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ABSTRACT

In this paper, we analyze the human walk movement via a combined deterministic-
stochastic model built on top of a random walk framework. By adopting the Laban
Effort subcategories to investigate different movement classes, we discuss how stochastic
and deterministic forces combine to determine the act of moving and relate the
stochastic component to the times at which we can observe a movement change.
Major elements of our study are the analysis of random times when there is a walk
movement change, the construction of a distribution (waiting time distribution), and the
implementation of a dichotomic stochastic force. In particular, we report the observed
walk trajectories obtained via an experimental analysis performed in collaboration with
a group of volunteers to show, to some degree, the relationship between their walks and
the measured relevant random times. Finally, we present our model results via simulated

trajectories of a virtual character.

1. Introduction

Human movement analysis is a subject of great
attention within the scientific community of several
different areas, [1], [2], [3], [4]. Among several studies,
some of them analyze changes in human movement.
For example, one study examines energy expenditure,
acceleration, and body tilt angle during falling [5].
In sports-related disciplines, researchers compare step
kinematics, joint angles, and muscle activation during
change of direction maneuvers [6]. However, only a few
studies have focused on the duration of movements and
provided an association between human movement fea-
tures and the observed times [7], [§]. Furthermore, while
kinematic analysis can provide insights into velocity
and acceleration of movement [9], [10], [11] it does not
offer a clear description of the statistical nature of the
time interval sequences between observable movement
changes. As discussed in the paper, we believe that the
analysis of the times at which we can observe a change
in human movement can contribute towards a deeper
understanding of the human movement. This aspect
is further detailed throughout the paper, where we
show that the analysis of a human walking ultimately
reduces, in our model, to the analysis of variations
in measurable random quantities, such as random
time interval and random step lengths. Specifically,
we aim to utilize these quantities to propose a novel
quantitative combined deterministic-stochastic model
associated with the movement classes described by the
Laban Effort framework within the Laban Movement
Analysis (LMA).

LMA is a pillar among movement, analysis systems
[12], [13], [14]. Developed by the dancer and choreogra-
pher Rudolph Laban, [15], LMA focuses on the process
of the human movement, providing a tool for perceiv-
ing and describing the motion [16]. LMA is a very
multidisciplinary powerful means suitable at describing
the structural characteristics and expressions of human
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motion, as a result of the interaction among the mover,
itself, the others, and the environment [17], [18], [19].

Along with the LMA description, we present a novel
approach aimed at taking into account the random
times when a walk movement changes, i.e., when a ran-
dom quantity associated with the observed movement
changes and extracting the time interval distribution
characterizing human walking. The idea of a time
distribution suggests the use of a stochastic model.
Specifically, we will show how to combine determin-
istic and stochastic components for human movement
description within the Laban Effort subcategories [15],
as well as to simulate a virtual character expressing
different movements.

The structure of the paper is as follows: in Sec. 2, we
describe the Laban framework, showing some specific
movements in association with the bipolar characteris-
tics of the Effort subcategories. In Sec. 3, we present
our model, discussing the conceptual basis and the
role of the main parameters. Section 4 describes the
experimental analysis and the adopted procedure to
instruct the volunteers before each walk. In Sec. 5,
we show how to extract the model parameters from
the observed trajectories and measured random times.
In Sec. 6, we report the simulated trajectories of a
virtual character for different combinations of the Effort
subcategories, and, finally, we present our conclusions.

2. The Laban Effort framework and its
subcategories

According to the framework proposed by Irmgard
Bartenieff [16], the LMA defines four main categories:
Body, Space, Shape, and Effort. The Body category de-
scribes how the movement is organized and sequenced
in the body. It describes “what is moving”, how the
body organizes itself. The Space category describes
“where the body moves”, how the mover directs her /his
attention onto the environment. Body and Space are
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Figure 1: The frame sequence (a), (b), and (c) exhibits a strong
weight movement, while the frame sequence (d), (e), and (f)
shows a light weight movement.

