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A B S T R A C T

When dealing with an orbit determination problem, uncertainties naturally arise from intrinsic errors related to
observation devices and approximation models. Following the Least Squares Method and applying approxima-
tion schemes such as the differential correction, uncertainties can be geometrically summarized in confidence
regions and estimated by confidence ellipsoids. We investigate the asymptotic behaviour of the confidence
ellipsoids while the number of observations and the time span over which they are performed simultaneously
increase. Numerical evidences suggest that, in the chaotic scenario, the uncertainties decay at different rates
whether the orbit determination is set up to recover the initial conditions alone or along with a dynamical
or kinematical parameter, while in the regular case there is no distinction. We show how to improve some of
the results in Marò and Bonanno (2021), providing conditions that imply a non-faster-than-polynomial rate of
decay in the chaotic case with the parameter, in accordance with the numerical experiments. We also apply
these findings to well known examples of chaotic maps, such as piecewise expanding maps of the unit interval
or affine hyperbolic toral transformations. We also discuss the applicability to intermittent maps.

1. Introduction

Orbit Determination problems have attracted a wide interest across the centuries, and still do. The core of modern Orbit Determination is
the recovering of information about some unknown parameters related to a specific model starting from a set of previously acquired observations.
Gauss’ Least Squares Method [1] gave a remarkable contribution to Orbit Determination and is still largely employed within many modern algorithms
related to impact monitoring activities or radio science experiments.

Various Orbit Determination problems are concerned with chaotic behaviour arising, for example, from close encounters of a celestial body
with others being sufficiently massive. This emphasizes the value of accurate predictions in impact monitoring activities [2] or space missions in
which the spacecraft experiences close encounters with other celestial bodies in the Solar System [3].

The Least Squares Method gives a description of the uncertainties through the so called confidence region surrounding the nominal solution,
which is the result of the application of the method which best approximates the real one. Hence, accuracy results could be inferred studying the
evolution on the confidence region while the number of observations and, consequently, the timespan over which they are performed, increase.

Research in this direction has been enhanced by the numerical results in Serra et al. [4], Spoto and Milani [5] through the study of a model
defined by the Chirikov standard map [6] depending on a parameter, which presents both ordered and chaotic regions. They simulated a set of
observations by adding some noise to a real orbit of the map, then set up an orbit determination process in order to resume the true orbit. The
numerical experiments highlighted a strong dependence of the decay of the uncertainties on the dynamics and on the nature of the parameters to
be recovered. More specifically, if the true orbit was generated by an initial condition belonging to a chaotic zone, then the observed rate of decay
of the uncertainties depends on whether the orbit determination is arranged to recover the initial conditions alone, in which case it is exponential,
or together with an extra parameter, in which case the decay is polynomial. On the other hand, if the initial condition came from an ordered zone,
then a polynomial rate could be observed in both the situations.

Analytical and formal proofs consistent with these numerical evidences were provided by S. Marò and by S. Marò and C. Bonanno in [7,8],
where hyperbolic transformations and a generalization of the standard map were taken as models for understanding, respectively, the chaotic and
the ordered case.
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In this paper we focus on the specific scenario of chaotic transformations depending on a parameter, and provide some conditions which, if
atisfied by these maps, produce a polynomial-bounded decay of the uncertainties in an orbit determination process aiming to recover both the
nitial conditions and the varying parameter. Indeed, the results in [8] concerning this case are in accordance with the numerical experiments,

since a strictly slower than exponential rate of decay was shown, but an analytical proof of the precise polynomial decay is missing.
The rest of the paper is organized as follows. In Section 2 we present the setting and notations employed and give a formal description of the

rbit determination problem and the Least Squares Method, as outlined in [9]. Section 3 specifies the problem we are interested in studying. In
Section 4 we provide a condition that, if satisfied, implies the expected rate of decay, and list some examples. The same is done in Section 5, where

e point out a different condition which can be verified for other classes of maps. Sections 6 and 7 are dedicated, respectively, to the proof of
the main Theorems 1 and 2. In Section 8 we address the problems we may face dealing with intermittent maps, and give some results which still
point towards the expected behaviour. In the concluding Section 9 we briefly summarize what we obtained and point out interesting directions
hat these studies may follow.

2. Setting and notations

Let 𝑋 be a domain in R𝑑 with 𝑑 ∈ N∗ and 𝐾 ⊂ R. Suppose that both 𝑋 and 𝐾 have non-empty interior. 𝑋 could be generalized to a differentiable
Riemannian manifold employing slightly more intricate notations.

We consider a family of functions {𝑓𝑘 ∶ 𝑋 → 𝑋}𝑘∈𝐾 satisfying the following assumptions:

• For every 𝑥 ∈ 𝑋, the map 𝑘 ↦ 𝑓𝑘(𝑥) from 𝐾 to 𝑋 is differentiable.
• 𝑋 is endowed with a 𝜎-algebra  such that 𝑓𝑘 is measurable and there exists an 𝑓𝑘-invariant probability measure 𝜇𝑘, absolutely continuous

with respect to the Lebesgue measure, for every 𝑘 ∈ 𝐾.
• For every 𝑘 ∈ 𝐾 and for 𝜇𝑘-almost every (a.e.) 𝑥 ∈ 𝑋, the function 𝑓𝑘 is differentiable with respect to 𝑥, with Jacobian matrix denoted by
𝐹𝑘(𝑥) and assumed to be invertible.

• For every 𝑘 ∈ 𝐾 and for 𝜇𝑘-a.e. 𝑥 ∈ 𝑋, the function 𝑓𝑘 is also differentiable with respect to the couple (𝑥, 𝑘), with 𝐹𝑘(𝑥) denoting the Jacobian
matrix.

• ∃𝑀 ∈ R+ such that sup𝑥∈𝑋
‖

‖

‖

‖

𝜕 𝑓𝑘
𝜕 𝑘 (𝑥)

‖

‖

‖

‖

≤ 𝑀 .

Given 𝑛 ∈ N, we call 𝑓 𝑛
𝑘 the 𝑛th iterate of the map, where 𝑓 0

𝑘 ∶= 𝑖𝑑𝑋 is the identity. Its Jacobian matrix with respect to 𝑥 ∈ 𝑋 can be expressed
by the chain rule as

𝐹 𝑛
𝑘 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝐹𝑘(𝑓 𝑛−1
𝑘 (𝑥))𝐹𝑘(𝑓 𝑛−2

𝑘 (𝑥)) …𝐹𝑘(𝑥) for 𝑛 ≥ 1,

𝐼𝑑×𝑑 for 𝑛 = 0.

In a similar way, the Jacobian matrix of 𝑓 𝑛
𝑘 with respect to (𝑥, 𝑘) will be called

𝐹 𝑛
𝑘 (𝑥) ∶=

[

𝐹 𝑛
𝑘 (𝑥)

|

|

|

|

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
]

.

In order to simplify the discussion, we introduce the following definition:

Definition 1. For a fixed 𝑘 ∈ 𝐾, we say that a point 𝑥 ∈ 𝑋 is suitable if, for every 𝑛 ∈ N, 𝐹 𝑛
𝑘 (𝑥) is well defined and invertible.

A pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 is called suitable if 𝑥 is suitable for the map 𝑓𝑘.

Adopting the approach of Milani and Gronchi [9], we set up an orbit determination process modelled by 𝑓𝑘: we assume to have a set {𝑋𝑛}𝑁𝑛=0 of
bservations performed at times 0, 1,… , 𝑁 and related to a system whose evolution is represented by the orbits of 𝑓𝑘. Our aim is to recover some

unknown parameters which characterize this map, namely the initial conditions and the value of 𝑘. The Least Squares Method (if convergent) will
provide an initial state 𝑥∗ ∈ 𝑋 and a specific 𝑘∗ ∈ 𝐾 so that the first 𝑁 terms of the orbit of 𝑥∗ under 𝑓𝑘∗ will be a good approximation of the
observations.

Firstly, we define the residuals

𝜉𝑛(𝑥, 𝑘) ∶= 𝑋𝑛 − 𝑓 𝑛
𝑘 (𝑥),

where (𝑥, 𝑘) ∈ 𝑋 ×𝐾 is a suitable pair and 𝑛 ∈ {0, 1,… , 𝑁}.
The nominal solution (𝑥∗, 𝑘∗) is chosen as the minimum point of the target function

𝑄̃(𝑥, 𝑘) ∶= 1
𝑁 + 1

𝑁
∑

𝑛=0
𝜉𝑛(𝑥, 𝑘)𝑇 𝜉𝑛(𝑥, 𝑘) = 1

𝑁 + 1
𝑁
∑

𝑛=0
∥ 𝜉𝑛(𝑥, 𝑘) ∥22 .

Finding the minima of this function (if they even exist) is all but a trivial task, usually processed using iterative schemes such as the Gauss–Newton
lgorithm and the differential corrections [9]. Proving the existence and computing the nominal solutions will not be of our concern since we will

focus on maps that can be dealt with standard or advanced techniques such as the multi-arc approach [4].
In general, the nominal solution (𝑥∗, 𝑘∗) differs from the real one, due to the intrinsic errors coming from the observation process. Therefore,

one considers acceptable the elements of the confidence region
𝑍(𝜎) ∶=

{

(𝑥, 𝑘) ∈ 𝑋 ×𝐾 ∶ 𝑄̃(𝑥, 𝑘) ≤ 𝑄̃(𝑥∗, 𝑘∗) + 𝜎2

𝑁 + 1
}

,

the set of couples (𝑥, 𝑘) on which the target function takes values which are slightly bigger than the minimum depending on an empirical parameter
𝜎. The parameter 𝜎 depends on the statistical properties of the specific problem and without loss of generality we can normalize it to 𝜎 = 1.
2 
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If we expand the target function in a neighbourhood of the nominal solution up to the second order we find that

𝑄̃(𝑥, 𝑘) ≃ 𝑄̃(𝑥∗, 𝑘∗) + 𝜕𝑄̃
𝜕(𝑥, 𝑘) (𝑥

∗, 𝑘∗)
[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]

+ 1
2

[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]𝑇 𝜕2𝑄̃

𝜕(𝑥, 𝑘)2(𝑥
∗, 𝑘∗)

[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]

.

