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Abstract: Retinopathy of prematurity (ROP) is one of the main blinding diseases affecting preterm
newborns and is classically considered a vascular disorder. The premature exposure to the extrauter-
ine environment, which is hyperoxic in respect to the intrauterine environment, triggers a cascade of
events leading to retinal ischemia which, in turn, makes the retina hypoxic thus setting off angiogenic
processes. However, many children with a history of ROP show persistent vision impairment, and
there is evidence of an association between ROP and neurosensory disabilities. This is not surprising
given the strict relationship between neuronal function and an adequate blood supply. In the present
work, we revised literature data evidencing to what extent ROP can be considered a neurodegenera-
tive disease, also taking advantage from data obtained in preclinical models of ROP. The involvement
of different retinal cell populations in triggering the neuronal damage in ROP was described along
with the neurological outcomes associated to ROP. The situation of ROP in Italy was assessed as well.
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1. Introduction

In the latest decades, the survival rate of extremely preterm and low birth-weight
infants has drastically improved [1]. Although this could represent an important achieve-
ment reflecting the advanced efficacy in the clinical management of preterm infants, it also
increases the risk of short- or long-term complications deriving from preterm birth.

Among them, retinopathy of prematurity (ROP) is one of the main ocular disorders
affecting preterm newborns that may result in a significant loss of vision or even blind-
ness [2]. Extremely preterm infants are at high risk of developing ROP. In particular, about
50% of them show clinical signs of ROP, although this percentage may vary. In 2010, a
study evaluated that over approximately 185,000 preterm infants were affected by ROP and
more than 20,000 were affected by complete loss of visual function [3]. So far, the greatest
risk predictors of ROP are a low gestational age and a low birth weight. In this respect,
in countries with high-quality neonatal care, sight-threatening ROP is mainly confined to
infants with a birth weight lower than 1000 g and is very rare in babies with a birth weight
higher than 1250 g [4].

The common denominator of preterm birth complications, including ROP, is repre-
sented by drastic changes in physiochemical parameters due to the precocious passage from
the intrauterine to external environment, which influences the development of immature
tissues and organs. In the case of the retina, its organogenesis occurs relatively late in
the gestational period. Therefore, the preterm birth drastically impairs the morphofunc-
tional organization of the still immature organ, creating a wide range of structural and
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functional changes in both neural and vascular components. Since the early discovery of
ROP, its pathogenesis has been mainly attributed to the change in oxygen tension when
passing from a hypoxic condition, as in the intrauterine environment, to a relative hyperoxic
condition, as in the extrauterine environment.

The hypoxia physiologically present in the pregnant uterus represents the ideal en-
vironment where retinal vascularization of the fetus can develop [5]. The early retinal
vasculature originates from spindle-shaped precursor endothelial cells, that migrate by
14–15 weeks of the postmenstrual age from the optic disk towards the ora serrata, and the
early networks of capillaries are formed from 17–18 weeks of the postmenstrual age [5]. The
relative hypoxia promotes the vascular development through the production of a dimeric
nuclear transcription factor, the hypoxia inducible factor 1 (HIF-1), which modulates a
plethora of oxygen-sensing genes including a series of proangiogenic factors, such as a
vascular endothelial growth factor (VEGF) [6]. Under hypoxia, the subunit HIF-1α accu-
mulates into the cell, migrates into the nucleus and, after dimerization with the subunit
HIF-1β, activates the transcription of VEGF [7]. In the developing retina, which becomes
physiologically hypoxic after the onset of neuronal activity, VEGF is mainly (but transiently)
produced by neuroglial cells, to stimulate in a paracrine fashion growth, and migration of
endothelial cells that organize to form the retinal vessel network [8]. The formation of a
functional retinal circulation relieves the retina from hypoxia and, under oxygen exposure,
HIF-1α subunit is hydroxylated, ubiquitinated and finally degraded, thus reducing the
transcription of HIF-1 target genes [7]. Through such a mechanism the exposure of the
immature retina to atmospheric oxygen leads to the interruption of the vascularization
processes, which normally occur within the intrauterine hypoxic environment, thus leaving
the peripheral retina avascular until an approximate gestational age of 32 weeks. The
interruption or even the regression of the vascularization process establishes an ischemic
condition (ischemic phase of ROP), which gradually worsens together with the increasing
metabolic demand of the developing retina. The persistent ischemia and the deriving
hypoxia drive the switch to the proliferative phase of ROP, which is characterized by the
abnormal activation of angiogenic processes leading to the outgrowth of dysfunctional
and disorganized new vessels. In addition to further exacerbating the ischemic condition,
the proliferation of aberrant neovessels may also induce the development of intravitreal
fibrosis with consequent retinal traction and detachment [9]. Considering that vascular
abnormalities manifest the most pathological hallmarks in ROP, the location and the ap-
pearance of the vascular aberrations are currently considered as the main parameters for
the classification of disease progression and severity from stage 1 to stage 5 (Figure 1).
Stages 1–3 describe the acute phases of the disease characterized by the formation of a
demarcation line between the vascular and the avascular retina (stage 1) that will evolve
in a ridge (stage 2) from which extraretinal neovascular proliferation will arise towards
the vitreous (stage 3). From the acute stages of ROP, vascular abnormalities can either
spontaneously regress turning to a regular retinal vascularization, or further evolve in
stages 4 and 5 defined as severe ROP, characterized by partial and total retinal detachment,
respectively [10].