(b) (c)

kinematic features and describe the structural charac-
teristics of the movement [20].

On the other hand, the Shape and Effort categories
are more relevant to the qualitative aspects of the
movement [21]. The Shape looks at the change of the
form of the body, about self or to others, “toward where”
the body is changing its shape, as a bridge between
Body and Space. Finally, the Effort reflects the attitude
towards the movement, “how the body moves”. The
Effort manifests through four different bipolar factors
[22]: weight, space, time, and flow. The weight can be
strong (Fig. 1 - frames (a), (b), and (c)) or light (Fig. 1
- frames (d), (e), and (f)), as well as the space direct
(Fig. 2 - frames (a), (b), and (c)) or indirect (Fig. 2
- frames (d), (e), and (f)), the time sudden (Fig. 3 -
frames (a), (b), and (c)) or sustained (Fig. 3 - frames
(d), (e), and (f)), and the flow free (Fig. 4 - frames (a),
(b), and (c)) or bound (Fig. 4 frames (d), (e), and (f)).

The weight primarily relates to one’s relationship
with Earth’s gravity, although it has not to be asso-
ciated with the body weight per se. A strong weight
indicates a body more inclined to fall in gravity. A
direct space is characterized by a focused inner impulse
to move, where the movement expresses an intention to
follow a straight line towards a specific point, while an
indirect space exhibits a more diffuse and broad sense
of attention to the surrounding environment.

The time is concerned with the attitude toward how
(sudden or sustained) the person approaches the move-
ment. Thus, the time has not to be associated with the
time duration of the action but is related, in our model,
to the time to wait for the next observable movement
change. Finally, the flow characterizes the control of
the movement during the action; in our discussion, it
indicates a sort of memory of the movement sequence.

Looking at Fig. 1, frames (a), (b), and (c), it is
apparent how the body is closer to the ground for
the strong weight movement, in comparison with the
light weight movement. Thus, stronger/lighter weight
movements imply larger/smaller energy dissipation. A
simulation of such a concept is shown in Fig. 1, and
analogously for the other subcategories in Figs. 2-4.
Consecutive frames are separated by about 0.15 s for

(c) (d (o) ()

!!
(2) (b)

Figure 2: The frame sequence (a), (b), and (c) exhibits a direct
space movement, while the frame sequence (d), (e), and (f)

‘

shows an indirect space movement.

(2) (b) (c) (d (& (0

Figure 3: The frame sequence (a), (b), and (c) exhibits a
sudden #ime movement, while the frame sequence (d), (e),
and (f) shows a sustained time movement.

(c) (d)

(a) (b) (e) (f)

Figure 4: The frame sequence (a), (b), and (c) exhibits a free
flow movement, while the frame sequence (d), (e), and (f)
shows a bound flow movement.

all Figs. 1-4. In all cases, movements are performed
by an expert in body language and LMA. Although
these images cannot represent the whole complexity
of the corresponding movements, it is possible to get
the bipolar characteristics of the four subcategories
considered.

From the frame sequence (a), (b), and (c) of Fig. 2,
we can observe how the person moves toward an
expected goal while a sense of more indulgence in the
space appears in the other case.

The frame sequence (a), (b), and (c) of Fig. 3
simulate a relatively higher urgency in the movement
process while the body seems to indulge in the time in
the other sequence.

From Fig. 4, frame sequence (a), (b), and (c), it
is apparent how the movement with free flow more
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randomly interests the space outside the body of the
person, while the bound flow sequence obliges the body
to move within a more controlled space. As we will
further discuss in our model, a bound flow, implies a
sort of body memory, such as the gesture of a twirling
dancer requires high movement control, as the result of
a long body training.