Being (𝑥∗, 𝑘∗) a minimum point of 𝑄̃, and assuming that the residuals are small (that is, the Least Squares Method worked out well), we can
eglect higher order terms and approximate the target function as

𝑄̃(𝑥, 𝑘) ≃ 𝑄̃(𝑥∗, 𝑘∗) + 1
𝑁 + 1

[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]𝑇 [ 𝑁
∑

𝑛=0
𝐹𝑘∗ (𝑥∗)𝑇𝐹𝑘∗ (𝑥∗)

]

[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]

.

We define the normal matrix as

𝐶𝑁 (𝑥∗, 𝑘∗) ∶=
𝑁
∑

𝑛=0
𝐹𝑘∗ (𝑥∗)𝑇𝐹𝑘∗ (𝑥∗),

and the covariance matrix as its inverse

𝛤𝑁 (𝑥∗, 𝑘∗) ∶=
[

𝐶𝑁 (𝑥∗, 𝑘∗)
]−1

.

We observe that these matrices are symmetric and that, since in our set up the Jacobian matrix 𝐹𝑘(𝑥) has full rank, they are positive definite.
Therefore, we can now employ the confidence ellipsoid

̃𝑁 (𝑥∗, 𝑘∗) ∶=
{

(𝑥, 𝑘) ∈ 𝑋 ×𝐾 ∶ (𝑥, 𝑘) is suitable and
[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]𝑇

𝐶𝑁 (𝑥, 𝑘)
[

𝑥 − 𝑥∗

𝑘 − 𝑘∗

]

≤ 1

}

as a relatively close description of the confidence region.
The size of the ellipsoid is determined by the covariance matrix: calling

𝜆(1)𝑁 (𝑥, 𝑘) ≤ 𝜆(2)𝑁 (𝑥, 𝑘) ≤ ⋯ ≤ 𝜆(𝑑+1)𝑁 (𝑥, 𝑘)

the eigenvalues of 𝛤𝑁 (𝑥, 𝑘) (all positive because the matrix is positive definite), a standard geometric result states that the axes of ̃𝑁 (𝑥∗, 𝑘∗) have
ength

2
√

𝜆(𝑗)𝑁 (𝑥∗, 𝑘∗),where 𝑗 ∈ {1, 2,… , 𝑑 + 1}.

3. Statement of the problem

Accuracy is an essential issue in orbit determination. Since the confidence ellipsoid approximates the confidence region, we can use it to outline
he inevitable errors arising from the observation process. In particular, it is interesting to examine its behaviour while the number of observations
nd, consequently, the timespan over which they are performed increase. In general, it is reasonable to expect that, gathering more information,
he orbit determination will be more precise, hence the axes of the ellipsoid will shrink.

The idea of studying the eigenvalues of the covariance matrix (strictly related to the size of the confidence ellipsoid, as seen in the previous
section) was conducted by Milani et al. [4,5], who worked on a model problem based on the Chirikov standard map. Their numerical results show
that, if the orbit determination is set up in an ordered environment, the uncertainties decay at a polynomial rate, while in the chaotic scenario the
ate is exponential if the unknown parameters to be recovered are the initial conditions alone, but polynomial when another parameter (𝑘 in the
revious section) is added to the unknown to be determined.

These results were formally proved by Marò and Bonanno [8] for chaotic maps and by Marò [7] for a generalization of the standard map.
However, in the case of chaotic maps with unknown parameters including 𝑘, the results show that the rate of decay of the uncertainties is strictly
slower than any exponential, but there are no hints about a specific polynomial estimate. Hence, in this paper we study the following

Problem
To estimate the rate of decay of the uncertainties with a polynomial bound in the case of chaotic maps with unknown parameters including

oth initial conditions and 𝑘.
We look for appropriate conditions which imply a polynomial bound from below on the maximum eigenvalue of the covariance matrix, so that

e can infer that the greatest axis of the confidence ellipsoid decays with a rate which is not faster than a polynomial.
For every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾, let us (formally) call

𝑆𝑘(𝑥) ∶=
+∞
∑

𝑖=1
∥ [𝐹 𝑖

𝑘(𝑥)]
−1 ∥ .

In the next sections we introduce conditions on 𝑆𝑘(𝑥) that, if satisfied by the map 𝑓𝑘, imply the requested polynomial bound on the greatest
eigenvalue 𝜆(𝑑+1)𝑁 (𝑥, 𝑘) of the covariance matrix 𝛤𝑁 (𝑥, 𝑘). Then, we provide some examples of well-known hyperbolic maps satisfying the conditions.

The proofs of the main theorems are in Sections 6 and 7.

4. Condition 𝑪𝒅 and applications

We say that condition 𝐶𝑑 holds if ∀ 𝑘 ∈ 𝐾 ∃ 𝜎𝑘 ∈ R+ such that if (𝑥, 𝑘) ∈ 𝑋 ×𝐾 is suitable then 𝑆𝑘(𝑥) ≤ 𝜎𝑘.
Here the subscript 𝑑 in the notation 𝐶 refers to the dimension of the domain 𝑋.
𝑑

3 
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Theorem 1. Let 𝑓𝑘 ∶ 𝑋 → 𝑋 be such that condition 𝐶𝑑 is verified. Then, for a fixed suitable pair (𝑥, 𝑘) ∈ 𝑋 × 𝐾 and for every 𝑁 ∈ N∗, the greatest
eigenvalue 𝜆(𝑑+1)𝑁 (𝑥, 𝑘) of the covariance matrix 𝛤𝑁 (𝑥, 𝑘) satisfies

𝜆(𝑑+1)𝑁 (𝑥, 𝑘) ≥ 1
[

𝑀 𝜎𝑘
]2

⋅
1

(𝑁 + 1) .

A straightforward application of this result concerns the broadly studied uniform piecewise expanding maps of the unit interval.
More specifically, let us consider a family {𝑓𝑘 ∶ [0, 1] → [0, 1]}𝑘∈𝐾 such that, for every 𝑘 ∈ 𝐾, we have that:

• There exists a sequence 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑚𝑘
= 1, with 𝑚𝑘 ∈ N∗ ∪ {+∞}, such that, naming 𝐼𝑗 ∶= (𝑠𝑗−1, 𝑠𝑗 ) for every 𝑗 = 1, 2,… , 𝑚𝑘, we have

that 𝑓𝑘|𝐼𝑗 is of class 𝐶2 and has a 𝐶1 extension to the closure 𝐼 𝑗 .
• There exists 𝑐𝑘 ∈ (1,+∞) such that, for all 𝑗 = 1,… , 𝑚𝑘, we have inf𝑥∈𝐼𝑗 |(𝑓𝑘|𝐼𝑗 )

′(𝑥)| ≥ 𝑐𝑘.

Corollary 1. A family {𝑓𝑘 ∶ [0, 1] → [0, 1]}𝑘∈𝐾 of piecewise expanding maps of [0, 1] satisfies condition 𝐶1.

Proof. By assumption, we know that, for every suitable pair (𝑥, 𝑘) ∈ [0, 1] ×𝐾,

|𝑓 ′
𝑘(𝑥)| ≥ 𝑐𝑘 > 1.

Hence, whenever 𝑖 ∈ N∗, we have that

|(𝑓 𝑖
𝑘)

′(𝑥)| =
𝑖−1
∏

𝑗=0
|𝑓 ′

𝑘(𝑓
𝑗
𝑘 (𝑥))| ≥

𝑖−1
∏

𝑗=0
𝑐𝑘 = 𝑐𝑖𝑘,

and thus
+∞
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑥)−1| =

+∞
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑥)|−1 ≤

+∞
∑

𝑖=1
𝑐−𝑖𝑘 = 1

𝑐𝑘 − 1 .

Condition 𝐶1 holds choosing 𝜎𝑘 = 1
𝑐𝑘 − 1 . □

5. Condition 𝑯𝒅 and applications

Condition 𝐻𝑑 is said to be verified if, for fixed 𝑘 ∈ 𝐾 and 𝑝, 𝑞 ∈ N such that 𝑝 + 𝑞 = 𝑑, the following is true for every suitable 𝑥 ∈ 𝑋:

• ∃𝑉𝑘 ∈ R𝑑×𝑑 such that

𝑉 −1
𝑘 𝐹𝑘(𝑥)𝑉𝑘 =

⎡

⎢

⎢

⎣

𝐴𝑘(𝑥) 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑘(𝑥)

⎤

⎥

⎥

⎦

=∶ 𝐷𝑘(𝑥)

is a simultaneous block diagonalization for 𝐹𝑘(𝑥), where

𝐴𝑘(𝑥) ∈ R𝑝×𝑝, 𝐵𝑘(𝑥) ∈ R𝑞×𝑞 .

For every 𝑛 ∈ N∗, we will call

𝐴𝑛
𝑘(𝑥) ∶=

𝑛−1
∏

𝑗=0
𝐴𝑘(𝑓

𝑗
𝑘 (𝑥)) and 𝐴0

𝑘(𝑥) ∶= 𝐼𝑝×𝑝;

𝐵𝑛
𝑘(𝑥) ∶=

𝑛−1
∏

𝑗=0
𝐵𝑘(𝑓

𝑗
𝑘 (𝑥)) and 𝐵0

𝑘(𝑥) ∶= 𝐼𝑞×𝑞 .

There exists 𝛼𝑘 ∈ R+ such that ∑+∞
𝑖=1 ∥ [𝐴𝑖

𝑘(𝑥)]
−1 ∥2 ≤ 𝛼𝑘.