The importance of oxygen in the pathogenesis and in the progression of ROP has
become evident with clinical trials demonstrating that limiting oxygen delivery to preterm
newborns reduces the risk of the disease but increases their mortality [11]. Therefore,
although the fine control of oxygen delivery to preterm infants is currently the first line of
prevention of ROP progression, a saturation target lower than 90% is not acceptable, and
the persistence of a certain ROP incidence is considered an unavoidable consequence of a re-
duced mortality [12]. Conversely, significant steps forward have been made in the character-
ization of the oxygen-dependent mechanisms contributing to the vascular abnormalities.
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Figure 1. Schematic representation of retinopathy of prematurity (ROP) stages. Stage 1 is character-
ized by the appearance of a demarcation line between the vascular and the avascular zone of the 
retina, which may evolve in a visible ridge in stage 2. In stage 3, proliferating retinal vessels depart 
from the ridge to gradually occupy extraretinal spaces towards the vitreous. Stages 1–3 represent 
the acute phase of ROP, which could resolve in a spontaneous regression of the abnormal neovas-
cularization or could further evolve in the more severe stages 4 and 5, characterized by partial and 
total retinal detachment, respectively. 

The importance of oxygen in the pathogenesis and in the progression of ROP has 
become evident with clinical trials demonstrating that limiting oxygen delivery to preterm 
newborns reduces the risk of the disease but increases their mortality [11]. Therefore, alt-
hough the fine control of oxygen delivery to preterm infants is currently the first line of 
prevention of ROP progression, a saturation target lower than 90% is not acceptable, and 
the persistence of a certain ROP incidence is considered an unavoidable consequence of a 
reduced mortality [12]. Conversely, significant steps forward have been made in the char-
acterization of the oxygen-dependent mechanisms contributing to the vascular abnormal-
ities.  

Fundamental contributions in the study of ROP physiopathology have derived from 
the use of the in vivo model of oxygen-induced retinopathy (OIR) in rodents [13]. This 
model exploits the plasticity of retinal vessels typical of neonatal mice and rats, whose 
vascular plexa physiologically develop after birth [14]. The OIR model firstly consists of 
the exposure of pups to hyperoxia, which interferes with the process of retinal vasculari-
zation and induces a wide vaso-obliteration (around the optic nerve head in mice; in the 
peripheral retina in rats). Then, newborn pups are returned to a normoxic environment, 
with a sudden reduction in retinal oxygenation that is perceived as a relative hypoxia. As 
is the case of ROP, the ischemia/hypoxia in the OIR retina triggers a dramatic increment 
in angiogenesis causing abnormal vessel sprouts along with hemorrhages and vitreous 
edema due to the vascular hyperpermeability [13].  

The primary players in the mechanisms linking the alterations in retinal oxygenation 
with the abnormal vascular sprout, in ROP as well as in the OIR model, are HIF-1 and 
VEGF. Indeed, the HIF-1-dependent dramatic downregulation of VEGF occurring under 
hyperoxia drives the interruption of vascularization and the vaso-obliteration, while 
VEGF overexpression under hypoxia is the leading mechanism causing vascular hyper-
permeability and proliferation [7]. With VEGF having a relevant role in ROP pathogene-
sis, it has been identified as a useful target in treating ROP. In fact, cryotherapy or the less 
painful laser photocoagulation, for a long time, were used as the gold standard treatment 

Figure 1. Schematic representation of retinopathy of prematurity (ROP) stages. Stage 1 is character-
ized by the appearance of a demarcation line between the vascular and the avascular zone of the
retina, which may evolve in a visible ridge in stage 2. In stage 3, proliferating retinal vessels depart
from the ridge to gradually occupy extraretinal spaces towards the vitreous. Stages 1–3 represent the
acute phase of ROP, which could resolve in a spontaneous regression of the abnormal neovascular-
ization or could further evolve in the more severe stages 4 and 5, characterized by partial and total
retinal detachment, respectively.

Fundamental contributions in the study of ROP physiopathology have derived from
the use of the in vivo model of oxygen-induced retinopathy (OIR) in rodents [13]. This
model exploits the plasticity of retinal vessels typical of neonatal mice and rats, whose
vascular plexa physiologically develop after birth [14]. The OIR model firstly consists of the
exposure of pups to hyperoxia, which interferes with the process of retinal vascularization
and induces a wide vaso-obliteration (around the optic nerve head in mice; in the peripheral
retina in rats). Then, newborn pups are returned to a normoxic environment, with a sudden
reduction in retinal oxygenation that is perceived as a relative hypoxia. As is the case of
ROP, the ischemia/hypoxia in the OIR retina triggers a dramatic increment in angiogenesis
causing abnormal vessel sprouts along with hemorrhages and vitreous edema due to the
vascular hyperpermeability [13].