3. Stochastic Model

As known from the literature, Brownian motion can
be described within random walk theory as a stochastic
process in which a particle moves randomly to the
nearest point at equal time intervals. The random walk
represents a generalization of the Brownian motion, and
it finds applications in many disciplines, among which
mathematics, statistical physics, economy, sociology,
network science, [23, 24, 25, 26].

The idea of adopting a random walk framework to
implement our conjecture arises from visualizing the
very classic example of the drunk’s walk, in association
with the unpredictable component of human motion.
In more detail, the drunk person does not know where
he/she is going, and flips a coin at each step to
decide whether to go forward or back, right or left;
this physically pictures the basic concept of a random
walk Finally, the position of the drunk person after n
“decisions” is a random variable. More specifically, for
a continuous time random walk, the walker tosses the
coin at random times extracted by a time distribution,
and, as a consequence, the movement changes happen
in a random time sequence.

The proposed model implements a deterministic
force in association with the direct space component,
while models weight via a friction coefficient to simulate
the energy spent against the gravitational field during
motion. The #ime is characterized by a waiting time
distribution. A stochastic force characterizes the free
flow component. It is, however, important to point
out, that space and weight are not deterministic per
se. Indeed, the randomness of time and flow reflects
into space and weight, as well as the deterministic
component of the movement associated with space
and weight affects the other two subcategories. The
adopted strategy implements a combined deterministic-
stochastic process. Finally, all the parameters can be
identified by observing human movements, as will be
discussed in the following.

Let us now define F as a force that can exert an
action to move the human body, and let us write F as
the sum of the two contributions:

F=F,+F, (1)
where the first term, Fy, is the deterministic force and

F, represents the stochastic term. The deterministic
component induces motion toward a stable objective,

while the stochastic force contributes to a random
fluctuation of the movement from a stable trajectory.
Human walks, characterized by higher and dominating
values of F'4, are thus an expression of direct space from
a point A toward a point B, while higher values of F,.
imply a random walk, an indirect space. On the other
hand, higher values of F, can also be interpreted as
an expression of free flow, as it will become apparent
from our discussion. The stochastic force is modeled
as a dichotomic process in our description. As a conse-
quence, F,. fluctuates between the constant values +F,
with a distribution density of time durations of the two
states extracted from a time distribution (¢). Thus,
the random part can be sketched as a series of “stop
and go” separated by a random time interval extracted
from 9 (t).

Let us now introduce the force v, which is rep-
resentative of a friction effect, i.e., in our model, of
the energy dissipation to exert the motion, or, in
other words, of the energy spent for moving against
the gravitational field. This term includes the weight
in our scheme, and higher/lower energy dissipation
implies greater/smaller values of the friction coefficient
B. Thus, we have:

dv

— =—pBv+F 2

mer = =B+ (2)

where fv is the phenomenological quantity represent-

ing the weight. At a first discussion, we can simplify

(2) assuming the term m dv/dt to be negligible for our
analysis, thus writing:

:V:%:%—i—%zvd—i—vT (3)
Indeed, a negligible m dv/dt assumption means that
the stochastic velocity component v,. does not vary be-
tween two consecutive velocity changes. The conditions
for neglecting the acceleration are discussed in detail by
Smoluchowski [27], [28]. In more detail, according to
such an assumption, the times for the velocity changes
are short compared to the time intervals between two
consecutive changes. In other words, under the Smolo-
chowski conditions, the motion is considered to be
substantially uniform between two consecutive changes.
Such an approximation should be possibly removed for
a person walking in a crowded space.

As a consequence, ¥(t) expresses the time during
which the velocity v, keeps the value +vy or —v(. More
sudden time are expected to be associated with more
rapid changes, i.e., smaller average time intervals.

pv =F,

v = voé(t) (4)
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where £(t) = =+1 represents a random fluctuating
quantity, thus, generating the values 4+ vy. We may then
rewrite (3) as:

v = d_; =vVi+ Vv, = % (r—vqt) =vo&(t) (5)
where r is the position of the walker. Thus, (5) describes
a random walker moving with a constant velocity for a
random time 77, then changing velocity for a time 7o,
and then again for a time 73, ..., 7,.