There exists 𝛽𝑘 ∈ R+ such that, for every 𝑛 ∈ N∗, ∑𝑛−1
𝑖=0 ∥ 𝐵𝑖

𝑘(𝑓
𝑛−𝑖
𝑘 (𝑥)) ∥2 ≤ 𝛽𝑘.

Theorem 2. Let 𝑓𝑘 ∶ 𝑋 → 𝑋 be such that condition 𝐻𝑑 is verified. Then, for every suitable pair (𝑥, 𝑘) in 𝑋 × 𝐾 and for every 𝑁 ∈ N∗, the greatest
igenvalue 𝜆(𝑑+1)𝑁 (𝑥, 𝑘) of the covariance matrix 𝛤𝑁 (𝑥, 𝑘) satisfies

𝜆(𝑑+1)𝑁 (𝑥, 𝑘) ≥
∥𝑉 (𝑝)

𝑘 ⋅𝐿(𝑥, 𝑘) ∥22 +1
(

𝑀 ∥𝑉𝑘 ∥2∥𝑉 −1
𝑘 ∥2

)2 (𝛼2𝑘 + 𝛽2𝑘)
⋅

1
𝑁 + 1 ,

where 𝑉 (𝑝)
𝑘 ∶= 𝑉𝑘 ⋅

[

𝐼𝑝×𝑝
0𝑞×𝑝

]

∈ R𝑑×𝑝, and the limit

𝐿(𝑥, 𝑘) ∶= lim
𝑛→+∞

(

[𝐴𝑛
𝑘(𝑥)]

−1
𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

)

exists, with 𝝎1
𝑘(𝑥) ∶=

[

𝐼𝑝×𝑝 0𝑝×𝑞
]

⋅ 𝑉 −1
𝑘 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑥), for every suitable 𝑥 ∈ 𝑋.
4 
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Theorem 2 can be employed for showing a slight generalization of some results in [8] about affine hyperbolic diffeomorphisms of the torus T𝑑 .
n particular, we study maps of the form

𝑓𝑘 ∶ T𝑑 → T𝑑

𝑥 ↦ 𝑃𝑘𝑥 + 𝑞𝑘,
(1)

with 𝑃𝑘 ∈ 𝑆 𝐿(𝑑 ,Z) without eigenvalues of modulus 1, and 𝑞𝑘 ∈ R𝑑 .
In order to show that the above maps satisfy condition 𝐻𝑑 , we need a couple of lemmas.

Definition 2. The spectral radius of a matrix 𝑃 ∈ C𝑑×𝑑 is defined as

𝜌(𝑃 ) ∶= max{|𝜈| ∶ 𝜈 is an eigevalue of 𝑃 }.

The following is a well known result of linear algebra [10, p. 119].

Lemma 1. For every matrix 𝑃 ∈ C𝑑×𝑑 and for every 𝜖 ∈ R+ there exists a matrix norm | ⋅ |𝜖 such that
|𝑃 |𝜖 ≤ 𝜌(𝑃 ) + 𝜖 .

Lemma 2. If 𝑃 ∈ C𝑑×𝑑 has spectral radius 𝜌(𝑃 ) < 1, then there exist two constants, 𝑐 ∈ R+ and 𝜃 ∈ (0, 1), such that, for every 𝑛 ∈ N,

∥ 𝑃 𝑛 ∥2 ≤ 𝑐 𝜃𝑛.

Proof. By the hypothesis, we can fix an 𝜖 ∈ R+ such that 𝜃 ∶= 𝜌(𝑃 ) + 𝜖 < 1.
The previous lemma provides a matrix norm | ⋅ |𝜖 with |𝑃 |𝜖 ≤ 𝜃.
Moreover, all the matrix norms are equivalent, hence there exists a constant 𝑐 ∈ R+ such that, for every matrix 𝑄 ∈ C𝑑×𝑑 , ∥ 𝑄 ∥2 ≤ 𝑐 |𝑃 |𝜖 .
Thus, we readily conclude that, for every 𝑛 ∈ N, ∥𝑃 𝑛∥2 ≤ 𝑐 |𝑃 𝑛

|𝜖 ≤ 𝑐 |𝑃 |𝑛𝜖 ≤ 𝑐 𝜃𝑛. □

Corollary 2. A family {𝑓𝑘 ∶ T𝑑 → T𝑑}𝑘∈𝐾 of affine hyperbolic toral diffeomorphisms satisfies condition 𝐻𝑑 .

Proof. Let us consider such transformations with the same notations as in (1).
We know that, for every suitable (𝑥, 𝑘) ∈ T𝑑 ×𝐾 and for every 𝑛 ∈ N, the Jacobian matrices are constant: 𝐹 𝑛

𝑘 (𝑥) = 𝑃 𝑛
𝑘 .

By assumption, we know that every eigenvalue of 𝑃𝑘 is non-vanishing and with modulus strictly smaller or strictly larger than 1.
We call 𝐸𝑢

𝑘 the sum of all the generalized eigenspaces for eigenvalues of modulus greater than 1 and, similarly, 𝐸𝑠
𝑘 the sum of all the generalized

eigenspaces for eigenvalues of modulus less than 1.
If 𝑑 𝑖𝑚(𝐸𝑢

𝑘) = 𝑝 and 𝑑 𝑖𝑚(𝐸𝑠
𝑘) = 𝑞 (so that 𝑝 + 𝑞 = 𝑑), let {𝐯(1)𝑘 ,… , 𝐯(𝑝)𝑘 } ⊂ R𝑑 be a basis for 𝐸𝑢

𝑘, and {𝐯(𝑝+1)𝑘 ,… , 𝐯(𝑑)𝑘 } ⊂ R𝑑 be a basis for 𝐸𝑠
𝑘.

We may assemble these vectors into two matrices:

𝑉 𝑢
𝑘 ∶=

[

𝐯(1)𝑘 … 𝐯(𝑝)𝑘

]

∈ R𝑑×𝑝 and 𝑉 𝑠
𝑘 ∶=

[

𝐯(𝑝+1)𝑘 … 𝐯(𝑑)𝑘

]

∈ R𝑑×𝑞 .

Now, being 𝐸𝑢
𝑘 and 𝐸𝑠

𝑘 invariant under the action of 𝑃𝑘, the matrix

𝑉𝑘 ∶=
[

𝑉 𝑢
𝑘 𝑉 𝑠

𝑘
]

∈ R𝑑×𝑑

block-diagonalizes 𝑃𝑘 in the following way:

𝑉 −1
𝑘 𝑃𝑘𝑉𝑘 =

⎡

⎢

⎢

⎣

𝐴𝑘 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑘

⎤

⎥

⎥

⎦

,

where 𝐴𝑘 ∈ R𝑝×𝑝 and 𝐵𝑘 ∈ R𝑞×𝑞 .
In order to verify condition 𝐻𝑑 , we show that

• there exists 𝛼𝑘 ∈ R+ such that ∑+∞
𝑖=1 ∥ [𝐴𝑖

𝑘]
−1 ∥2=

∑+∞
𝑖=1 ∥ 𝐴−𝑖

𝑘 ∥2≤ 𝛼𝑘;
• there exists 𝛽𝑘 ∈ R+ such that ∑+∞

𝑖=0 ∥ 𝐵𝑖
𝑘 ∥2≤ 𝛽𝑘, for every 𝑛 ∈ N∗.

Now, by construction, all the eigenvalues of the matrix 𝐴𝑘 have modulus greater than 1. Therefore, its inverse 𝐴−1
𝑘 is such that 𝜌(𝐴−1

𝑘 ) < 1,
because its eigenvalues are the reciprocals of those of 𝐴𝑘.

Lemma 2 implies that there exist two constants, 𝑐𝑘,𝑝 ∈ R+ and 𝜃𝑘,𝑝 ∈ (0, 1), such that, for every 𝑖 ∈ N, we have ∥ 𝑃−𝑖
𝑘 ∥2≤ 𝑐𝑘,𝑝𝜃𝑖𝑘,𝑝.

Hence, we find that
+∞
∑

𝑖=1
∥ [𝐴𝑖

𝑘]
−1 ∥2≤ 𝑐𝑘,𝑞

+∞
∑

𝑖=1
𝜃𝑖𝑘,𝑝 =

𝑐𝑘,𝑝𝜃𝑘,𝑝
1 − 𝜃𝑘,𝑝

,

and the first point is proved.
The second one is analogous: 𝐵𝑘 has eigenvalues of modulus less than 1, thus Lemma 2 provides two constants 𝑐𝑘,𝑞 ∈ R+ and 𝜃𝑘,𝑞 ∈ (0, 1) such

hat ∥ 𝐵𝑖
𝑘 ∥2 ≤ 𝑐𝑘,𝑞𝜃𝑖𝑘,𝑞 , whenever 𝑖 ∈ N.

In conclusion,
+∞
∑

𝑖=0
∥ 𝐵𝑖

𝑘 ∥2≤ 𝑐𝑘,𝑞
+∞
∑

𝑖=0
𝜃𝑖𝑘,𝑞 =

𝑐𝑘,𝑞
1 − 𝜃𝑘,𝑞

,

and the proposition is proved. □
5 
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Before moving to the proofs of Theorems 1 and 2, let us just note that condition 𝐶𝑑 can be read as a request for an expanding-type action of
he maps, while 𝐻𝑑 imposes both an expanding and contracting behaviour. Despite these features recall hyperbolicity, for the sake of generality
e did not explicitly asked for it, preferring to let the provided examples to show their applicability among some classes of these kind of maps.