The primary players in the mechanisms linking the alterations in retinal oxygenation
with the abnormal vascular sprout, in ROP as well as in the OIR model, are HIF-1 and
VEGF. Indeed, the HIF-1-dependent dramatic downregulation of VEGF occurring under
hyperoxia drives the interruption of vascularization and the vaso-obliteration, while VEGF
overexpression under hypoxia is the leading mechanism causing vascular hyperpermeabil-
ity and proliferation [7]. With VEGF having a relevant role in ROP pathogenesis, it has been
identified as a useful target in treating ROP. In fact, cryotherapy or the less painful laser
photocoagulation, for a long time, were used as the gold standard treatment for infants
with severe ROP, aimed at destroying the hypoxic peripheral retina, thus reducing VEGF
production [15]. However, this approach is burdened by serious adverse effects (need of
anesthesia, non negligeable risk of repeated intervention, and visual dysfunction) [16] and
complications (corneal burns, band keratopathy, cataract) [17]. The currently available alter-
native treatment that avoids retinal destruction is the intravitreal injection of neutralizing
anti-VEGF drugs. In respect to laser photocoagulation, anti-VEGF drugs have been recently
reported to display a decreased incidence of retinal detachment, probably thanks to a faster
decrease in VEGF levels [18], a reduced rate of optic atrophy and amblyopia [19], and
less eye complications even if burdened by a higher retreatment incidence [20]. However,
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the short- or long-term safety of anti-VEGF drugs still arouses some concern, and further
investigations are required to evaluate their effects on retinal developmental processes [21].

2. ROP in Italy

The birth rate in Italy, calculated using the birth rate of 2020 [22], is approximately
410,000/year and 1% of these newborns are born with a birth weight lower than 1500 g or at
a gestational age lower than 30 weeks, thus indicating that about 4000 infants are at risk for
ROP. Borroni et al. [23] analyzed the incidence and the associated risk factors of ROP and
aggressive posterior-ROP (AP-ROP), a severe form of ROP, in 25 Italian neonatal intensive
care units through a prospective multicenter observational study examining 421 infants
born with a birth weight lower than 750 g and/or a gestational age shorter than 27 weeks.
Starting the ophthalmologic screening at about 30 weeks of gestational age, ROP was diag-
nosed in 62.9% of the preterm infants, while AP-ROP was diagnosed in 24.2% of them. At
a univariate analysis, ROP was significantly associated with gestational age, body weight,
intraventricular hemorrhage, patent ductus arteriosus, bronchopulmonary dysplasia, ery-
thropoietin therapy and sepsis, while AP-ROP was significantly associated with gestational
age, bronchopulmonary dysplasia, and sepsis. Performing a multivariate analysis, ROP
was found to be associated only to intraventricular hemorrhage and erythropoietin therapy,
while AP-ROP was found to be associated to gestational age and sepsis. The incidence
data of this Italian study does not match with those of the CRYO-ROP and of the ETROP
studies [24,25], possibly because these studies were performed before the introduction of
the guidelines for ROP prevention [26], which were applied in the Italian study. On the
other hand, the results of the work of Borroni et al. [23] are in agreement with those of other
studies and of the Vermont–Oxford Network, which is a non-profit organization of health
care professionals collaborating to improve neonatal care [27–30]. The finding that the use
of erythropoietin may be associated with the development of ROP has been confirmed by
another Italian study [31]. This study found that in preterm infants with a body weight
lower than 1000 g receiving erythropoietin therapy, the occurrence of ROP was double than
that of preterm infants that did not receive erythropoietin, suggesting this therapy as an
independent risk factor for ROP development. More recently, the incidence and risk factors
for ROP were examined in 2 Italian neonatal intensive care units, through a retrospective
study involving 178 infants with a gestational age lower than 29 weeks [32]. This study
found an occurrence of ROP of 38%, similar to that found in other studies [33–40], and an
association between red blood cell transfusion and the risk of ROP. The finding that red
blood cell transfusion may represent a risk factor for ROP development is in agreement
with other studies [41–46]. However, red blood cell transfusion is often essential to treat
anemia in preterm neonates (very common due to the prematurity itself and to repeated
blood sampling). In this respect, a retrospective study involving neonates with a gestational
age lower than 32 weeks demonstrated that the risk for developing ROP carried by blood
products is likely to depend on the gestational age. In particular, the gestational age at
the second transfusion seems to be even more useful to determine the risk for severe ROP
development, outperforming all other variables in predicting severe ROP [47].

There are premature infants with apparent similar characteristics, sharing similar
clinical features (gestational age, birth weight, oxygen support), who have a completely
different ROP evolution, with some of them needing treatment, and others experiencing
spontaneous regression of the pathology. Therefore, there is an urgent need of standardizing
evaluation criteria and identifying early indicators for ROP development. In this respect,
a recent retrospective Italian study reported that early platelet counts were significantly
reduced in newborns who later developed severe ROP which required treatment, but not
in those who never developed ROP [48,49] suggesting that platelet count may be used to
detect in advance premature infants prone to ROP development. Recently, a new prediction
model for ROP, the Postnatal Growth and ROP (G-ROP), which was originally developed
in 2018 and validated in a North American cohort of preterm infants [50], has been also
validated in Italy [51]. G-ROP is based on birth weight, gestational age and weight gain, and
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allows to reduce the number of infants undergoing ROP examinations by about 30% while
maintaining 100% sensitivity for ROP when compared to the criteria currently in use, thus
being very promising for future clinical adaptation. Its validation in the Italian population
lays the foundation for the introduction of G-ROP criteria in all European countries.