As we will see in the next Section, the experimental
analysis leads us to adopt a Poissonian distribution,
with the exponent coefficient being a phenomenological
parameter. Thus, the random times are extracted from
a Poissonian distribution ¥(t) = v exp[—~t], where the
parameter 1/ represents the average time to make a
decision.

Pla.t) = L expl—y1] [6 o=l — fatl) + Lx
2 fo
o th lw t?(—l}ﬁdfﬂ
Io |~ t2(xfdt) +
7

oo (=)
0 (fot— [z —fat])} 6)

is the probability distribution to find the walker at the
coordinate x when the walker started at the origin,
P(x,0) = 6(x). Here I,(z) is the modified Bessel
function of the first kind and § (t— |z|) is Dirac’s delta, a
function that represents the walkers that never changed
their velocity.

According to statistical theory, the described pro-
cess is expected to recover a Gaussian diffusion process
for a time sufficiently large, or, equivalently, for a
relatively high value of ~.

Pla,t) ~ \/% exp {-%M} : (7)

At a first analysis, depending on the intensity of the
random process, short average times to make a decision
can interpret a sense of urgency, as well as an unbound
flow. In all cases, such a condition indicates something
far from the expression of a well-controlled movement
sequence.

On the other hand, relatively small values of ~
compared to the intensity of the stochastic process can
be more related to sustained time, or bound flow.

Besides, in the limit of v — 0, the motion equation
writes as:

1 9?2 v 9 52

it = 5 P@.1). ()

Figure 5: Photograph of the outdoor setting: a 12 m x 11.6 m
area. A red and white ribbon grid defines a mesh of 870 square
subelements with 40 cm edge.

from which we recover the known wave-equation, as
well as we can argue relatively very high average time
to get a decision. Indeed, there is not sufficient time
for the stochastic process to diffuse. As a consequence,
it is apparent an intimate relationship between time
and flow in our model. Although the two subcategories
are conceptually different, urgency or rushing [16] are
generally competitors of careful actions.

Finally, in our description, the flow is related to a
sort, of memory of the motion, of the previous sequence
of foot movements. A relatively bound flow is expected
to be associated with a smaller stochastic component
v, but, in some cases, it can be perceived by the
observer as also associated with a longer average time
for taking a decision. A random walker that keeps the
memory of the previous steps is known in the literature
as a persistent random walker [26], which corresponds,
in our case, to a relatively v small value.

4. Experimental Analysis

A preliminary experimental analysis was carried
out to observe the walk trajectories associated with
different combinations of the Effort four subcategories.
In Fig. 5, a photograph of the prepared outdoor setting
is shown. A 12 m x 11.6 m meshed area was divided
into 870 square subelements of 40 cm edge each, which
is the adopted spatial resolution in our estimation of the
step position and observed spatial trajectory. We chose
an outdoor setting with such dimensions to prevent
as much as possible from the border effect. Indeed,
too much small space constrains the trajectories and
limits the efficacy of the analysis. Based on the ob-
tained results, the chosen dimensions are an acceptable
compromise for the present purposes. Besides, the
experiment occurred in an open countryside in late
springtime. The participants walked on a meadow with
short grass, and we did not register particularly evident
visuals, olfactory and audial stimuli to which they could
react.

We did not apply any sensors to the volunteers dur-
ing the campaign, and we acquired videos of their walks
with a commercial video camera. The time resolution
of the video camera was about 33 ms. Because of the
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(d) v1

(e) v2

(f) v3

Figure 6: Upper panel trajectories: direct space-sudden time (solid line), -sustained time (dashed line) and -bound flow (dash-
dotted line), (a) v1; (b) v2; (c) v3. Lower panel trajectories: direct space-free flow (solid line), -heavy weight (dashed line), and

-light weight (dash-dotted line), (d) v1; (e) v2; (f) v3.

limited statistics, we did not report any sex or age
classification. Thus, the volunteers are here identified
simply as vl, v2, ..., v5.

