).
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18 COUGHLAN et al.

TABLE 1 T-singularities 1

𝑑𝑛2
(1, 𝑑𝑛𝑎 − 1) occurring individually

Cartier index 𝒏 𝒅 T-singularity T-string
2 𝑑 ⩽ 32 1

4𝑑
(1, 2𝑑 − 1) [4] or [3,3] or [3, 2, … , 3]

3 2 1

18
(1, 5) [4,3,2]

5 1 1

25
(1, 14) [2,5,3]

TABLE 2 Codiscrepancy divisors

T-singularity 𝚫𝒋

1

4
(1, 1) 1

2
𝐴𝑗 with 𝐴2

𝑗
= −4

1

18
(1, 5) 2

3
𝐴𝑗 +

2

3
𝐵𝑗 +

1

3
𝐶𝑗

with 𝐴2
𝑗
= −4, 𝐵2

𝑗
= −3, 𝐶2

𝑗
= −2

1

25
(1, 14) 3

5
𝐴𝑗 +

4

5
𝐵𝑗 +

2

5
𝐶𝑗

with 𝐴2
𝑗
= −3, 𝐵2

𝑗
= −5, 𝐶2

𝑗
= −2

This phenomenon could be taken as a starting point for a comparison of the closure of the
Gieseker component and a GIT moduli space of hypersurfaces of degree 10 in ℙ(1, 1, 2, 5), which
could possibly be constructed using the techniques of [2].

5 I-SURFACESWITH TWO T-SINGULARITIES

In this section, we apply and extend the results of Section 3 to understand how T-divisors in𝔐1,3

intersect each other. We recall that for an I-surface 𝑋 with a unique non-canonical T-singularity
𝑄, the point 𝑄 is as in Table 1 by [7, Theorem 1.1].
Suppose that 𝑋 is an I-surface with two distinct T-singularities 𝑄1 and 𝑄2 of index 𝑖1, respec-

tively, 𝑖2 (with 𝑖1 ≠ 𝑖2) belonging to the above list, where for simplicity of exposition we restrict
to the case 𝑑 = 1 in the index 2 case. In particular, these surfaces should correspond to general
points in the intersection of two T-divisors in𝔐1,3.
We let 𝑓∶ 𝑌 → 𝑋 be the minimal desingularisation and 𝜖∶ 𝑌 → 𝑌 be the morphism to a

minimal model:

(5)

Here 𝜖 is the composition of 𝑘 blow-ups at 𝑃1, … , 𝑃𝑘 (possibly infinitely near). We will denote the
exceptional divisor of 𝜖 by𝐸 =

∑𝑘
𝑖=1 𝐸𝑖 , where the𝐸𝑖 are the (−1)-curves of each blow-up (possibly

not irreducible, nor reduced). In particular, 𝐾𝑌 = 𝜖∗𝐾𝑌 + 𝐸.
We write

𝑓∗𝐾𝑋 = 𝐾�̃� + Δ

where Δ = Δ1 + Δ2 is the codiscrepancy divisor of 𝑓 with Δ𝑗 supported on 𝑓−1(𝑄𝑗). These are
chains of smooth rational curves with self-intersections and coefficients as in Table 2.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12696 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 19

Since 𝑋 has only rational singularities then we have 𝑞(𝑌) = 𝑞(𝑌) = 𝑞(𝑋) = 0 and 𝑝g (𝑌) =

𝑝g (𝑌) = 𝑝g (𝑋) = 2, so the Kodaira dimension of𝑌 is positive and theminimalmodel𝑌 is unique.
Arguing as in [7, § 4] we see that 𝑌 is a properly elliptic surface, and moreover, by [11, Proposition
20], we have

𝐾2
𝑌
= 1 + (Δ1)

2 + (Δ2)
2 = 𝑑1 − 𝑟1 + 𝑑2 − 𝑟2 − 1 (6)

where 𝑟𝑗 is the length of the T-string and 𝑑𝑗 is as in Table 1.

