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Abstract: The effect of pressure on the hydrodynamic stability of lean methane-air premixed
flames is investigated with Direct Numerical Simulation based on 

multi-step chemistry and using a simplified one-step chemistry formulation. The
dependency on pressure p of the cut-off length scale λ  c  ,

that separates stable from unstable wavelengths of the initial perturbation, is computed
for a number of different conditions.

An increase of pressure causes a significant decrease of the cut-off length, as
observed 

already in previous simulations and experiments. However, this decrease cannot be
ascribed only

to the decreased flame thickness due to elevated pressures, but the cut-off is reduced
significantly 

even if normalized by either the thermal flame thickness l  T   or the diffusive flame
thickness l  D  .

For the conditions analyzed, the cut-off can be well approximated by the power-law λ
c   ∝  p  -0.8  , while the thermal and diffusive flame thicknesses, in accordance with

previous experiments, are proportional and scale as l  T   ∝ l  D  ∝  p  -0.3.

Therefore, the non-dimensional cut-off scales as λ  c  /l  T    ∝  λ  c  /l  T    ∝  p  -0.5  . 

This behavior is linked to the increase of the Zeldovich number with pressure, caused
by higher inner layer temperatures at higher 

pressures, which is a result of increased importance of chain termination reactions.

The same behavior is observed also in a one-step chemistry approach if the Zeldovich
number, appearing explicitly in the one-step 
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model equations, is varied with pressure according to the results from multi-step
chemistry.

The analysis is extended to the non-linear phase of the instability, when typical strong
cusps are observed on the flame surface,

simulating a two-dimensional slot burner for different pressures;

it is confirmed that the same pressure effects are observed also in more complex
settings and in the non-linear regime.
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Abstract

The e↵ect of pressure on the hydrodynamic stability limits of lean methane-

air premixed flames is investigated with Direct Numerical Simulation based

on multi-step chemistry and using a simplified one-step chemistry formu-

lation. The dependency on pressure p of the cut-o↵ length scale �c, that

separates stable from unstable wavelengths of the initial perturbation, is com-

puted for a number of di↵erent conditions. An increase of pressure causes

a significant decrease of the cut-o↵ length, as observed already in previous

simulations and experiments. However, this decrease cannot be ascribed only

to the decreased flame thickness due to elevated pressures, but the cut-o↵ is

reduced significantly even if normalized by either the thermal flame thickness

`T or the di↵usive flame thickness `D. For the conditions analyzed, the cut-

o↵ can be well approximated by the power-law �c / p
�0.8, while the thermal

and di↵usive flame thicknesses, in accordance with previous experiments, are
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proportional and scale as `T / `D / p
�0.3. Therefore, the non-dimensional

cut-o↵ scales as �c/`T / �c/`D / p
�0.5. This behavior is linked to the

increase of the Zeldovich number with pressure, caused by higher inner layer

temperatures at higher pressures, which is a result of increased importance

of chain termination reactions. The same behavior is observed also in a one-

step chemistry approach if the Zeldovich number, appearing explicitly in the

one-step model equations, is varied with pressure according to the results

from multi-step chemistry. The analysis is extended to the non-linear phase

of the instability, when typical strong cusps are observed on the flame sur-

face, simulating a two-dimensional slot burner for di↵erent pressures; it is

confirmed that the same pressure e↵ects are observed also in more complex

settings and in the non-linear regime.

Keywords:

Darrieus-Landau instability, Direct Numerical Simulation, Cut-o↵ scale,

Pressure e↵ects

1. Introduction

Premixed flames subject to perturbations are prone to di↵erent intrin-

sic instabilities [1], caused by thermal expansion and, potentially, di↵eren-

tial transport of mass and heat. In the hydrodynamic, or Darrieus-Landau

(DL), instability [2, 3], short perturbation wavelengths are stabilized by dif-

fusive e↵ects, while long wavelengths are amplified and eventually stabilized

into characteristic cusp-like structures by the non-linear underlying Huygens

propagation mechanism. For given conditions, a cut-o↵ wavelength that sep-

arates stable from unstable perturbations exists and defines an additional
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intrinsic flame length scale in addition to the usual flame thickness and other

scales. The dependence of the cut-o↵ scale on di↵erent flame conditions, such

as equivalence ratio, temperature, and pressure, is an important information

to assess the likelihood of instability development. The stability limits and

instability patterns have been extensively investigated experimentally [4–10]

and with a number of analytical and numerical approaches with rather di↵er-

ent geometrical and modeling complexity [1, 11–24]. Pressure is recognized

as an important parameter due to its strong e↵ects on the thickness and the

speed of premixed flames. It is well known that an increase of pressure causes

a significant increase of the propensity of the flame to become unstable and

to show the characteristic Darrieus-Landau cusps [4, 5, 8, 10, 25]. However,

the mechanism responsible for the pressure e↵ects and a conclusive assess-

ment whether the increased instability propensity is just a consequence of

the decreased flame thickness deserve further investigation. In this work, the

onset of the Darrieus-Landau instability is investigated in a series of methane-

air flames at di↵erent pressures, by means of Direct Numerical Simulation

(DNS), employing both a detailed multi-step chemistry model and a simpli-

fied one-step formulation.