6. Proof of Theorem 1

The theorem is equivalent to stating that, if 𝛿(1)𝑁 =
[

𝜆(𝑑+1)𝑁

]−1
represents the smallest eigenvalue of the normal matrix, then, under 𝐶𝑑 , for every

uitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and 𝑁 ∈ N∗ we have

𝛿(1)𝑁 (𝑥, 𝑘) ≤ [𝑀 𝜎𝑘]2(𝑁 + 1).
From Courant–Fischer Theorem, we find that 𝛿 (1)

𝑁 (𝑥, 𝑘) = min 𝐳∈R𝑑+1
∥𝐳∥2=1

𝐳𝑇𝐶𝑁 (𝑥, 𝑘) 𝐳.
Now, if we partition an arbitrary 𝐯 ∈ R𝑑+1 as

𝐯 =
[

𝐯
𝑣𝑑+1

]

, with 𝐯 ∈ R𝑑 and 𝑣𝑑+1 ∈ R,

by definition of 𝐶𝑁 (𝑥, 𝑘) and 𝐹 𝑛
𝑘 (𝑥), we get that

𝐯𝑇𝐶𝑁 (𝑥, 𝑘) 𝐯 =
𝑁
∑

𝑛=0
∥ 𝐹 𝑛

𝑘 (𝑥)𝐯 ∥22 =
𝑁
∑

𝑛=0

‖

‖

‖

‖

[

𝐹 𝑛
𝑘 (𝑥)

|

|

|

|

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
]

⋅
[

𝐯
𝑣𝑑+1

]

‖

‖

‖

‖

2

2

=
𝑁
∑

𝑛=0

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯 + 𝑣𝑑+1 ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2
.

Therefore, the crucial point is to find a vector 𝐯 independent on 𝑁 and such that
‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯 + 𝑣𝑑+1 ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2
≤ [𝑀 𝜎𝑘]2.

For the next results, it is helpful to define an auxiliary map as the function
𝑔 ∶ 𝑋 ×𝐾 → 𝑋 ×𝐾

(𝑥, 𝑘) ↦ (𝑓𝑘(𝑥), 𝑘).
For every 𝑛 ∈ N, the (𝑑 + 1) × (𝑑 + 1) Jacobian matrix of its 𝑛th iterate 𝑔𝑛 is well defined for every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and is given by

𝐺𝑛(𝑥, 𝑘) ∶=
⎡

⎢

⎢

⎢

⎣

𝐹 𝑛
𝑘 (𝑥)

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)

0 … 0 1

⎤

⎥

⎥

⎥

⎦

.

Define the auxiliary normal matrix as

𝐶𝑔
𝑁 (𝑥, 𝑘) ∶=

𝑁
∑

𝑛=0
𝐺𝑛(𝑥, 𝑘)𝑇𝐺𝑛(𝑥, 𝑘),

for every 𝑁∈N∗.

Lemma 3. For all 𝑁 ∈ N∗ and for every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾,

𝐶𝑔
𝑁 (𝑥, 𝑘) = 𝐶𝑁 (𝑥, 𝑘) +

⎡

⎢

⎢

⎢

⎢

⎣

0
0𝑑 ,𝑑 ⋮

0

0 … 0 𝑁 + 1

⎤

⎥

⎥

⎥

⎥

⎦

.

Proof. The proof is straightforward from the definitions:

𝐶𝑔
𝑁 (𝑥, 𝑘) =

𝑁
∑

𝑛=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹 𝑛
𝑘 (𝑥)

𝑇𝐹 𝑛
𝑘 (𝑥) 𝐹 𝑛

𝑘 (𝑥)
𝑇
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥)

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)𝑇𝐹 𝑛
𝑘 (𝑥)

|

|

|

|

|

|

|

|

|

|

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
|

|

|

|

|

|

|

|

|

|

2

2
+ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐶𝑁 (𝑥, 𝑘) +
⎡

⎢

⎢

⎢

⎢

⎣

0
0 ⋮

0

0 … 0 𝑁 + 1

⎤

⎥

⎥

⎥

⎥

⎦

. □

Lemma 4. For every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and 𝑛 ∈ N, the following equations are true:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹 𝑛+1
𝑘 (𝑥) = 𝐹𝑘(𝑓 𝑛

𝑘 (𝑥))𝐹
𝑛
𝑘 (𝑥);

𝜕 𝑓 𝑛+1
𝑘
𝜕 𝑘 (𝑥) = 𝐹𝑘(𝑓 𝑛

𝑘 (𝑥))
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) + 𝜕 𝑓𝑘

𝜕 𝑘 (𝑓 𝑛
𝑘 (𝑥)).

(2)
6 
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Proof. Both the equalities are implied by the chain rule.
The first one is straightforward from the definition 𝑓 𝑛+1

𝑘 (𝑥) = 𝑓𝑘(𝑓 𝑛
𝑘 (𝑥)), while the second one is a little more obscure because of the notation of

𝑓𝑘(𝑥).
For the sake of completeness, we show both.
Here, the auxiliary map 𝑔 is helpful: if we stress that the couple (𝑥, 𝑘) varies, writing respectively 𝑓 (𝑥, 𝑘), 𝐹 (𝑥, 𝑘), and 𝐹 (𝑥, 𝑘) instead of

𝑘(𝑥), 𝐹𝑘(𝑥), 𝐹𝑘(𝑥), then the relation

𝑓 𝑛+1
𝑘 (𝑥) = 𝑓𝑘(𝑓 𝑛

𝑘 (𝑥))

becomes

𝑓 𝑛+1
𝑘 (𝑥) = 𝑓 (𝑓 𝑛

𝑘 (𝑥), 𝑘) = 𝑓 (𝑔𝑛(𝑥, 𝑘)),
and differentiating in (𝑥, 𝑘) employing the chain rule yields

𝐹 (𝑔𝑛(𝑥, 𝑘))𝐺𝑛(𝑥, 𝑘) =
[

𝐹 (𝑔𝑛(𝑥, 𝑘)) |

|

|

|

𝜕 𝑓
𝜕 𝑘 (𝑔𝑛(𝑥, 𝑘))

]

⎡

⎢

⎢

⎢

⎣

𝐹 𝑛(𝑥, 𝑘) 𝜕 𝑓 𝑛

𝜕 𝑘 (𝑥, 𝑘)

0 … 0 1

⎤

⎥

⎥

⎥

⎦

=
[

𝐹 (𝑔𝑛(𝑥, 𝑘))𝐹 𝑛(𝑥, 𝑘) |

|

|

|

𝐹 (𝑔𝑛(𝑥, 𝑘)) 𝜕 𝑓
𝑛

𝜕 𝑘 (𝑥, 𝑘) + 𝜕 𝑓
𝜕 𝑘 (𝑔𝑛(𝑥, 𝑘))

]

=
[

𝐹 (𝑓 𝑛
𝑘 (𝑥), 𝑘)𝐹 𝑛(𝑥, 𝑘) |

|

|

|

𝐹 (𝑓 𝑛
𝑘 (𝑥), 𝑘)

𝜕 𝑓 𝑛

𝜕 𝑘 (𝑥, 𝑘) + 𝜕 𝑓
𝜕 𝑘 (𝑓 𝑛

𝑘 (𝑥), 𝑘)
]

.

The first block of this 𝑑 × (𝑑 + 1) Jacobian matrix represents the partial derivatives of 𝑓 𝑛+1
𝑘 (𝑥) with respect to 𝑥, that is 𝐹 𝑛+1

𝑘 (𝑥).

The second block is related to the differentiation in 𝑘:
𝜕 𝑓 𝑛+1

𝑘
𝜕 𝑘 (𝑥).

Therefore, going back to the former notations, we find the equalities (2). □

Corollary 3. For every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and 𝑛 ∈ N∗, we have that

[𝐹 𝑛
𝑘 (𝑥)]

−1 ⋅
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) =

𝑛
∑

𝑖=1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)). (3)

Proof. We prove the formula by induction on 𝑛 ≥ 1.
The step 𝑛 = 1 is rapidly checked.
Let us suppose (3) is true for 𝑛 > 1.
Using (2), we get:

[𝐹 𝑛+1
𝑘 (𝑥)]−1 ⋅

𝜕 𝑓 𝑛+1
𝑘
𝜕 𝑘 (𝑥) = [𝐹 𝑛+1

𝑘 (𝑥)]−1 ⋅ 𝐹𝑘(𝑓 𝑛
𝑘 (𝑥))

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) + [𝐹 𝑛+1
𝑘 (𝑥)]−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛

𝑘 (𝑥))

= [𝐹 𝑛
𝑘 (𝑥)]

−1 ⋅ [𝐹𝑘(𝑓 𝑛
𝑘 (𝑥))]

−1 ⋅ 𝐹𝑘(𝑓 𝑛
𝑘 (𝑥)) ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) + [𝐹 𝑛+1
𝑘 (𝑥)]−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛

𝑘 (𝑥))

= [𝐹 𝑛
𝑘 (𝑥)]

−1 ⋅
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) + [𝐹 𝑛+1

𝑘 (𝑥)]−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛

𝑘 (𝑥)).

The inductive hypothesis allows us to expand the first term in the last equality:

[𝐹 𝑛+1
𝑘 (𝑥)]−1 ⋅

𝜕 𝑓 𝑛+1
𝑘
𝜕 𝑘 (𝑥) =

𝑛
∑

𝑖=1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)) + [𝐹 𝑛+1
𝑘 (𝑥)]−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛

𝑘 (𝑥))

=
𝑛+1
∑

𝑖=1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)).

Hence (3) is proved. □

The next lemma allows us to find a vector 𝐯 as above and such that
‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯 + 𝑣𝑑+1 ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2

is bounded.

Lemma 5. Let us suppose that condition 𝐶𝑑 holds. Then, for a suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾, the limit
𝐿(𝑥, 𝑘) ∶= lim

𝑛→+∞

(

[𝐹 𝑛
𝑘 (𝑥)]

−1 ⋅
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥)

)

exists.
Moreover, for every 𝑛 ∈ N∗

‖

‖ 𝑛
𝜕 𝑓 𝑛

𝑘
‖

‖

‖

‖

‖

𝐹𝑘 (𝑥) ⋅ 𝐿(𝑥, 𝑘) − 𝜕 𝑘 (𝑥)‖
‖

‖2
≤ 𝑀 𝜎𝑘.