If on the one hand, the list of ROP risk factors is becoming longer, on the other, a grow-
ing body of evidence is progressively highlighting the ability of a variety of compounds,
both naturals and pharmacological, to prevent ROP or to reduce its progression towards
later and more deleterious stages. For example, Garofoli et al. [52] demonstrated in a cohort
of preterm infants with birth weight lower than 1500 g that orally administered vitamin
A is effective in attenuating ROP incidence and severity. Moreover, Filippi et al. widely
demonstrated that propranolol, a usually well-tolerated non-selective beta adrenoceptor
antagonist is able to counteract the progression of ROP [53–55]. These clinical trials fol-
lowed preclinical studies performed in OIR mice in which systemic or topic propranolol
administered during the hypoxic phase of the disease reduced retinal neovascularization
by preventing HIF-1α upregulation and its proangiogenic cascade [56,57].

Although in preterm infants oral propranolol is not sufficiently safe [54], propranolol
0.2% eye micro-drops showed an optimal safety and tolerability profile and efficiently
reduced ROP progression [58,59]. It is noteworthy that propranolol seems to exert a
neuroprotective effect in the OIR retina, suggesting that beta adrenoceptor blockade may be
useful in human patients not only to prevent neovascularization but also to limit the neural
damage evidenced by impaired ERG [60]. Indeed, OIR mice showed an altered ERG profile
due to neuronal cell death, while the propranolol treatment protected retinal cells enhancing
pro-survival pathways such as autophagy while inhibiting apoptosis, thus finally resulting
in recovered retinal function [61]. However, clinical trials performed to date are not large
enough to draw definitive conclusions about propranolol efficacy in treating ROP nor on
its supposed neuroprotective effect [60]. In the meantime, the results obtained in ROP
infants treated with propranolol so far, especially related to its antiangiogenic effects, are
very promising.

3. The Impact of ROP in the Central Nervous System

Preterm children are at risk of developing poor visual outcomes with respect to chil-
dren born at full term, independently to the presence of ROP. Indeed, there is a large
cohort of studies indicating that a reduced visual acuity, defined as the capacity of the
central visual system to discriminate contrast variation, can be associated to preterm-born
children with or without ROP, with visual impairment lasting into adulthood. Therefore,
this suggests that a poor visual outcome may be considered a long-term functional con-
sequence of preterm birth [4,62–66]. On the other hand, ROP development in preterm
infants impacts on visual outcomes, and acuity deficits in patients with a history of ROP are
typical, even though the pathology has resolved completely [64]. For instance, a Swedish
population-based prospective study conducted in children of 10 years who had been born
preterm, found that visual impairments were present in 26% of those with no ROP and
in 64% of those with severe ROP, while they occurred in 8% of controls born at term [67].
In the same line, a population-based prospective study, made in New Zealand on young
adults born preterm before ROP treatment was available, reached the conclusion that adults
who had developed ROP had reduced visual acuity when compared to adults with no ROP,
indicating that ROP increases the risk of developing poor long-term visual outcomes [68].
In this respect, both the CRYO-ROP and the ET-ROP studies found a correlation between
severity of acute-phase ROP and development of visual acuity [24,25]. Notably, an exami-
nation over a period of 18 years of adolescents and adult patients with previously regressed
ROP showed a late reactivation of ocular deficits together with a reduced visual acuity,
highlighting that a decreased visual acuity can occur as a long-term outcome in patients
with resolved ROP [69]. Treatment for ROP became available after the publication of the
results of the CRYO-ROP study [24] and there is evidence that treating ROP ameliorates
visual outcomes, with anti-VEGF agents giving better results on visual acuity than laser
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photocoagulation. For instance, a study published by Rodriguez and colleagues in 2020
evaluated visual acuity in children aged over 4 years treated with anti-VEGF, comparing
their visual acuity with that measured in the ET-ROP study published in 2010 [70]. This
study revealed that 85% of eyes treated with anti-VEGF had normal visual acuity with
respect to 35% of eyes receiving laser photocoagulation, suggesting that different ROP
treatments may have different impacts on visual outcomes over the years [71], a conclusion
shared with other works as, for instance, a recent study performed at the UCLA Medical
Centers [19]. In this context, it would be important to clarify whether anti-VEGF may
actually have greater effects over laser photocoagulation, in order to maximize preterm
newborn visual outcomes, since they could affect, at least in part, the everyday activities in
adult life.

Although ROP may be associated with later visual impairments, it may also impact on
non-visual abilities. In fact, besides ocular injuries, infants with ROP may exhibit further
neurodevelopmental impairments. Given the common embryonic derivation of eye and
brain, it has been hypothesized that pathological processes associated to ROP (such as
oxygen fluctuations, oxidative stress, inflammation) could also have harmful effects on the
development of different regions of the central nervous system (CNS) [72–74].

Notably, cerebral cortex and cerebellum development occurs during the gestational
third trimester and are vulnerable to detrimental environmental factors. Thus, the early
exposition to extrauterine environments as well as damage to the vascular and neuronal
pathways during maturation, could alter CNS development. As an example, ROP disease is
characterized by the dysregulation of insulin-like growth factor 1 (IGF-1) and VEGF and it is
known that both these factors play an important role in neurogenesis, neural differentiation,
axon maturation, and neuroplasticity [75–77]. In particular, based on the fundamental roles
of IGF-1 on neurodevelopment, it is possible to speculate that altered IGF-1 levels may
affect the correct development of CNS regions. In line with these hypotheses, the postnatal
decrease in circulating IGF-1 observed in very preterm infants has been found to associate
with a low brain volume at term age, suggesting that normalizing IGF-1 levels may result
in the neuroprotection of these patients [78]. Similarly, changes of VEGF levels may lead to
improper CNS development. For instance, the use of intravitreal bevacizumab injections
induces a risk of neurodevelopmental delay in ROP infants, suggesting that anti-VEGF
therapies may introduce a risk of developmental impairments [79].