5.1 Useful results

We summarise some results that will be used throughout this section. First we recall some well-
known facts about the structure of the 𝜖-exceptional divisors.

Remark 5.1. Let Γ, Γ′ be two distinct irreducible (−1)-curves on 𝑌. Then Γ ∩ Γ′ = ∅ since 𝑌 has
Kodaira dimension 1.

Remark 5.2. Let𝐸 =
∑𝑘

𝑖=1 𝐸𝑖 be the exceptional divisor of 𝜖, where the functions of𝐸𝑖 are the (−1)-
curves of each blow-up. Then every 𝐸𝑖 contains at least one irreducible (−1)-curve Γ𝑖 . Moreover
if 𝐷 ⊂ 𝐸 is an 𝜖-exceptional irreducible (−𝑛)-curve with 𝑛 ⩾ 2, then 𝐸 − 𝐷 ⩾

∑
𝑚ℎΓℎ, with the

functions of Γℎ irreducible (−1)-curves and
∑

𝑚ℎ ⩾ 𝑘.

Now we show some properties of the components of the T-strings (that is, 𝑓-exceptional
divisors) and the 𝜖-exceptional divisors.
From now on, we abuse notation and denote the pull back of 𝐾𝑌 to 𝑌 by 𝐾𝑌 , and the pull back

of 𝐾𝑋 to 𝑌 by 𝐾𝑋 . With this convention, we can write

𝐾𝑋 = 𝐾𝑌 + Δ1 + Δ2 = 𝐾𝑌 + 𝐸 + Δ1 + Δ2.

Remark 5.3. Let Γ ⊂ 𝑌 be an 𝜖-exceptional irreducible (−1)-curve. Then 𝐾𝑋Γ > 0.

Lemma 5.4. Let 𝐷 ⊂ 𝑌 be an irreducible (−2)-curve.
Then 𝐾𝑌𝐷 = 𝐸𝐷 = 0. In particular:

(i) if 𝐷 ⊂ 𝑌 is not contracted by 𝜖, then 𝜖(𝐷) ⊂ 𝑌 is again a (−2)-curve and 𝐷 ∩ 𝐸 = ∅;
(ii) if 𝐷 ⊂ 𝑌 is contracted by 𝜖, then 𝐷 intersects only one (−1)-curve Γ ⊂ 𝐸 and 𝐷Γ = 1.

Proof. Since 𝐷2 = −2, by adjunction we have

0 = 𝐾𝑌𝐷 = 𝐾𝑌𝐷 + 𝐸𝐷

and 𝐾𝑌𝐷 ⩾ 0 because 𝐾𝑌 is nef.
If 𝐷 is not 𝜖-exceptional, then the second summand is non-negative, giving 𝐸𝐷 = 0 and the

first item.
If 𝐷 is 𝜖-exceptional, then the first summand is zero, so also the second. To conclude the proof

of (ii) assume that 𝐷 intersects two distinct (−1)-curves Γ, Γ′. Contracting Γ and Γ′, 𝐷 becomes
a curve with non-negative self-intersection and negative intersection with the canonical divisor.
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20 COUGHLAN et al.

This is absurd since 𝑌 is an elliptic surface. If𝐷Γ ⩾ 2, then contracting Γwe obtain a curve which
is not 𝜖-exceptional and has negative intersection with the canonical divisor, impossible on the
minimal surface 𝑌. □

Lemma 5.5. Let 𝐷 ⊂ 𝑌 be an irreducible (−3)-curve that is not 𝜖-exceptional. Then 𝜖(𝐷) ⊂ 𝑌 is
either a (−3)-curve or a (−2)-curve.