2. Physical models, numerical methods, configurations, and method-

ologies to assess the flame stability limits

The analysis of the cut-o↵ length scale is performed using two di↵erent

approaches in order to disentangle the e↵ects of the di↵erent phenomena

that characterize flames at increasing pressure: (i) Direct Numerical Sim-

ulation (DNS) employing finite rate chemistry and a multi-step mechanism
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to describe chemical reactions and (ii) single-step chemistry DNS based on

temperature and a deficient reactant. The two models constitute standard

practice in the simulation of combustion and their detailed description is

available in classical references [26]. In all cases, the reactive, unsteady

Navier-Stokes equations are solved in the low Mach number limit and the

mixture obeys the ideal gas equation of state.
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Figure 1: (a) Temporal evolution of the isocontour of temperature corresponding to the

peak reaction rate for an unstable flame at unburned temperature Tu = 300 K, equivalence

ratio � = 0.7, and pressure p = 8 atm, initially perturbed with a wavelength � equal to

12 thermal flame thickness. The axis are scaled with the thermal flame thickness `T . (b)

Time evolution of the amplitude for a stable (Tu = 300 K, � = 0.7, and p = 1 atm,

red) and an unstable flame (Tu = 300 K, � = 0.7, and p = 8 atm, blue), both initially

perturbed with a wavelength � = 12`T . All the results are obtained with the multi-step

chemistry.

In the multi-step DNS approach, the equation for the full set of chemical

species and temperature [27–29] are solved employing a finite-rate multi-step

model with 16 species and 72 reactions [28, 30]. The transport properties
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are evaluated using a mixture averaged model for the temperature equa-

tion [31] while the species di↵usivities are computed prescribing spatially

homogeneous values of the species Lewis numbers Lei. In most of the cases,

all the Lewis numbers are set to one, while selected cases have been also

simulated with non-unity Lewis numbers. In cases with non-unity Lewis

numbers, those are evaluated at the thermodynamic conditions of the fully

burned mixture. The equations are solved with a semi-implicit finite di↵er-

ence code [32]. Spatial derivatives are discretized with second order finite

di↵erences for the momentum equation and the scalar di↵usive terms, while

a third order WENO scheme [33] is used for the convective term in the scalar

equations. The Strang operator splitting is applied to the chemical source

term, which is integrated with the sti↵ ODE solver CVODE [34].

In order to determine the dependence of the stability limit on pressure,

it is necessary to compute the growth rate of an initial perturbation, su-

perimposed on an otherwise planar flame, for di↵erent wavelengths � of the

perturbation, and identify the wavelength across which a transition from

a negative to positive growth rate is observed. The function !(k) relating

the growth rate ! to the initial perturbation wave-number k = 2⇡/� is the

dispersion relation, while the value of the wavelength corresponding to the

transition from negative to positive growth rates identifies the cut-o↵ scale

�c. For this purpose, a fully-developed planar laminar flame is initialized

in a two dimensional domain su�ciently large to allow an unconfined evo-

lution of the flame. The flow is periodic in the spanwise direction x, while

inflow and outflow boundary conditions are specified at the two boundaries

in the streamwise direction y. The domain is discretized ensuring 40 to 50
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points in the thermal flame thickness `T = (Tb � Tu)/(@T/@y)max, where Tb

and Tu are the burnt and unburnt temperature, and (@T/@y)max the maxi-

mum temperature gradient in a one-dimensional planar laminar flame. This

choice for the numerical resolution is appropriate, since it has been verified

that using half of the points in every direction produced the same results. In

order to evaluate the cut-o↵ scale �c e�ciently, the size of the domain in the

spanwise direction is set equal to the perturbation length �. Temperature

and species mass fractions, computed with the FlameMaster code [35] in a

one-dimensional laminar flame, are mapped in the two-dimensional domain

to initialize the simulation. In order to create a wavy initial pattern at time

t = t0, the one-dimensional profiles are slightly shifted in the streamwise

direction y by a di↵erent distance yf (x, t0) for each spanwise location x us-

ing a sinusoidal function with wavelength �. The amplitude of the initial

perturbation has been set to 0.04`T , which is a small value that guarantees

the existence of an initially linear regime that can be used to extract mean-

ingful values of the growth rate. The amplitude A(t) of the function yf (x, t)

is monitored in time and the observation of an increase or decrease of A(t)

allows to infer the stability of the flame for the given wave-number. The

amplitude is computed as the maximum value of the sinusoidal that best fits

the function yf (x, t) in a least-squares sense. It is worth noting here that

the sinusoidal fitting is very accurate for a rather long time during the initial

linear phase of the instability and di↵erent approaches tested for the evalu-

ation of the growth rate produced negligibly di↵erent results, pointing out

the robustness of the methodology employed.