However, it remains to be determined whether ROP and any neurological alterations
in the CNS may depend on a shared etiological origin and further studies will be necessary
to elucidate this point. From another point of view and considering that the retina itself
is an anatomical and functional portion of the CNS, all the interventions that may have
an impact on ROP and reduce the risk factors associated to the disease may also have a
beneficial effect on the development of those CNS structures altered as a consequence of
premature birth.

3.1. Neurological Outcomes Associated with ROP

Studies investigating possible associations between ROP and neurological outcomes
are in progress. Presently, there is a general agreement that severe ROP may represent a
risk factor for neurosensory impairments in childhood, although studies exploring pos-
sible connections between ROP severity and neurodevelopmental disorders have led to
controversial conclusions. For instance, a study performed in extremely preterm infants
with a gestational age lower than 26 weeks suggested that severe ROP is a good predictor
for major neurosensory disabilities, including cerebral palsy, severe visual impairment,
and hearing loss. In particular, preterm infants with severe ROP have been reported to
display a significantly poorer outcome at 11 years than preterm infants without ROP, with
neurosensory impairments detected in 50% of the infants who had suffered from severe
ROP [80]. Similar conclusions have been reached in other studies relative to cohorts of
premature children suffering from severe ROP evaluated at age 1.5 or 5 years [81–83]. In
addition, in a Swedish study performed on 27 preterm children totally blind due to ROP
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stage 5, the authors found that 75% of them had major neurological impairments, including
mental retardation, cerebral palsy and epilepsy, indicating an association between severe
ROP and worsened neurodevelopment [84]. In this respect, at the beginning of this cen-
tury, two studies aimed to assess the relationship between ROP and neurodevelopmental
functions in the same cohort of preterm children, evaluated at 5.5 and 8 years, reached
the conclusion that severe ROP may be considered a marker for functional disabilities
developed in very low birth weight infants [85,86]. In the same period, a study enrolling
115 preterm infants, none of which were suffering from severe ROP, associated moderate
ROP with worsened motor and cognitive disabilities, an association that, however, was
found borderline after correction for gestational age [87]. In 2014, Allred et al. reported
that preterm children with severe ROP followed up at 2 years corrected age (that is the
chronological age minus the number of months the preterm infant is born early), showed
a higher probability of impaired neurodevelopment characterized, for instance, by brain
lesions and cerebral palsies [88]. In 2018, Drost et al. performed a study to compare the
volumes of different brain structures and the cortical morphology of preterm infants with
severe ROP with those of control infants with the same gestational age, birth weight and
sex. This analysis, carried out using magnetic resonance imaging (MRI), indicated that
preterm infants with severe ROP have smaller cerebellar volumes and reduced cortical
gyrification. Cognitive and motor abilities at 15 months corrected age, were shown to be
worse in infants with severe ROP than in controls [75]. In addition, a cohort study using
MRI analysis carried out by Sveinsdóttir et al. in infants of 2 years corrected age, showed
that infants with ROP had lower unmyelinated white matter and cerebellar volume as well
as reduced mental and psychomotor developmental indices with respect to infants without
ROP. However, infants with less severe ROP exhibited a reduction in brain volume and
a neurodevelopmental impairment similar to those observed in infants with more severe
ROP, suggesting that any stage of ROP may result in neurodevelopmental deficits and that
preventing ROP, also in its less severe stages, may positively impact brain development [89].
In the same line, Glass et al. found that severe ROP is associated with white matter al-
terations and with a delayed maturation of brain regions involved in visual and motor
processing [90], suggesting that severe ROP may be associated to neurodevelopmental
outcomes. In an additional cohort study on ROP-diagnosed children, 68.4% of ROP infants
showed neurodevelopmental disabilities, including blindness, cerebral palsy, cognitive,
motor, speech and hearing problems. However, approximately half of ROP children with
normal visual capacities exhibited neurodevelopmental disabilities, thus suggesting that
preterm ROP infants have a high risk for developing neurodevelopmental anomalies even
when their visual abilities are normal and underscoring the importance to prevent ROP not
only to avoid blindness but also to hamper neurodevelopmental disorders [91].

Different from the studies discussed above, some other works suggest that neurode-
velopmental alterations may be more strongly associated to preterm birth than to ROP.
For instance, two studies comparing preterm infants with ROP stage 3 with those with
ROP stage 2 and ROP stage 1/no ROP and evaluating their developmental outcome, found
that preterm children in all groups have reduced neural development that was not associ-
ated with ROP severity, suggesting that neurodevelopmental disabilities are most likely
associated with premature birth instead of ROP severity [92,93]. In 2007, Stephenson et al.
performed a retrospective study on 505 subjects of 11–14 years that were born prematurely,
of whom 49% had developed ROP, and assessing visual and cognitive outcomes. The study
concluded that neither poor ophthalmic nor poor cognitive outcomes results were associ-
ated to previous stage 1 or stage 2 ROP, and that stage 3 ROP is associated to poor visual
acuity but not to cognitive impairment, suggesting that unexplored factors in addition to
ROP may explain the poor cognitive performance [94]. Ahn et al., using MRI, evaluated the
microstructural integrity of brain white matter in preterm infants with and without ROP
and in full-term infants. The results demonstrated alterations in 15–17 of the 23 predefined
regions in which the brain was divided. Fewer differences were instead observed compar-
ing preterm infants with and without ROP, limited to 2 of the 23 predefined regions, thus
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suggesting that alterations of white matter maturation could be associated with preterm
birth rather than with ROP [95]. The same research group reached the same conclusions
in a more recent work showing that ROP or severe ROP were not associated with white
matter abnormalities in preterm infants of 18 months corrected age with or without ROP.
Particularly, developmental outcomes, including cognitive, language and motor functions,
were similar between preterm infants with or without ROP and independent from ROP
severity [96]. In line with these studies, Altendahl et al. examined cognition, language, and
motor scores of premature neonates at 0–36 months corrected age, screened for ROP, and
found that ROP severity was not associated with worse neurodevelopmental scores [97].
Similar results were obtained in a recent study evaluating the presence of hearing loss
in a large cohort of preterm infants at 18 months corrected age, revealing no significant
associations between ROP and hearing impairments [98]. Overall, these studies suggest
that negative neurodevelopmental outcomes in preterm neonates are plausibly related to
prematurity-associated factors more than to ROP severity and that ROP, per se, does not
seem to contribute significantly to neurodevelopmental diseases.