Proof. Since 𝐷2 = −3, by adjunction we have

1 = 𝐾𝑌𝐷 = 𝐾𝑌𝐷 + 𝐸𝐷,

𝐾𝑌𝐷 ⩾ 0 because 𝐾𝑌 is nef and 𝐸𝐷 ⩾ 0 since 𝐷 is not exceptional. If 𝐸𝐷 = 0, then 𝜖(𝐷) is again a
(−3)-curve. So assume 𝐾𝑌𝐷 = 0 and 𝐸𝐷 = 1 and write 𝐷 = 𝜖∗(𝜖(𝐷)) −

∑
𝑚𝑖𝐸𝑖 , with 𝑚𝑖 ⩾ 0. We

have 1 = 𝐷𝐸 =
∑

𝑚𝑖 , so 𝐷 is obtained by blowing up 𝜖(𝐷) once at a smooth point and 𝜖(𝐷) is a
(−2)-curve. □

Lemma 5.6. We have

𝐾𝑋𝐾𝑌 = (Δ1 + Δ2)𝐾𝑌 ⩾
1

2
, 𝐾𝑋𝐸 ⩽

1

2
.

Proof. We have

𝐾𝑋𝐾𝑌 = (𝐾𝑌 + 𝐸 + Δ1 + Δ2)𝐾𝑌 = (Δ1 + Δ2)𝐾𝑌

since 𝐾2
𝑌
= 𝐾𝑌𝐸 = 0. Moreover, we have 𝐾𝑋𝐾𝑌 > 0 because 𝐾𝑌 moves and 𝐾𝑋 is positive

outside the support of the 𝑓-exceptional locus. Looking at the description of the codiscrep-
ancy divisors we note that the divisors with coefficient less than 1

2
are (−2)-curves. Then

by the above Lemma 5.4 we obtain (Δ1 + Δ2)𝐾𝑌 ⩾
1

2
. The second inequality follows since

1 = 𝐾2
𝑋
= 𝐾𝑋(𝐾𝑌 + 𝐸). □

Proposition 5.7. Let 𝐷 ⊂ 𝐸 ⊂ 𝑌 be an 𝜖-exceptional irreducible (−𝑛)-curve, with 𝑛 ⩾ 2. Then 𝐷 is
also 𝑓-exceptional.

Proof. Suppose not, then we have 0 < 𝐾𝑋𝐷 = 𝐾𝑌𝐷 + (Δ1 + Δ2)𝐷 = 𝑛 − 2 + (Δ1 + Δ2)𝐷. If 𝑛 ⩾ 3,
then we get 𝐾𝑋𝐷 ⩾ 1, which is absurd since 𝐾𝑋𝐷 ⩽ 𝐾𝑋𝐸 ⩽

1

2
by Lemma 5.6.

Therefore we may assume 𝑛 = 2. We first consider the case where 𝑄1, 𝑄2 are T-singularities
of index 𝑖1 = 5, respectively, 𝑖2 = 2, so that by Equation (6), 𝜖∶ 𝑌 → 𝑌 is the composition of
three blow-ups. In this case 𝐾𝑋𝐷 = (Δ1 + Δ2)𝐷 ⩾

2

5
(see the codiscrepancies shown above). By

Remark 5.2 and Remark 5.3, since we have three blow-ups and for every irreducible (−1)-curve
Γ ⊂ 𝐸 it is 𝐾𝑋Γ ⩾

1

10
, we obtain 𝐾𝑋(𝐸 − 𝐷) ⩾ 3

10
. Whence 𝐾𝑋𝐸 = 𝐾𝑋𝐷 + 𝐾𝑋(𝐸 − 𝐷) ⩾ 2

5
+ 3

10
>

1

2
, which contradicts Lemma 5.6.
The cases (𝑖1, 𝑖2) = (5, 3) and (𝑖1, 𝑖2) = (3, 2) are similar. □

Corollary 5.8. Let 𝐷 ⊂ 𝐸 ⊂ 𝑌 be an 𝜖-exceptional irreducible (−𝑛)-curve. If 𝑛 ⩾ 2, then 𝐾𝑋𝐷 = 0;
if 𝑛 = 1, then 𝐾𝑋𝐷 ⩾

1

𝑖1𝑖2
.
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 21

5.2 I-surfaces with a singularity of type 𝟏

𝟐𝟓
(𝟏, 𝟏𝟒) and a singularity of

index 2 do not exist

In this section we are going to prove the following.