7 
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Proof. Using Corollary 3, we note that, for a suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾, the existence of the limit 𝐿(𝑥, 𝑘) is equivalent to the convergence of the
series ∑+∞

𝑖=1 [𝐹
𝑖
𝑘(𝑥)]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)), which we obtain from the convergence of ∑+∞
𝑖=1

‖

‖

‖

‖

[𝐹 𝑖
𝑘(𝑥)]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥))
‖

‖

‖

‖2
.

For every 𝑖 ∈ N∗, we know that
‖

‖

‖

‖

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥))
‖

‖

‖

‖2
≤ 𝑀 .

Thus, employing standard inequalities for matrix–vector products, and condition 𝐶𝑑 :
+∞
∑

𝑖=1

‖

‖

‖

‖

[𝐹 𝑖
𝑘(𝑥)]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥))
‖

‖

‖

‖2
≤ 𝑀

+∞
∑

𝑖=1
∥ [𝐹 𝑖

𝑘(𝑥)]
−1 ∥2 < +∞.

Now we turn to the second part of the lemma.
Thanks to Eq. (3) and the first part of the proof, we have:

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) = 𝐹 𝑛
𝑘 (𝑥)

(

𝐿(𝑥, 𝑘) − [𝐹 𝑛
𝑘 (𝑥)]

−1 ⋅
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥)

)

= 𝐹 𝑛
𝑘 (𝑥)

(+∞
∑

𝑖=1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)) −
𝑛
∑

𝑖=1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥))

)

= 𝐹 𝑛
𝑘 (𝑥) ⋅

+∞
∑

𝑖=𝑛+1
[𝐹 𝑖

𝑘(𝑥)]
−1 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)).

Using the chain rule, we note that, for every 𝑖 ≥ 𝑛 + 1,

𝐹 𝑛
𝑘 (𝑥)[𝐹

𝑖
𝑘(𝑥)]

−1 = 𝐹 𝑛
𝑘 (𝑥)[𝐹

𝑖−𝑛
𝑘 (𝑓 𝑛

𝑘 (𝑥))𝐹
𝑛
𝑘 (𝑥)]

−1 = [𝐹 𝑖−𝑛
𝑘 (𝑓 𝑛

𝑘 (𝑥))]
−1.

Thus:

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) =
+∞
∑

𝑖=𝑛+1
[𝐹 𝑖−𝑛

𝑘 (𝑓 𝑛
𝑘 (𝑥))]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑖−1

𝑘 (𝑥)),

and taking 𝑗 = 𝑖 − 𝑛 as summation index, we get

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) =
+∞
∑

𝑗=1
[𝐹 𝑗

𝑘 (𝑓
𝑛
𝑘 (𝑥))]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛+𝑗−1

𝑘 (𝑥)).

In conclusion, we can estimate the 2-norm from above:
‖

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

‖2
≤

+∞
∑

𝑗=1

‖

‖

‖

‖

[𝐹 𝑗
𝑘 (𝑓

𝑛
𝑘 (𝑥))]

−1 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛+𝑗−1

𝑘 (𝑥))
‖

‖

‖

‖2

≤ 𝑀
+∞
∑

𝑗=1

‖

‖

‖

[𝐹 𝑗
𝑘 (𝑓

𝑛
𝑘 (𝑥))]

−1‖
‖

‖2
≤ 𝑀 𝜎𝑘,

and the second part of the lemma is proven. □

We are now ready to solve the problem of finding a vector 𝐯 ∈ R𝑑+1 with ∥ 𝐯 ∥2= 1 such that 𝐯𝑇𝐶𝑁 (𝑥, 𝑘) 𝐯 ≤ [𝑀 𝜎𝑘]2(𝑁 + 1): fixed a suitable
couple (𝑥, 𝑘), we define

𝐯(𝑥, 𝑘) ∶= 𝐿(𝑥, 𝑘)
√

∥ 𝐿(𝑥, 𝑘) ∥22 +1
∈ R𝑑 and 𝑣𝑑+1 ∶=

−1
√

∥ 𝐿(𝑥, 𝑘) ∥22 +1
∈ R,

where 𝐿(𝑥, 𝑘) ∈ R𝑑 is the limit defined in Lemma 5, and assemble them into

𝐯(𝑥, 𝑘) ∶=
[

𝐯(𝑥, 𝑘)
𝑣𝑑+1(𝑥, 𝑘)

]

,

which, by construction, has norm 1. Thus,

𝐯(𝑥, 𝑘)𝑇𝐶𝑁 (𝑥, 𝑘)𝐯(𝑥, 𝑘) =
𝑁
∑

𝑛=0

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯(𝑥, 𝑘) + 𝑣𝑑+1(𝑥, 𝑘) ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2

= 1
∥ 𝐿(𝑥, 𝑘) ∥22 +1

⋅
𝑁
∑

𝑛=0

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥)𝐿(𝑥, 𝑘) −

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2
≤

[𝑀 𝜎𝑘]2
∥ 𝐿(𝑥, 𝑘) ∥22 +1

(𝑁 + 1),

where the last step follows from Lemma 5.
Hence, we can conclude that, by Courant–Fischer Theorem,

𝛿 (1)
𝑁 (𝑥, 𝑘) = min

𝐳∈R𝑑+1
∥𝐳∥2=1

𝐳𝑇𝐶𝑁 (𝑥, 𝑘) 𝐳 ≤ 𝐯𝑇𝐶𝑁 (𝑥, 𝑘) 𝐯

≤
[𝑀 𝜎𝑘]2

∥ 𝐿(𝑥, 𝑘) ∥22 +1
(𝑁 + 1) ≤ [𝑀 𝜎𝑘]2(𝑁 + 1),

being ∥ 𝐿(𝑥, 𝑘) ∥22 +1 ≥ 1.

Now, the proof easily follows recalling that 𝜆(𝑑+1)(𝑥, 𝑘) =
[

𝛿 (1)(𝑥, 𝑘)
]−1

.
𝑁 𝑁

8 
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7. Proof of Theorem 2

For every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and for every 𝑛 ∈ N∗, our definitions and assumptions directly imply that

𝐹 𝑛
𝑘 (𝑥) = 𝑉𝑘𝐷

𝑛
𝑘(𝑥)𝑉

−1
𝑘 ,

where

𝐷𝑛
𝑘(𝑥) ∶= 𝐷𝑘(𝑓 𝑛−1

𝑘 (𝑥))𝐷𝑘(𝑓 𝑛−2
𝑘 (𝑥)) …𝐷𝑘(𝑓𝑘(𝑥))𝐷𝑘(𝑥) =

⎡

⎢

⎢

⎣

𝐴𝑛
𝑘(𝑥) 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑛
𝑘(𝑥)

⎤

⎥

⎥

⎦

.

From the second equation in (2) we have that
𝜕 𝑓 𝑛+1

𝑘
𝜕 𝑘 (𝑥) = 𝐹𝑘(𝑓 𝑛

𝑘 (𝑥))
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) + 𝜕 𝑓𝑘

𝜕 𝑘 (𝑓 𝑛
𝑘 (𝑥)),

for a suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾, hence we can deduce another representation for the derivatives with respect to 𝑘.

Lemma 6. For every suitable (𝑥, 𝑘) ∈ 𝑋 ×𝐾 and for every 𝑛 ∈ N∗, we have that
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) =

𝑛−1
∑

𝑖=0
𝐹 𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)).

Proof. We can show the formula by induction on 𝑛.
When 𝑛 = 1, this is immediate.
If 𝑛 > 1, then, employing the second of Eqs. (2) and the inductive hypothesis, we get:

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) = 𝐹𝑘(𝑓 𝑛−1
𝑘 (𝑥))

𝜕 𝑓 𝑛−1
𝑘
𝜕 𝑘 (𝑥) + 𝜕 𝑓𝑘

𝜕 𝑘 (𝑓 𝑛−1
𝑘 (𝑥))

= 𝐹𝑘(𝑓 𝑛−1
𝑘 (𝑥)) ⋅

𝑛−2
∑

𝑖=0
𝐹 𝑖
𝑘(𝑓

𝑛−1−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−2−𝑖

𝑘 (𝑥)) + 𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1

𝑘 (𝑥))

=
𝑛−2
∑

𝑖=0
𝐹𝑘(𝑓 𝑛−1

𝑘 (𝑥))𝐹 𝑖
𝑘(𝑓

𝑛−1−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−2−𝑖

𝑘 (𝑥)) + 𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1

𝑘 (𝑥)).

Noting that
𝐹𝑘(𝑓 𝑛−1

𝑘 (𝑥))𝐹 𝑖
𝑘(𝑓

𝑛−1−𝑖
𝑘 (𝑥)) = 𝐹𝑘(𝑓 𝑛−1

𝑘 (𝑥))𝐹𝑘(𝑓 𝑖−1
𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥))) …𝐹𝑘(𝑓 𝑛−1−𝑖
𝑘 (𝑥))

= 𝐹𝑘(𝑓 𝑖
𝑘(𝑓

𝑛−1−𝑖
𝑘 (𝑥)))𝐹𝑘(𝑓 𝑖−1

𝑘 (𝑓 𝑛−1−𝑖
𝑘 (𝑥))) …𝐹𝑘(𝑓 𝑛−1−𝑖

𝑘 (𝑥))

= 𝐹 𝑖+1
𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)),

we have
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) =

𝑛−2
∑

𝑖=0
𝐹 𝑖+1
𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)) ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−2−𝑖

𝑘 (𝑥)) + 𝐼𝑑×𝑑
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1

𝑘 (𝑥))

=
𝑛−1
∑

𝑖=1
𝐹 𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)) + 𝐹 0
𝑘 (𝑓

𝑛
𝑘 (𝑥))

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1

𝑘 (𝑥))

=
𝑛−1
∑

𝑖=0
𝐹 𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)),

and the lemma is proved. □

Given a suitable (𝑥, 𝑘) ∈ 𝑋 ×𝐾, and 𝑛 ∈ N∗, we may express
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) in terms of the matrices 𝐷𝑖

𝑘(𝑥), with 𝑖 ∈ {0,… , 𝑛 − 1}:
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) =

𝑛−1
∑

𝑖=0
𝐹 𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)) =
𝑛−1
∑

𝑖=0
𝑉𝑘𝐷𝑖

𝑘(𝑓
𝑛−𝑖
𝑘 (𝑥))𝑉 −1

𝑘 ⋅
𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥))

= 𝑉𝑘
𝑛−1
∑

𝑖=0

⎡

⎢

⎢

⎣

𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥))

⎤

⎥

⎥

⎦

⋅ 𝑉 −1
𝑘 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑓 𝑛−1−𝑖

𝑘 (𝑥)).