The controversial correlation between ROP (and, eventually, its severity) and neu-
rodevelopmental outcomes made evident by the studies cited in the present paragraph,
highlights the necessity of extensive studies investigating brain development and its alter-
ations in infants suffering from ROP in order to reach more robust and accurate conclusions.

3.2. Neurodegeneration in the Retina of ROP Patients

From a clinical point of view, ROP is classified as a vascular disorder. In line with this,
most literature focuses on the mechanisms leading to neovascularization and the current
therapeutic treatments are directed to the normalization of the retinal vasculature [99].
However, despite the effectiveness of these treatments or the spontaneous regression of
the pathology, many children with a history of ROP experience persistent vision impair-
ment, such as astigmatism and myopia [100], reduced visual acuity and deficient subtle
color vision [101], constricted visual field and contrast sensitivity [102], and increased
dark-adapted thresholds [103], along with structural retinal abnormalities [4,104]. Overall,
these data suggest that some form of alteration in the development, viability, and function
of neuroretinal cells (photoreceptors, retinal neurons and glia), may occur during ROP
progression (Figure 2). This is not surprising, given the existence of a strict functional
relationship between neurons, glia and blood vessels known as neurovascular unit, in
which chemical signals released by neurons and/or glial cells regulate the surrounding
blood vessels to adequately support the metabolism of neuronal cells [105]. However, in
retinopathies the relationships between vascular abnormalities and neurodegeneration can
be of various types. For instance, in diabetic retinopathy, a retinal disease that develops
years after the diagnosis of diabetes, neurodegeneration occurs early during disease de-
velopment and, at least in part, precedes the vascular damage [106]. On the contrary, in
ROP the disease progresses in a short time and the damage to the neural part of the retina
is likely to be secondary to the development of vascular abnormalities.

Relevant insights about the neuroretinal alterations in ROP derive from functional
analyses performed by means of electroretinography. An electroretinogram (ERG) is
classically composed of a biphasic waveform displaying an early negative component (a-
wave), elicited by the light-induced response of the photoreceptors, followed by a positive
component (b-wave) generated by post receptor cells [107]. Depending on retinal light
adaptation, the ERG may reflect the activity of rod-mediated (dark-adapted scotopic ERG)
or cone-mediated (light-adapted photopic ERG) pathways. ERG analyses in patients with
ROP or in animals with OIR have revealed significant functional abnormalities in both
the inner and outer retina. In patients with ROP, ERG response results are significantly
attenuated and are accompanied by impaired contrast sensitivity and decreased scotopic
visual thresholds [13,100,108–110]. ERG deficits are also evident in OIR animals [111,112], in
which both a- and b-wave alterations generally correlate with structural deficits. Although
the attenuation of the a-wave in OIR animals has been reported to occur without the
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apparent loss of photoreceptors [113], it seems to be related with a thinner photoreceptor
outer segment layer, which is more disorganized than in normal controls [114]. Animals
with OIR also exhibit a reduced thickness of the inner plexiform layer (IPL) and of the
inner nuclear layer (INL), with a concomitant increase of apoptosis in the inner retina [113].
These changes might affect the ERG due to loss of retinal neurons and disruption of
synaptic transmission, which involve largely, but not exclusively, the regions of vascular
dysfunction [115].
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3.2.1. Photoreceptors

The photoreceptors are the last cells to complete maturation, with the increase of
outer segment elongation and the escalation of photopigment content occurring in the last
8 weeks of gestation. Therefore, alterations of the photoreceptor maturation due to the
preterm birth might cover a relevant role in the onset of long-term visual dysfunctions in
ROP [116].