Proposition 5.9. There are no I-surfaces with a singularity of type 1

25
(1, 14), a singularity of type

1

4
(1, 1) and smooth elsewhere.

Remark 5.10. A generalisation of the below proof shows that there are no I-surfaces with a singu-
larity 1

25
(1, 14), a singularity of type 1

4𝑑
(1, 2𝑑 − 1) and smooth elsewhere. We do not include the

details here but it involves keeping track of the possible intersections with the index 2 T-chain.
Moreover, we do not know if there is an I-surface with more general singularities of index 5 and
index 2.

Proof. Assume by a contradiction the existence of such a surface and consider the diagram 5where
the resolution of the two singular points yields a string of type [3,5,2] and a string of type [4].
The strategy of the proof consists in studying the possible configuration of 𝜖-exceptional

irreducible (−1)-curves.
First note that by Equation (6), 𝜖∶ 𝑌 → 𝑌 is a composition of three blow-ups because𝐾2

𝑌
= −3.

Let 𝑄1 be the point of index 5 and 𝑄2 be the point of index 2. The codiscrepancy divisor corre-
sponding to𝑄1 (respectively,𝑄2) isΔ1 =

3

5
𝐴1 +

4

5
𝐵1 +

2

5
𝐶1 (respectively,Δ2 =

1

2
𝐴2). Thus we can

write

𝐾𝑋 = 𝐾𝑌 +

3∑
𝑖=1

𝐸𝑖 + Δ1 + Δ2.

ByRemark 5.2, Lemma 5.6 andCorollary 5.8, we have 3

10
⩽ 𝐾𝑋𝐸 ⩽

1

2
and 1

2
⩽ 𝐾𝑋𝐾𝑌 ⩽

7

10
. Now

𝐾𝑋𝐾𝑌 = (Δ1 + Δ2)𝐾𝑌 =
(
3

5
𝐴1 +

4

5
𝐵1 +

2

5
𝐶1 +

1

2
𝐴2

)
𝐾𝑌,

hence the only possibilities for 𝐾𝑋𝐾𝑌 are
1

2
, 3
5
and for 𝐾𝑋𝐸 we get:

𝐾𝑋𝐸 =
1

2
or 𝐾𝑋𝐸 =

2

5
. (7)

Now let Γ be an 𝜖-exceptional irreducible (−1)-curve. We have 𝐾𝑋Γ ⩾
1

10
since 𝑋 has index 10.

Now, since𝐾𝑋(𝐸 − Γ) ⩾ 2

10
, we obtain𝐾𝑋Γ ⩽

3

10
. Hence since𝐾𝑋 = 𝐾𝑌 + Δ1 + Δ2 and𝐾𝑌Γ = −1,

we get 11

10
⩽ (Δ1 + Δ2)Γ ⩽

13

10
.

We exclude the cases where Γ𝐶1 = 2, 3 and Γ𝐴1 = 2 since they contradict Lemma 5.4(i) and
Lemma 5.5. Therefore we are left with the following possibilities (Figure 5):

(Δ1 + Δ2)Γ = 3

5
+ 1

2
= 3

5
𝐴1Γ + 1

2
𝐴2Γ ; 𝐾𝑋Γ = 1

10
, (𝐼)

(Δ1 + Δ2)Γ = 4

5
+ 2

5
= 4

5
𝐵1Γ + 2

5
𝐶1Γ ; 𝐾𝑋Γ = 2

10
, (𝐼𝐼)

(Δ1 + Δ2)Γ = 4

5
+ 1

2
= 4

5
𝐵1Γ + 1

2
𝐴2Γ ; 𝐾𝑋Γ = 3

10
. (𝐼𝐼𝐼)
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22 COUGHLAN et al.