Now, denoting for every suitable 𝑥 ∈ 𝑋
[

𝝎1
𝑘(𝑥)

𝝎2(𝑥)

]

∶= 𝑉 −1
𝑘 ⋅

𝜕 𝑓𝑘
𝜕 𝑘 (𝑥),
𝑘

9 
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where 𝝎1
𝑘(𝑥) ∈ R𝑝 and 𝝎2

𝑘(𝑥) ∈ R𝑞 , we obtain

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) = 𝑉𝑘

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Moreover, we note that for 𝑗 = 1, 2,

∥ 𝝎𝑗
𝑘(𝑥) ∥2 ≤ ∥ 𝑉 −1

𝑘
𝜕 𝑓𝑘
𝜕 𝑘 (𝑥) ∥2 ≤ 𝑀 ∥ 𝑉 −1

𝑘 ∥2 . (4)

Before stating the main conclusion of this section, we show a result analogous to Lemma 5.

Lemma 7. If condition 𝐻𝑑 is satisfied, then, for every suitable pair (𝑥, 𝑘) ∈ 𝑋 ×𝐾, the limit

𝐿(𝑥, 𝑘) ∶= lim
𝑛→+∞

(

[𝐴𝑛
𝑘(𝑥)]

−1
𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

)

exists.
Moreover, for every 𝑛 ∈ N∗,

‖

‖

‖

‖

𝐴𝑛
𝑘(𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖2
≤ 𝑀 ∥ 𝑉 −1

𝑘 ∥2 ⋅𝛼𝑘.

Proof. Let us fix a suitable couple (𝑥, 𝑘) ∈ 𝑋 ×𝐾, 𝑛 ∈ N∗ and 𝑖 ∈ {0,… , 𝑛 − 1}.
We note that

[𝐴𝑛
𝑘(𝑥)]

−1𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) = [𝐴𝑘(𝑓 𝑛−1

𝑘 (𝑥)) …𝐴𝑘(𝑥)]−1𝐴𝑘(𝑓 𝑖−1
𝑘 (𝑓 𝑛−𝑖

𝑘 (𝑥))) …𝐴𝑘(𝑓 𝑛−𝑖
𝑘 (𝑥))

= [𝐴𝑘(𝑥)]−1 … [𝐴𝑘(𝑓 𝑛−1
𝑘 (𝑥))]−1𝐴𝑘(𝑓 𝑛−1

𝑘 (𝑥)) …𝐴𝑘(𝑓 𝑛−𝑖
𝑘 (𝑥))

= [𝐴𝑘(𝑥)]−1 … [𝐴𝑘(𝑓 𝑛−1−𝑖
𝑘 (𝑥))]−1

= [𝐴𝑛−𝑖
𝑘 (𝑥)]−1.

Hence,

[𝐴𝑛
𝑘(𝑥)]

−1
𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥)) =

𝑛−1
∑

𝑖=0
[𝐴𝑛−𝑖

𝑘 (𝑥)]−1 ⋅ 𝝎1
𝑘(𝑓

𝑛−1−𝑖
𝑘 (𝑥))

=
𝑛
∑

𝑖=1
[𝐴𝑖

𝑘(𝑥)]
−1 ⋅ 𝝎1

𝑘(𝑓
𝑖−1
𝑘 (𝑥)),

and thus the existence of the limit 𝐿(𝑥, 𝑘) is equivalent to the convergence of the series
+∞
∑

𝑖=1
[𝐴𝑖

𝑘(𝑥)]
−1 ⋅ 𝝎1

𝑘(𝑓
𝑖−1
𝑘 (𝑥)).

In order to achieve this, we show that the series of the norms
+∞
∑

𝑖=1

‖

‖

‖

[𝐴𝑖
𝑘(𝑥)]

−1 ⋅ 𝝎1
𝑘(𝑓

𝑖−1
𝑘 (𝑥))‖‖

‖2

converges.
From (4), we deduce that, whenever 𝑖 ∈ N∗,

‖

‖

‖

‖

𝝎1
𝑘(𝑓

𝑖−1
𝑘 (𝑥))

‖

‖

‖

‖2
≤ 𝑀 ∥ 𝑉 −1

𝑘 ∥2,

so condition 𝐻𝑑 implies
+∞
∑

𝑖=1

‖

‖

‖

[𝐴𝑖
𝑘(𝑥)]

−1 ⋅ 𝝎1
𝑘(𝑓

𝑖−1
𝑘 (𝑥))‖‖

‖2
≤ 𝑀 ∥ 𝑉 −1

𝑘 ∥2
+∞
∑

𝑖=1

‖

‖

‖

[𝐴𝑖
𝑘(𝑥) ]−1

‖

‖

‖2
< +∞,

and the first part of the lemma is proved.
The second part is also analogous to Lemma 5.
In particular, using again that

[𝐴𝑛
𝑘(𝑥)]

−1
𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥)) =

𝑛
∑

𝑖=1
[𝐴𝑖

𝑘(𝑥)]
−1 ⋅ 𝝎1

𝑘(𝑓
𝑖−1
𝑘 (𝑥)),

we can carry out the same computations as in Lemma 5, following the same scheme for the equalities.
10 



N. Bertozzi and C. Bonanno

e

Physica D: Nonlinear Phenomena 470 (2024) 134403 
Thus we obtain that

𝐴𝑛
𝑘(𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥)) = 𝐴𝑛

𝑘(𝑥) ⋅
+∞
∑

𝑖=𝑛+1
[𝐴𝑖

𝑘(𝑥)]
−1 ⋅ 𝝎1

𝑘(𝑓
𝑖−1
𝑘 (𝑥)).

Now, for every 𝑖 ≥ 𝑛 + 1,
𝐴𝑛
𝑘(𝑥)[𝐴

𝑖
𝑘(𝑥)]

−1 = 𝐴𝑛
𝑘(𝑥)[𝐴

𝑖−𝑛
𝑘 (𝑓 𝑛

𝑘 (𝑥))𝐴
𝑛
𝑘(𝑥)]

−1 = 𝐴𝑛
𝑘(𝑥)[𝐴

𝑛
𝑘(𝑥)]

−1[𝐴𝑖−𝑛
𝑘 (𝑓 𝑛

𝑘 (𝑥))]
−1

= [𝐴𝑖−𝑛
𝑘 (𝑓 𝑛

𝑘 (𝑥))]
−1.

Thus:

𝐴𝑛
𝑘(𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥)) =

+∞
∑

𝑖=𝑛+1
[𝐴𝑖−𝑛

𝑘 (𝑓 𝑛
𝑘 (𝑥))]

−1 ⋅ 𝝎1
𝑘(𝑓

𝑖−1
𝑘 (𝑥))

=
+∞
∑

𝑗=1
[𝐴𝑗

𝑘(𝑓
𝑛
𝑘 (𝑥))]

−1 ⋅ 𝝎1
𝑘(𝑓

𝑛+𝑗−1
𝑘 (𝑥)).

Therefore, we can conclude:
‖

‖

‖

‖

‖

‖

𝐴𝑛
𝑘(𝑥) ⋅ 𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖

‖

‖2

≤
+∞
∑

𝑗=1

‖

‖

‖

[𝐴𝑗
𝑘(𝑓

𝑛
𝑘 (𝑥))]

−1 ⋅ 𝝎1
𝑘(𝑓

𝑛+𝑗−1
𝑘 (𝑥))‖‖

‖2

≤ 𝑀 ∥ 𝑉 −1
𝑘 ∥2

+∞
∑

𝑗=1

‖

‖

‖

[𝐴𝑗
𝑘(𝑓

𝑛
𝑘 (𝑥))]

−1‖
‖

‖2

≤ 𝑀 ∥ 𝑉 −1
𝑘 ∥2 𝛼𝑘. □

For what comes next, it is convenient to define the matrix

𝑉 (𝑝)
𝑘 ∶= 𝑉𝑘 ⋅

[

𝐼𝑝×𝑝
0𝑞×𝑝

]

∈ R𝑑×𝑝,

that is, the matrix consisting of the first 𝑝 columns of 𝑉𝑘.
We know that 𝜆(𝑑+1)𝑁 (𝑥, 𝑘) is the reciprocal of the smallest eigenvalue of the normal matrix, which by the Courant–Fischer Theorem can be

xpressed as

𝛿 (1)
𝑁 (𝑥, 𝑘) = min

𝐳∈R𝑑+1
∥𝐳∥2=1

𝐳𝑇𝐶𝑁 (𝑥, 𝑘) 𝐳.

Therefore, we look for an estimate for 𝛿 (1)
𝑁 (𝑥, 𝑘) from above.

Just like in the previous section, we know that if we write an arbitrary 𝐯 ∈ R𝑑+1 as

𝐯 =
[

𝐯
𝑣𝑑+1

]

, with 𝐯 ∈ R𝑑 and 𝑣𝑑+1 ∈ R,

we get that

𝐯𝑇𝐶𝑁 (𝑥, 𝑘) 𝐯 =
𝑁
∑

𝑛=0

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯 + 𝑣𝑑+1 ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2
.