Rods

Rods are the last retinal cell subtype to reach maturity, with their rhodopsin content in
the outer segment appearing and increasing from approximately 32 weeks of gestational
age [108,114]. Together with their maturation, the energy demand of rods rises due to
the increased turnover of the light transduction-related molecules in the outer segment
and to the increment in rod electrical activity. Alterations in oxygen supply due to a still
incomplete and insufficient retinal vasculature, as it occurs in ROP, produce significant
abnormalities in the maturation of rod outer segments. Indeed, they could be shorter,
containing a low amount of rhodopsin and consequently showing diminished quantum
catch, impaired mobility of the transduction cascade proteins in the disc membranes.
Accordingly, infants affected by ROP display significant alterations in retinal activity
demonstrated by the ERG analysis [110]. In this respect, although the abnormal ERG
response may derive from an overall damage of the whole neuroretina, as demonstrated
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in the OIR model, strong evidence supports the possibility that alterations in the outer
segments of rods may have a primary counterpart in the ERG dysfunction [114]. This is
even more evident in parafoveal rods, in which the developmental elongation of outer
segments is physiologically delayed compared to peripheral rods. Thus, rods in the late-
maturing parafovea are more vulnerable to the effects of ROP. In fact, the development of
rod-mediated scotopic threshold is prolonged in infants with ROP compared to controls,
more so in the parafoveal than in the peripheral retina. The precise underlying mechanisms
remain to be defined, but they could include a slower rate of rod outer segment elongation,
delayed packing of parafoveal rods (along with the delay in the foveal pit—see the section
below), or disorganization of rod outer segments [117].

Cones

Primate cone maturation occurs earlier than that of rod outer segments, thus implying
a higher resistance to the alterations caused by premature birth [109]. In addition, cones
appear to be more resistant to metabolic insults, having twice as many mitochondria and
three times the surface area of mitochondrial cristae compared to rods [118]. However,
a recent study [119] has underlined the possibility that, together with the rods, cones
might also undergo some form of functional alteration that manifests years after birth.
Using multifocal ERG (mfERG), which allows to concomitantly measure the light-adapted
activity of cones and that of post receptor cells in different areas of the retina, a significant
dysfunction of the cone pathway in the central retina, characterized by low-cone sensitivity
and slower recovery of cone responses, has been reported in subjects with a history of
severe ROP [119]. Importantly, the magnitude of mfERG alterations varied together with the
severity of the antecedent ROP but, notably, did not completely match with the canonical
categorization of ROP based on the vascular abnormalities, as the case of no differences
in mfERG amplitudes were detected between children with a history of mild ROP and
children with no ROP. Therefore, this would suggest that the current ROP categorization,
exclusively based on the characteristics of the retinal vasculature at the time of examination
in the nursery, is quite reductive, since it does not take into account the important effects
observed in the neurosensory retina.

The Foveal Pit

Macula lutea development is a sophisticated process which is not completed until
at least the third or fourth year of life; particularly, the fovea centralis is the last retinal
structure to reach complete maturity and it mediates the excellent visual acuity in healthy
adults [120,121]. Within the macula lutea, the foveal pit (or fovea centralis) is an avascular
zone formed by the centrifugal displacement of inner nuclear cells and retinal ganglion
cells (RGCs) toward the periphery [122].

ROP significantly delays foveal development [123]. It also alters the foveal structure,
although data on this point are not univocal. Indeed, Hammer et al. [120] reported that the
foveal pit of subjects with a history of spontaneously regressed ROP appears broad and
shallow, while some years later Wang et al., studying a slightly wider group of subjects,
observed a diminished depth and a reduced shallow slope of the ROP foveal pit compared
to controls [124].

Certainly, ROP determines the presence of retinal capillaries intertwined with the
neural cells that cover the fovea [120] and increases foveal thickness [121]. This latter
outcome is mainly due to the presence of inner retinal layers overlying the fovea, probably
due to a failure of the inner retinal neurons to migrate away from the pit [124]. In line
with this, studies on preterm children with or without a history of ROP reported that the
thickness of both the RGC layer (GCL) and the IPL was remarkably higher at fovea centralis
compared with full-term controls, while no differences were observed at more peripheral
retinal locations [124–126].

Wang et al. found that the increased foveal thickness did not result in any changes
in visual acuity [124]. However, other studies demonstrated the existence of a correlation
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between inner retinal layer thickness and worsening of the best-corrected visual acuity
(BCVA) in extremely preterm infants [127,128], while there was no correlation between
altered BCVA and the thickness of outer retinal layers. Moreover, worsened BCVA is
associated with an increased GCL thickness in extremely preterm infants, possibly as a
consequence of the arrest of GCL maturation due to preterm birth, which prevents RGC
death, a major event in retinal development [127].

3.2.2. Retinal Ganglion Cells

RGCs are particularly sensitive to changing oxygen levels. In this respect, hypoxia has
been established to severely impact RGC survival and RGC axon outgrowth [129,130]. The
significant damage to RGCs in the developing retina under altered oxygenation has mainly
been demonstrated in the OIR model, in which the hypoxic phase is primarily responsible
for inducing RGC degeneration and subsequent decrement in RGC density [130]. In this
model, the alteration in RGC survival has been established to depend on the imbalance
between apoptosis and autophagy during the hypoxic phase, resulting in the degeneration
not only of RGCs, but also of bipolar and amacrine cells [61]. In this respect, there is
evidence from our group that treatments based on natural antioxidant/anti-inflammatory
compounds may prevent RGC death in several models of RGC degeneration [131–134],
suggesting that such an approach may be useful also in counteracting neurodegeneration
of RGCs in ROP. The use of nutraceuticals as a non-invasive approach in preventing ROP
and in its management has been recently reviewed and discussed [135].