F IGURE 5 Configurations of type (I ), (III ) and (II )

We will show that any of the above configurations gives a contradiction. Note that since in view
of Proposition 5.7 none of the functions of Γ gives a three-step contraction on its own, we need to
combine them.
Configuration (II).Assume that there is a curve Γ of type (II ). Since𝐾𝑋(

∑3
𝑖=1 𝐸𝑖) =

1

2
or 2

5
, there

is a second exceptional curve Γ′ of type (I ).
First blow down Γ. Then the image of𝐶1 is a (−1)-curve which intersects the image of 𝐵1 in two

points. Blowing this down we obtain a nodal curve which intersects the image of 𝐴1 in 1 point.
NowblowdownΓ′.We obtain aminimal elliptic surface𝑌with 𝜖(𝐴1)𝐾𝑌 = 𝜖(𝐵1)𝐾𝑌 = 0, which

implies that 𝜖(𝐴1) + 𝜖(𝐵1) is contained in a fibre, contradicting Kodaira’s list.
So a type (II ) configuration does not exist.
Configuration (III ). Consider a type (III ) curve Γ. Since a type (II) configuration does not exist,

then by Equation (7) there is a second exceptional curve Γ′ of type (I).
Then blowing down Γ and Γ′ we see that there are no (−1)-curves arising from Δ1 + Δ2. Hence

there exists a third curve Γ′′ of type (I). Blowing it down, we obtain another (−1)-curve, which
is absurd.
So a type (III ) configuration does not exist.
Configuration (I ). We are left with the case where all the exceptional curves are of type (I ). If

there exist two curvesΓ, Γ′ of type (I ), then blowing themdownand arguing as in the previous case
we obtain a curve having negative intersection with the canonical divisor, which is absurd. Since,
aswe noticed earlier, there are at least two irreducible (−1)-curves on𝑌, the proof is complete. □

5.3 The divisor of surfaces with one singularity of index 3

In this subsection we study the divisor of surfaces with an additional singularity of index 3, and
show that it fits into the original Pfaffian format of § 3.6.

Lemma 5.11. In the notation of § 3.6, if 𝜏 = 0 and𝑃10, 𝜃 are general, then𝑋 has a 1

9
(1, 5) singularity

in addition to the 1

25
(1, 14) singularity.

Proof. The index 3 coordinate point𝑃𝑤 is contained in𝑋 because𝑤4 no longer appears in𝑅13when
𝜏 = 0. In a neighbourhood of 𝑃𝑤, the relations 𝑅2, 𝑅3, 𝑅6, 𝑅10 eliminate 𝑥0, 𝑥1, 𝑢0, 𝑡, respectively.
Thus the local coordinates at 𝑃𝑤 are 𝑦, 𝑢1, 𝑧. Since 𝜃 ≠ 0 in general, 𝑅13 locally defines𝑋 as 𝑢1𝑧 =

𝑦3 + … in 1

3
(1𝑢1 , 2𝑧, 2𝑦) (because in general the monomial 𝑦

2𝑤2 appears in 𝑃10). By Remark 3.10,
this is a 1

9
(1, 5)-singularity. □
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ON T-DIVISORS AND INTERSECTIONS IN𝔐1,3 23

Proposition 5.12. Suppose that 𝜏 = 0 and consider the surfaces𝑋𝜆,𝜃 inℙ(1, 1, 2, 3, 4, 4, 5, 7) defined
by

Pf4 �̃� = �̃��̃� = 0,

where

�̃� =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 𝑥0 𝑥2
1

𝑢0
0 𝑥1 𝑦 𝑢1

𝑢0 𝑥1𝑢1 𝑡

𝑡 𝜃𝑢1𝑧

𝑃

−sym

⎞⎟⎟⎟⎟⎟⎟⎠
, �̃� =

⎛⎜⎜⎜⎜⎜⎜⎝

0

−𝑢2
1

0

𝑤

−𝑦

𝜆

⎞⎟⎟⎟⎟⎟⎟⎠
and 𝜆, 𝜃 are parameters satisfying 𝜆𝜃 = 0.
If 𝜆 = 𝜃 = 0, then 𝑋0,0 is a surface with one

1

25
(1, 14)-singularity and one 1

18
(1, 5)-singularity.