All the volunteers had no specialized training, and
they were not informed about our model framework.
They all received the same input for a direct space: start
the movement from a vertex of the square (x = —6 m,
y = 6 m), and finally, exit the setting from the opposite
vertex (x = 6 m, y = —5.6 m). Then, prior the
videorecording of each of the six walk combinations
with the other three subcategories, time, flow and
weight, each walker received the same following inputs:
for a sudden time - “imagine you are in a hurry”,
for a sustained time - “imagine you have ample time
available”; for a bound flow - “imagine you are carrying
a cup of tea”; for a free flow - “imagine you are a joyful
child”; for a heavy weight - “imagine you are burdened
with a heavy load”; for a light weight - “imagine you are
floating in the air”.

All the walkers clearly understood the context
and intended situation. Each walker performed the
six combinations individually. They received no other
inputs and no constraints on their performance time,
leaving them as much as possible free to interpret their
movement.

The observed trajectories are reported in Fig. 6:
dimensions are in (m). The upper plots refer to the com-
bined direct space-sudden time (solid line), -sustained
time (dashed line), and -bound flow (dash-dotted line);
the lower figures show the trajectories in association
with free flow (solid line), heavy weight (dashed line),
and light weight (dash-dotted line). From left to right,
the panels refer to v1, v2, v3. The analogous trajectories
to Fig. 6, are shown in Fig. 7 for v4 and v5. For the
sake of readability, the combined case, direct space-light
weight, is shown separately for both v4 and v5 (right
subplots (c) and (f), respectively).

For all the volunteers, results mostly show how
the trajectories relevant to sustained time, free flow,
and light weight are more dispersed over the square,
compared to their counterparts, which show paths
much tight closer to the diagonal.

5. Random Time Analysis

As discussed in Sec. 3, the waiting time distribution
(t) represents the distribution of the random times at
which the random walk movement changes. An accu-
rate description of what identifies a movement change
is a key question for properly defining our subject of
investigation. In this Section, we further clarify how
to get the random step and velocity components and
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Figure 7: Upper panel trajectories (v4): (a) direct space-sudden time (solid line), -sustained time (dashed line) and -bound flow
(dash-dotted line); (b) direct space-free flow (solid line), -heavy weight (dashed line); (c) direct space-light weight (dash-dotted
line). The analogous trajectories of v5 are shown in the lower panels (d), (e) and (f).

— I

5 10 15 20 25 30 35

Figure 8: Reconstructed waiting time distribution for a virtual

character, histogram. Obtained exponential distribution (solid

line) with the exponential term v = 0.305 s™*.

the random times from the measurements reported in
Sec. 4. For each subcategory case, we thus combined
the data relevant to all the five volunteers to form a
single data sheet. Then, we determined the two mean
components of the term v, of (3) by dividing the total
length along x and y by the exit time. It is worth
remarking that vgq, ~ vgy for all the tests. To get
the random components of v,, we then proceeded as
follows: firstly, we subtracted the average step length
from the actual step length, thus obtaining the random

step component; next, at each time of observation,
i.e., at each step, we divided the random step by the
time duration of the step, thus obtaining the random
velocity; finally, we got the average of the absolute
values of the random components v, ~ vyy.

In particular, we got larger v, components for
the combined direct space-sudden time, -free flow,
and -light weight subcategories, compared with their
counterparts.

In Fig. 8, we show the waiting time distributions
of a virtual character reconstructed from the random
time distributions of all five volunteers. Time intervals,
i.e., the random times, are those at which v, changes
its sign, while the parameter v = 0.305 s~! is evaluated
as the inverse of the average time interval. In particu-
lar, we can observe a substantial agreement with the
assumption of an exponential distribution, solid line
curve.