We now look for a suitable 𝐯 that leads to the proof.
Let 𝐿(𝑥, 𝑘) ∈ R𝑝 be the limit as in Lemma 7. We define

𝐯(𝑥, 𝑘) ∶=
𝑉 (𝑝)
𝑘 ⋅ 𝐿(𝑥, 𝑘)

√

∥ 𝑉 (𝑝)
𝑘 ⋅ 𝐿(𝑥, 𝑘) ∥22 +1

=
𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

√

∥ 𝑉 (𝑝)
𝑘 ⋅ 𝐿(𝑥, 𝑘) ∥22 +1

∈ R𝑑

and

𝑣𝑑+1(𝑥, 𝑘) ∶= − 1
√

∥ 𝑉 (𝑝)
𝑘 ⋅ 𝐿(𝑥, 𝑘) ∥22 +1

,

then we assemble them into

𝐯(𝑥, 𝑘) ∶=
[

𝐯(𝑥, 𝑘)
𝑣𝑑+1(𝑥, 𝑘)

]

,

which, by construction, has norm 1.
Thus,

𝐯(𝑥, 𝑘)𝑇𝐶𝑁 (𝑥, 𝑘)𝐯(𝑥, 𝑘) =
𝑁
∑

𝑛=0

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝐯(𝑥, 𝑘) + 𝑣𝑑+1(𝑥, 𝑘) ⋅

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥)
‖

‖

‖

‖

2

2

= 1
∥ 𝑉 (𝑝) ⋅ 𝐿(𝑥, 𝑘) ∥2 +1

⋅
𝑁
∑

‖

‖

‖

‖

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

−
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥)

‖

‖

‖

‖

2

2
.

𝑘 2 𝑛=0

11 
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Let us focus, for every 𝑛 = 0,… , 𝑁 , on the term

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

−
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥).

We recall that

𝐹 𝑛
𝑘 (𝑥) = 𝑉𝑘 ⋅

⎡

⎢

⎢

⎣

𝐴𝑛
𝑘(𝑥) 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑛
𝑘(𝑥)

⎤

⎥

⎥

⎦

⋅ 𝑉 −1
𝑘

and

𝜕 𝑓 𝑛
𝑘

𝜕 𝑘 (𝑥) = 𝑉𝑘 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

so

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

−
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥)

= 𝑉𝑘 ⋅
⎡

⎢

⎢

⎣

𝐴𝑛
𝑘(𝑥) 0𝑝,𝑞

0𝑞 ,𝑝 𝐵𝑛
𝑘(𝑥)

⎤

⎥

⎥

⎦

⋅ 𝑉 −1
𝑘 ⋅ 𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

− 𝑉𝑘 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Simplifying the term 𝑉 −1
𝑘 ⋅ 𝑉𝑘 and factoring out 𝑉𝑘 on the left, we get

𝐹 𝑛
𝑘 (𝑥) ⋅ 𝑉𝑘 ⋅

[

𝐿(𝑥, 𝑘)
0𝑞 ,1

]

−
𝜕 𝑓 𝑛

𝑘
𝜕 𝑘 (𝑥) = 𝑉𝑘 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑛
𝑘(𝑥)𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, the squared 2−norm of this vector is not bigger than

∥ 𝑉𝑘 ∥22

(

‖

‖

‖

‖

𝐴𝑛
𝑘(𝑥)𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖

2

2
+
‖

‖

‖

‖

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖

2

2

)

.

Lemma 7 guarantees that
‖

‖

‖

‖

𝐴𝑛
𝑘(𝑥)𝐿(𝑥, 𝑘) −

𝑛−1
∑

𝑖=0
𝐴𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎1

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖

2

2
≤ 𝑀2 ∥ 𝑉 −1

𝑘 ∥22 𝛼
2
𝑘,

while condition 𝐻𝑑 (the part regarding 𝐵𝑘(𝑥)) and the estimate

∥ 𝝎2
𝑘(𝑥) ∥2 ≤ 𝑀 ∥ 𝑉 −1

𝑘 ∥2 for every suitable 𝑥 ∈ 𝑋

imply that

‖

‖

‖

‖

𝑛−1
∑

𝑖=0
𝐵𝑖
𝑘(𝑓

𝑛−𝑖
𝑘 (𝑥)) ⋅ 𝝎2

𝑘(𝑓
𝑛−1−𝑖
𝑘 (𝑥))

‖

‖

‖

‖

2

2
≤ 𝑀2 ∥ 𝑉 −1

𝑘 ∥22

[𝑛−1
∑

𝑖=0
∥ 𝐵𝑖

𝑘(𝑓
𝑛−𝑖
𝑘 (𝑥)) ∥2

]2

≤ 𝑀2 ∥ 𝑉 −1
𝑘 ∥22 𝛽

2
𝑘 .

Employing all these results, we find that
𝐯(𝑥, 𝑘)𝑇𝐶𝑁 (𝑥, 𝑘)𝐯(𝑥, 𝑘)

≤ 1
∥ 𝑉 (𝑝)

𝑘 ⋅ 𝐿(𝑥, 𝑘) ∥22 +1
⋅

𝑁
∑

𝑛=0
∥ 𝑉𝑘 ∥22

(

𝑀2 ∥ 𝑉 −1
𝑘 ∥22 𝛼

2
𝑘 +𝑀2 ∥ 𝑉 −1

𝑘 ∥22 𝛽
2
𝑘
)

=

(

𝑀 ∥ 𝑉𝑘 ∥2∥ 𝑉 −1
𝑘 ∥2

)2 (𝛼2𝑘 + 𝛽2𝑘)

∥ 𝑉 (𝑝)
𝑘 ⋅ 𝐿(𝑥, 𝑘) ∥22 +1

⋅ (𝑁 + 1),

which rapidly leads to the proof, being

𝛿 (1)
𝑁 (𝑥, 𝑘) = min

𝐳∈R𝑑+1
∥𝐳∥2=1

𝐳𝑇𝐶𝑁 (𝑥, 𝑘) 𝐳 ≤ 𝐯(𝑥, 𝑘)𝑇𝐶𝑁 (𝑥, 𝑘)𝐯(𝑥, 𝑘),

and
[ ]−1
𝜆(𝑑+1)𝑁 (𝑥, 𝑘) = 𝛿 (1)
𝑁 (𝑥, 𝑘) .

12 
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8. Intermittent maps

In some cases, conditions 𝐶𝑑 and 𝐻𝑑 may turn out to be too strict. Intermittent maps of the unit interval are an example of transformations not
satisfying 𝐶1 (and neither 𝐻1 as a consequence).

More specifically, we consider a family {𝑓𝑘 ∶ [0, 1] → [0, 1]}𝑘∈𝐾 defined piecewisely on a partition
{

𝐼𝑗
}

like for uniform expanding maps on
[0, 1], but such that for all 𝑗 = 1,… , 𝑚𝑘, we have inf𝑥∈𝐼𝑗 |(𝑓𝑘|𝐼𝑗 )

′(𝑥)| ≥ 1 and there exists a countable set of isolated fixed points, called indifferent
fixed points, over which the absolute value of the derivative of 𝑓𝑘 is equal to 1.

A well-known example of this class of maps is given by the Pomeau-Manneville (or Liverani-Sassuol-Vaienti) family:
𝑇𝛼 ∶ [0, 1] → [0, 1]

𝑥 ↦ {𝑥 + 𝑥1+𝛼},

where 𝛼 ∈ R+ and {⋅} is the fractional part function.
In particular, we have an indifferent fixed point for 𝑥 = 0.
With the following result (proved at the end of this section) we see why condition 𝐶𝑑 cannot hold for intermittent maps.

Proposition 3. For a fixed 𝑘 ∈ 𝐾 and for every 𝑟 ∈ R+, there exists a suitable 𝑥 ∈ [0, 1] such that

𝑆𝑘(𝑥) =
+∞
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑥)|−1 > 𝑟.

In particular, it is impossible to find a bound for 𝑆𝑘 which is uniform in 𝑥. However, an ergodic theory argument allows us to infer a lower
bound on the greatest eigenvalue of the covariance matrix. It is less sharp than the result in Theorem 1, but still highlights a polynomial nature
ehind the decay of the confidence region.

Proposition 4. Consider a family {𝑓𝑘 ∶ [0, 1] → [0, 1]}𝑘∈𝐾 of intermittent maps such that the measure 𝜇𝑘 is
𝑓𝑘−ergodic and ∫[0,1] max{log |𝑓 ′

𝑘|(𝑥), 0}𝑑 𝜇𝑘 < +∞.
Then, for every suitable pair (𝑥, 𝑘) ∈ [0, 1] ×𝐾 and for every 𝑁 ∈ N∗, we have that the greatest eigenvalue 𝜆(2)𝑁 (𝑥, 𝑘) of the covariance matrix 𝛤𝑁 (𝑥, 𝑘)

atisfies

𝜆(2)𝑁 (𝑥, 𝑘) ≥ |𝐿(𝑥, 𝑘)|2 + 1
𝑀2

(

[

𝑆𝑘(𝑓𝑁
𝑘 (𝑥))

]2 + 𝑆𝑘(𝑓𝑁
𝑘 (𝑥))𝑁 + 𝑁

6
+ 𝑁2

3

)

(𝑁 + 1)
,

where 𝐿(𝑥, 𝑘) ∈ R is the limit defined in Lemma 5.