If 𝜆 ≠ 0, 𝜃 = 0, then 𝑋𝜆,0 is a surface 𝑋3,10 ⊂ ℙ(1, 1, 2, 3, 5) with one 1

18
(1, 5) singularity.

If 𝜆 = 0, 𝜃 ≠ 0, then 𝑋0,𝜃 is an RU-surface with an extra
1

9
(1, 5) singularity as in Lemma 5.11.

Proof. Clearly, if 𝜃 ≠ 0, then we are in the situation described by Lemma 5.11.
If 𝜆 ≠ 0, we can adapt the proof of Proposition 4.1. This time, since 𝜏 = 0, the generator𝑤 cannot

be eliminated. It turns out that the general fibre 𝑋𝜆,0 has equations

𝑋𝜆,0 ∶ (𝑥0𝑦 − 𝑥31 = 𝜆3𝑃 + 𝑦5 − 3𝑥1𝑦
3𝑤 + 3𝑥21𝑦𝑤

2 − 𝑥0𝑤
3 = 0) ⊂ ℙ(1, 1, 2, 3, 5).

That is, 𝑋𝜆,0 has a
1

18
(1, 5) singularity (see [7]).

If 𝜃 = 𝜆 = 0, then we get an RU-surface with an extra singularity of index 3. Near the coor-
dinate point 𝑃𝑤 we use 𝑅2, 𝑅3, 𝑅6, 𝑅10 to eliminate 𝑥0, 𝑥1, 𝑢0, 𝑡, respectively. Then 𝑅13 cuts out a
hypersurface

(𝑦𝑢1 + 𝑦𝑧2 + 𝑦2𝑧 +⋯ = 0) ⊂
1

3
(1𝑢1 , 2𝑦, 2𝑧),

because the monomial 𝑤2𝑢1 appears in 𝑃10. This is local analytically a
1

18
(1, 5)-singularity. □

Wehave thus shown that both theGieseker component and the RU-component contain in their
closures a divisor parametrising surfaces with an additional T-singularity of index 3 and these
divisors meet the intersection divisor, that is, the divisor of cuspidal RU-surfaces in an irreducible
subset of codimension two parametrising surfaces with one 1

25
(1, 14)-singularity and one 1

18
(1, 5)-

singularity.
These correspond to the central fibre of the family (𝜆 = 𝜏 = 𝜃 = 0) and theirminimal resolution

is an elliptic surface with a (−3)-section and a singular fibre of type III (see Lemma 3.2). Thus
geometrically, these surfaces can be obtained as follows.

Example 5.13. We consider an elliptic surface with 𝑝g = 2, a fibre of type III and a (−3)-section.
We blow up the singular point 𝑝1 and its infinitesimal point 𝑝2 given by the intersection of the

two branches of the singular fibre. We blow up two more points as shown in Figure 6.
With this procedure we obtain a string [2, 5, 3] and a string [4,3,2] connected by a (−1)-curve.

Blowing down the two strings we obtain an I-surface with a singularity of type 1

18
(1, 5) and a

singularity of type 1

25
(1, 14).
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24 COUGHLAN et al.

F IGURE 6 Construction of an I-surface with a singularity of type 1

18
(1, 5) and a singularity of type 1

25
(1, 14)

There is a secondway to construct an I-surface with a singularity of type 1

18
(1, 5) and a singular-

ity of type 1

25
(1, 14). Algebraically, we assume that 𝜆 = 𝜏 = 0 and the coefficient of 𝑡16

1
in 𝑙′

16
(𝑡0, 𝑡1)

vanishes (again, see Lemma 3.2). Then the elliptic surface𝑌 has an 𝐼3 fibre over (0, 1; 0, 1, 0). Since
𝜃 is generic here, this example is not smoothable as can also be deduced from the non-existence
of an involution.