In Tab. 1, we summarize the experimental param-
eters relevant to the considered combinations of the
Effort subcategories. Results show a relatively shorter
mean time interval (1/y = 1.2 s) for the direct space-
sudden time performance, while for all the other cases,
average time intervals are approximately between 3 s
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Figure 9: Simulated trajectories. From left to right: (upper panels) direct space-sudden time, -sustained time, -bound flow; (lower

panels) -free flow, -heavy weight, -light weight.

Table 1

Experimental parameters identified from the observed trajec-
tories; vq stands for vaz ~ vy, Vr fOr vry ~ vy, respectively.
Reported subcategories are combined with a direct space.

76 va(mfs) v (m]5)
sudden time 1.22 1.33 0.52
sustained time 3.75 0.31 0.40
bound flow 3.17 0.31 0.20
free flow 3.17 0.34 0.90
heavy weight 3.90 0.30 0.19
light weight 4.05 0.35 0.66

and 4 s. Furthermore, higher v, appear for the com-
bined direct space-free flow and -light weight compared
to their counterparts.

6. Simulation Results

In this Section, we simulate the trajectory of a
virtual random walker. As we will show the results are
promising, and, in principle, the model can be extended
to simulate more complex movements.

In Fig. 9, typical simulated trajectories, in a sta-
tistical sense are shown for all the considered cases.

At first glance, the results show a clear difference for
the combined subcategories direct space-sudden time,
-bound flow, and -heavy weight, compared with the
other cases, and they appear in substantial agreement
with the observed trajectories of the five volunteers. It
is important to point out that the agreement has to be
intended in a statistical sense.

It is possible to notice how the simulated trajec-
tories show abrupt changes in direction (formation
of tip points). However, this is not an intrinsic limit
of the model but just a consequence of the adopted
approximations in the current version. An underlined
gray fit line is also reported to help the reading of the
simulated paths.

Besides, it is worth noting that the simulated
combinations of direct space-sudden time, -bound flow,
and -heavy weight also exhibit trajectories that are
relatively close to a straight line. Such trajectories show
a substantial statistical agreement with the trajectories
displayed by the five volunteers in Fig. 6 and Fig. 7
for the corresponding combinations. In the case of the
volunteers’ trajectories, they also tend to be generally
close to a straight line.

Furthermore, the simulated direct space-sustained
time, -free flow, and -light weight, all express more
sense of indulgence in the space, i.e., more occupancy
of the area as a result of a higher stochastic component
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relatively to the intensities of the other two parameters
~v and v4. Besides, the observer perceives less possibility
of repeating the very same sequence for the simulated
sustained time, free flow, and light weight. This can
find, for example, confirmation, if we imagine observing
a healthy adult or a little child, both attracted by
a deterministic force toward an objective. Both the
adult and the little child will define a trajectory,
but it is expected that if they are asked to repeat
their movement, the little child should deviate more
evidently from its previous path.

7. Conclusion

We analyzed the human walk via a combined
deterministic-stochastic model based on a random walk
framework. Along with the Laban Movement Analysis,
we recalled the main features of the four Effort sub-
categories, and combined deterministic and stochastic
forces to represent the movement qualities associated
with the Laban space, weight, time, and flow. As a
major aspect of our discussion, we pointed out how
the time distribution has a central role in the model
characterizing the randomly extracted instants when
the walk movement changes. We then reported the
results of an experimental analysis performed in an
outdoor setting with volunteers walking on a plane. In
particular, we included the trajectories performed by
five volunteers as a result of different combinations of a
direct space with the other subcategories. Furthermore,
we discussed the identification process of the model
parameters from the measured trajectories, and we pre-
sented the outputs of our model via randomly extracted
trajectories of a virtual character. The obtained results
showed a substantial agreement with the observed
trajectories and encourage to further investigate the
presented approach based on statistical quantities to
analyze the human walks associated with different
combinations of the Laban Effort subcategories.
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