Proof. First of all, we show that 𝑆𝑘(𝑥) < +∞.
The hypotheses assumed on the family of intermittent maps allow us to apply Oseledets’ Ergodic Theorem [11], which grants the existence of

 Lyapunov exponent 𝛾𝑘 which is constant 𝜇𝑘−almost everywhere (a.e.) and verifies, by definition, the equality 𝛾𝑘 = lim𝑛→+∞
1
𝑛
log |(𝑓 𝑛

𝑘 )
′(𝑥)|, for

a.e. 𝑥 ∈ [0, 1].
Using Birkhoff’s Ergodic Theorem (and the ergodicity of 𝜇𝑘),

𝛾𝑘 = lim
𝑛→+∞

1
𝑛
log |(𝑓 𝑛

𝑘 )
′(𝑥)| = lim

𝑛→+∞
1
𝑛
log

𝑛−1
∏

𝑖=0
|𝑓 ′

𝑘(𝑓
𝑖
𝑘(𝑥))| = lim

𝑛→+∞
1
𝑛

𝑛−1
∑

𝑖=0
log |𝑓 ′

𝑘(𝑓
𝑖
𝑘(𝑥))|

= ∫[0,1] log |𝑓
′
𝑘| 𝑑 𝜇𝑘,

and |𝑓 ′
𝑘| equals 1 only on a countable set of points (hence, a 𝜇𝑘−null set), thus log |𝑓 ′

𝑘| is positive 𝜇𝑘−a.e. on [0, 1], and so is its integral.
Hence, choosing, for example, the value

𝛾𝑘
2

, the definition of 𝛾𝑘 provides a natural number 𝑛0 = 𝑛0(𝑥, 𝑘) ∈ N such that, for every 𝑛 > 𝑛0, we
have

|

|

|

|

1
𝑛
log |(𝑓 𝑛

𝑘 )
′(𝑥)| − 𝛾𝑘

|

|

|

|

≤
𝛾𝑘
2
,

which implies

|(𝑓 𝑛
𝑘 )

′(𝑥)| ≥ 𝑒
𝛾𝑘
2 𝑛.

Therefore, if we define

𝑐(𝑥, 𝑘) ∶=
𝑛0
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑥)|−1,

we find that

𝑆𝑘(𝑥) = 𝑐(𝑥, 𝑘) +
+∞
∑

𝑖=𝑛0+1
|(𝑓 𝑖

𝑘)
′(𝑥)|−1 ≤ 𝑐(𝑥, 𝑘) +

+∞
∑

𝑖=𝑛0+1
𝑒−

𝛾𝑘
2 𝑖

≤ 𝑐(𝑥, 𝑘) + 1

1 − 𝑒−
𝛾𝑘
2

< +∞.

Having this, we can proceed as in Lemma 5 and get
+∞
∑

‖

‖

‖

[𝐹 𝑖
𝑘(𝑥)]

−1 ⋅
𝜕 𝑓𝑘 (𝑓 𝑖−1

𝑘 (𝑥))
‖

‖

‖

≤ 𝑀 𝑆𝑘(𝑥) < +∞,

𝑖=1 ‖ 𝜕 𝑘

‖2

13 
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which implies the existence of 𝐿(𝑥, 𝑘).
Now, since the definition of intermittent maps implies that |𝑓 ′

𝑘(𝑥)|
−1 ≤ 1, we note that

𝑆𝑘(𝑥) =
+∞
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑥)|−1 = |𝑓 ′

𝑘(𝑥)|
−1

+∞
∑

𝑖=1
|(𝑓 𝑖−1

𝑘 )′(𝑓𝑘(𝑥))|
−1 ≤

+∞
∑

𝑖=1
|(𝑓 𝑖−1

𝑘 )′(𝑓𝑘(𝑥))|
−1.

Thus, carrying out the term with 𝑖 = 1, and rearranging the indices in the sum:
+∞
∑

𝑖=1
|(𝑓 𝑖−1

𝑘 )′(𝑓𝑘(𝑥))|
−1 = |(𝑓 0

𝑘 )
′(𝑓𝑘(𝑥))| +

+∞
∑

𝑖=2
|(𝑓 𝑖−1

𝑘 )′(𝑓𝑘(𝑥))|
−1 = 1 +

+∞
∑

𝑗=1
|(𝑓 𝑗

𝑘 )
′(𝑓𝑘(𝑥))|

−1
,

so that 𝑆𝑘(𝑥) ≤ 1 + 𝑆𝑘(𝑓𝑘(𝑥)).
Inductively, we find that, for every natural number 𝑛 ≤ 𝑁 , we may write

𝑆𝑘(𝑓 𝑛
𝑘 (𝑥)) ≤ 𝑁 − 𝑛 + 𝑆𝑘(𝑓𝑁

𝑘 (𝑥)).

Following the same steps as in the proof of Theorem 1, we find a bound on the smallest eigenvalue 𝛿 (1)
𝑁 (𝑥, 𝑘) of the normal matrix 𝐶𝑁 (𝑥, 𝑘):

𝛿 (1)
𝑁 (𝑥, 𝑘) ≤ 𝑀2

|𝐿(𝑥, 𝑘)|2 + 1
𝑁
∑

𝑛=0

[

𝑆𝑘(𝑓 𝑛
𝑘 (𝑥))

]2 ≤ 𝑀2

|𝐿(𝑥, 𝑘)|2 + 1
𝑁
∑

𝑛=0

[

𝑁 − 𝑛 + 𝑆𝑘(𝑓𝑁
𝑘 (𝑥))

]2 .

Being
𝑁
∑

𝑛=0

[

𝑁 − 𝑛 + 𝑆𝑘(𝑓𝑁
𝑘 (𝑥))

]2 =
𝑁
∑

𝑛=0

[

𝑛 + 𝑆𝑘(𝑓𝑁
𝑘 (𝑥))

]2 ,

and employing the well known formulas for the computation of the sum of the first 𝑁 natural numbers and the first 𝑁 squares, we get that

𝛿 (1)
𝑁 (𝑥, 𝑘) ≤ 𝑀2

|𝐿(𝑥, 𝑘)|2 + 1

(

[

𝑆𝑘(𝑓𝑁
𝑘 (𝑥))

]2 + 𝑆𝑘(𝑓𝑁
𝑘 (𝑥))𝑁 + 𝑁

6
+ 𝑁2

3

)

(𝑁 + 1),

which directly leads to the proof, since 𝜆(2)𝑁 (𝑥, 𝑘) =
[

𝛿 (1)
𝑁 (𝑥, 𝑘)

]−1
. □

We conclude proving Proposition 3.

Proof. Let us take an indifferent fixed point 𝑥 ∈ [0, 1] and a real number 𝜖 ∈ R+ such that

𝜖−1 > 𝑟.

By definition of intermittent maps, we may find an open interval 𝐼 ⊂ [0, 1] of the form

𝐼 = (𝑥, 𝑥0) or 𝐼 = (𝑥0, 𝑥),

such that 𝑓𝑘|𝐼 is of class 𝐶1 and, for every 𝑥 ∈ 𝐼 ,

1 < |𝑓 ′
𝑘(𝑥)| ≤ 1 + 𝜖 .

Moreover, since |𝑓 ′
𝑘|𝐼 | > 1 and 𝑓𝑘(𝑥) = 𝑥, we have that 𝑓𝑘|𝐼 ∶ 𝐼 → 𝑓𝑘(𝐼) is invertible and 𝐼 ⊂ 𝑓𝑘(𝐼).

Therefore, if 𝑥 ∈ 𝐼 , then |𝑓 ′
𝑘(𝑓

−1
𝑘 (𝑥))| ≤ 1 + 𝜖.

By the convergence of the geometric series of ratio less than 1, we have
+∞
∑

𝑖=1
(1 + 𝜖)−𝑖 = 1

1 − (1 + 𝜖)−1
− 1 = 1 + 𝜖

𝜖
− 1 = 𝜖−1 > 𝑟.

Hence, we can find 𝑛𝑟 ∈ N∗ such that
𝑛𝑟
∑

𝑖=1
(1 + 𝜖)−𝑖 > 𝑟.

We recall that, for every 𝑖 ∈ N∗ and for every suitable 𝑥 ∈ [0, 1],

|(𝑓 𝑖
𝑘)

′(𝑥)| =
𝑖−1
∏

𝑗=0
|𝑓 ′

𝑘(𝑓
𝑗
𝑘 (𝑥))|.

Thus, taking the (𝑛𝑟 − 1)th counter-image 𝑓−(𝑛𝑟−1)
𝑘 (𝑦) of an element 𝑦 ∈ 𝐼 , we can say that:

𝑆𝑘(𝑓
−(𝑛𝑟−1)
𝑘 (𝑦)) =

𝑛𝑟
∑

𝑖=1
|(𝑓 𝑖

𝑘)
′(𝑓−(𝑛𝑟−1)

𝑘 (𝑦))|
−1

+
∑+∞

𝑖=𝑛𝑟+1
|(𝑓 𝑖

𝑘)
′(𝑓−(𝑛𝑟−1)

𝑘 (𝑦))|
−1

≥
𝑛𝑟
∑

𝑖=1
(1 + 𝜖)−𝑖 > 𝑟,

and the proposition is proved. □
14 



N. Bertozzi and C. Bonanno

a
u
d
a

I
f
w

Physica D: Nonlinear Phenomena 470 (2024) 134403 
9. Conclusions and future works

Conditions 𝐶𝑑 and 𝐻𝑑 are among the first attempts to generalize the results in [7,8], and to understand the numerical results in [4,5] through
 formal mathematical framework. As such, a lot can still be done in this generalization process: though we saw that condition 𝐶𝑑 is satisfied by
niform piecewise expanding maps of the unit interval, a widely studied class of transformations, condition 𝐻𝑑 requires a certain rigidity on the
erivatives of the maps, a detail which might prove unhandy. Still, the broadly known class of affine hyperbolic toral diffeomorphism represents
 notable example of how condition 𝐻𝑑 can be a valid requirement.

Moreover, it is likely that a lot more can be found about the features of intermittent maps in this context. Our investigation is consistent with
the expected behaviour, but more meaningful results in this direction wait for more detailed studies.
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