Example 5.14. We consider an elliptic surface with 𝑝g = 2, a fibre of type 𝐼3 and a (−3)-section.
We blow up the singular points 𝑝1, 𝑝2 of the singular fibre, and two infinitesimal point 𝑝3, 𝑝4

as shown in Figure 7.
With this procedurewe obtain a string [2, 5, 3] and a string [4,3,2] connected by two (−1)-curves.

Blowing down the two strings we obtain an I-surface with a singularity of type 1

18
(1, 5) and a

singularity of type 1

25
(1, 14).

Remark 5.15. Let 𝑋 be an I-surface with a singularity of type 1

18
(1, 5) and a singularity of type

1

25
(1, 14). Arguing as in Proposition 5.9 one can see that 𝑋 is as in the above Examples 5.13 and

5.14.

5.4 I-surfaces with a singularity of index 2 and a singularity of index 3

Let us write the results of [7] in a slightly different form to exhibit clearly the intersection of the
index 2 and index 3 divisors: consider the surfaces

𝑋 = 𝑋𝜇,𝜈,𝑓 ∶

(
𝑥0𝑦 − 𝑥3

1
− 𝜇𝑢 = 0

𝑧2 − 𝜈𝑦5 − 𝑓10(𝑥0, 𝑥1, 𝑦, 𝑢) = 0

)
⊂ ℙ(1, 1, 2, 3, 5),
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F IGURE 7 Construction of an I-surface with a singularity of type 1

18
(1, 5) and a singularity of type 1

25
(1, 14)

where 𝜇, 𝜈 are parameters and𝑓10 is sufficiently general but not containing themonomial 𝑦5. This
is an admissible family of stable surfaces and

∙ for 𝜇𝜈 ≠ 0 we can eliminate the variable 𝑢 via the first equation and get a classical I-surface;
∙ for 𝜇 ≠ 0, 𝜈 = 0, we again eliminate 𝑢 but the branch divisor passes through the vertex of the
cone and we acquire an 1

4
(1, 1) point;

∙ for𝜇 = 0, 𝜈 ≠ 0, we get a generalmember in the divisor parametrising I-surfaceswith an 1

18
(1, 5)

point;
∙ for 𝜇 = 𝜈 = 0 we get an I-surface with both an 1

4
(1, 1) point and an 1

18
(1, 5) point. Indeed, at

𝑃𝑦 , the second equation reduces to 𝑧2 − 𝑢2 + 𝑥2
1
+ h.o.t. = 0 in 1

2
(1𝑥1 , 1𝑢, 1𝑧) after eliminating

𝑥0 using 𝑥31 via the first equation. This is a
1

4
(1, 1) singularity by Remark 3.10.

A small dimension count thus confirms that these two T-divisors in the closure of the Gieseker
components intersect as expected in an irreducible subset of codimension two whose general
element is a surface as in the last item.
We complement this algebraic discussion by an explicit geometric construction of surfaces in

the intersection.

Example 5.16. We consider an elliptic surface with 𝑝g = 2, an 𝐼2 fibre, an 𝐼𝑟 fibre (𝑟 ⩾ 2) and a
(−3)-section.
We blow up the singular points 𝑝1, 𝑝2 of the fibre of type 𝐼2.
With this procedure we obtain a string [4] and a string [4,3,2] connected by two (−1)-curves

(see Figure 8). Blowing down the two strings we obtain an I-surface with a singularity of type
1

18
(1, 5) and a singularity of type 1

4
(1, 1).

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12696 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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F IGURE 8 Construction of an I-surface with a singularity of type 1

18
(1, 5) and a singularity of type 1

4
(1, 1)

Remark 5.17. Let 𝑋 be an I-surface with a singularity of type 1

18
(1, 5) and a singularity of type

1

4
(1, 1). Arguing as in Proposition 5.9 one can see that 𝑋 is as in the above Example 5.16.
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