Evidence about the altered neural pro-survival signalling also derives from preterm
infants affected by severe ROP, which display serum levels of neurotrophin-4 and brain-
derived neurotrophic factor (BDNF) during the first 3 weeks of life that are lower than
those in preterm infants who did not develop severe ROP. In the same cohort of patients,
specific gene variations of BDNF were associated with threshold ROP [136,137], indicating
the possibility that a possible alteration in neural trophism could concur to RGC degen-
eration during ROP progression. Besides their overt loss, evidence of a significant RGC
damage is represented by structural alterations of their axons within the retinal nerve fiber
layer (RNFL).

Studies of optical coherence tomography or spectral-domain optical coherence to-
mography revealed that RNFL thickness is altered in premature newborns compared to
full-term children. In this respect, the RNFL resulted in a greater thickness on the temporal
side of the optic disc in preterm infants than in full-term controls, whereas all other RNFL
sectors were thinner. Such alterations in RNFL thickness were correlated with gestational
age and birth weight, two key factors related with the risk of ROP development [138–140],
as well as with the stage of ROP progression [141].

Whether RNFL alterations would correlate with visual function is still under debate.
In this respect, Park et al. found no association between RNFL thickness and visual
function [141]. On the contrary, Wang et al. in an analysis of 25 preterm and 54 full-term
infants, reported an association between RNFL thickness in the retinal temporal sector and
visual acuity [139]. Similarly, Fieβ et al. demonstrated that decreased RNFL thickness in
all retinal sectors is associated with reduced visual function in both preterm infants and
full-term neonates, underscoring the high risk of preterm infants to develop alterations in
the RNFL in association with a decrease in visual function [140].

3.2.3. Müller Cells and Astrocytes

Müller cells are the main retinal glial cells. From their soma, located in the INL,
two major projections extend towards the GCL and the photoreceptor layer. Processes
generated from these projections reach and surround neurons, synapses, and blood vessels
creating physical and chemical relationships that allow intimate communications of central
importance for physiological retinal functions [142]. Among the functions Müller cells
accomplish, they: i. provide neurons with trophic factors and antioxidants; ii. uptake
and recycle neurotransmitters including glutamate, thus avoiding excitotoxic insults to
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neural cells; iii. transport water, ions and metabolites through channels and transporters
participating, for instance, to K+ buffering and to the control of the composition of the
retinal milieu; iv. participate to the formation of the blood-retinal barrier by secreting
factors that enhance the barrier function of the surrounding endothelium [143].

Astrocytes, star-shaped glial cells mainly located in the GCL and in the RNFL, also
play important roles in retinal physiology. For instance, astrocytes provide metabolic
support to RGCs, thus controlling their ionic and metabolic homeostasis, and regulate
neurovascular coupling. They also have a paramount role in the development of retinal
vasculature; astrocytes are indeed the earliest glial cell type in the optic nerve of the embryo
and, migrating into the neuroretina and releasing proangiogenic factors including VEGF,
critically contribute to the formation of retinal blood vessels. They also act as a scaffold
on which retinal vessels develop from the centre of the retina to the periphery. In this
respect, astrocytes are lacking within the avascular foveal pit and are present only in the
vascularized retina, a finding that highlights astrocyte importance in the development of
retinal vasculature. In addition to inducing the formation of retinal blood vessels, similarly
to Müller cells astrocytes contribute to the formation and maintenance of the blood retinal
barrier [144].

When retinal homeostasis is challenged, glial cells undergo morphological and func-
tional changes (gliosis or glial activation) with the attempt to avoid conditions potentially
leading to a diseased state; however, gliosis may have not only beneficial but also detrimen-
tal effects on retinal function [145]. In Müller cells, the upregulation of proteins contributing
to the formation of intermediate filaments, including glial fibrillary acidic protein (GFAP),
is a hallmark of gliosis; in fact, in the healthy retina GFAP is only minimally expressed
by Müller cells, which, on the contrary, dramatically increase GFAP expression in retinal
diseases [146]. After their activation, glial cells secrete trophic factors to support neuronal
and vascular function; however, if gliosis becomes chronic, direct and indirect damage to
neurons and vessels may occur. For instance, the overproduction of VEGF leads to blood
retinal barrier leakage, while the release of inflammatory cytokines may result in neuronal
degeneration [147–149].

In humans, massive retinal gliosis is a rare, benign, intraocular condition that develops
in association with other ocular diseases and is mainly constituted by Müller cell activa-
tion [150]. There are only a couple, not very recent, case reports describing the association
between massive retinal gliosis and ROP [151,152]. One of them reported the presence of
bilateral massive gliosis in a 39-year-old man born prematurely that developed severe ROP
with retinal detachment [151], suggesting that severe ROP may have deleterious effects
during the patient life. Although no clinical evidence indicates that gliosis may participate
in ROP pathogenesis, results in preclinical models suggest this possibility. In fact, it has
been demonstrated that gliosis, and in particular Müller cell activation, is a feature of OIR
rodents [13] and that in these animals, maneuvers attenuating Müller cell gliosis reduce
retinal neurovascular degeneration and preserve retinal function [153–155].

4. Future Perspectives

Although ROP has long been considered a vascular disorder, there is evidence raising
the question on how this disease may be linked to neurodegenerative processes that may
involve higher brain functions (Figure 3). Therefore, future studies will be necessary to
investigate whether long-term neurodevelopmental outcomes can be considered associated
to functional alterations characterizing ROP pathology. The involvement of the neural
components in ROP, and not only of the vascular ones, should be taken into account when
considering the resulting retinal structural and visual abnormalities. Such an approach
could identify new targets for interventions in order to give children affected by ROP the
best possible visual outcome.
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