A typical evolution of the function yf (x, t) for an unstable flame is shown
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in Fig. 1. The initial perturbation grows in time preserving a sinusoidal

shape for a certain time. For large times, the non-linear behavior man-

ifests itself in a significant asymmetry of the isoline and in the onset of

characteristic cusp-like structures. Figure 1 shows also the time evolution

of the amplitude A(t) of the function yf (x, t) for a stable and an unsta-

ble flame. An exponential fit of the form ae
bt for the unstable case is also

shown in Fig. 1. The instantaneous growth rate at the given wave-number

k = 2⇡/� is computed from the amplitude as the semi-logarithmic derivative

!
⇤(k, t) = d[ln(A(t)/A(t = 0))]/dt; a time interval with a constant value

of !⇤ is identified and this constant value is then chosen to construct the

dispersion relation !(k).

As mentioned above, single-step chemistry has also been employed. The

model is based on the following equations for temperature T1 and a deficient

reactant with mass fraction Y1 [18]:

⇢
@T1

@t
+ ⇢u ·rT1 = r · (�rT1) +

⌦

�
(1)

⇢
@Y1

@t
+ ⇢u ·rY1 = r · ( �

Le
rY1)�

⌦

�
(2)

where � is a dimensionless flame thickness, u is the gas velocity, Le the Lewis

number. The source/sink term ⌦ is expressed, according to a one-step irre-

versible Arrhenius reaction, ⌦ = [Ze2Y1/2Le] exp [(Ze(1� T1))/(1� (1� 1/�)(1� T1))],

where the expansion ratio � is defined as the ratio of the densities of the un-

burned and the burned gas. The Zeldovich number is defined as Ze =

[Ea(Tb � Tu)]/[RT
2
b ], where Ea is the activation energy of the single-step

reaction of Arrhenius type while Tb and Tu are the burnt and unburnt tem-

peratures [36, 37]. In order to have a comparison between the multi-step

7



DNS and the single-step model, the parameters that appear in the single-

step model equations, i.e., the Zeldovich number Ze, the expansion ratio

�, and the Lewis number Le, are evaluated from a one-dimensional freely

propagating flame computed with the multi-step chemistry model. As it will

be verified in the following analysis, pressure has a negligible e↵ect on the

expansion ratio �; therefore, the Zeldovich number is the main parameter

that takes into account the pressure variation in the one-step chemistry for-

mulation. In the single-step chemistry, it can be shown that the Zeldovich

number can also be expressed as Ze = 4(Tb � Tu)/(Tb � T0), where T0 is

the cross-over (inner layer) temperature [36, 37]. This expression is used

to specify the Zeldovich number in the one-step formulation, with T0 being

the temperature of maximum heat release in a one-dimensional flame with

the multi-step chemistry [37]. Anyway, we observed that a definition of T0

based on the maximum temperature gradient does not change the results.

In order to perform the analysis e�ciently, the non-dimensional thickness

is defined as � = lD/�, where lD = Dth/SL is the di↵usive flame thickness

and � is the wavelength of the perturbation. The critical wavelength �c

in the one-step chemistry approach is determined by identifying the criti-

cal �c of neutral growth of the perturbation. The configuration employed in

the one-step chemistry cases is the same of that used for the multi-step ap-

proach. Numerical simulations with one-step chemistry are carried out using

a well-established numerical framework for the investigation of DL instabil-

ity [18, 22, 23]. The governing equations in the one-step approach are solved

using an equation-of-state independent version [38–40] of nek5000, which is

a massively parallel flow solver based on the spectral element method [41].
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The results for the linear regime in the configuration described above are

reported in Sec 3.1 for both chemistry models.

Table 1: Parameters for the DNS with the Bunsen configuration.

Case name SP-1 UP-8

p (atm) 1 8

`T (mm) 0.572 0.284

�c 14`T 6`T

H 6.8mm (12`T ) 3.4mm (12`T )

Domain size, Lx ⇥ Ly 3Hx6H 3Hx5H

Grid size, Nx ⇥Ny 360⇥ 720 360⇥ 600

Resolution �x/`T , �y/`T 0.1 0.1

Ub = 10SL (m/s) 1.863 0.409

u0/SL 0.79 0.79

Finally, a second configuration has been considered in order to verify that

the results pertaining to the linear-regime of the intrinsic flame instability,

can also be extended to the non-linear regime. A two-dimensional, planar

slot flame is employed and the morphology of the flame surface for di↵er-

ent values of pressure and characteristic length scale is investigated. For

this configuration, a typical laminar triangular flame is perturbed with small

broad-band velocity fluctuations with root mean square u
0 approximately

10% of the mean velocity Ub prescribed at the fresh mixture inlet. A coflow

of fully burned product is imposed outside of the main jet with a velocity

appropriately chosen to minimize the shear between the main jet and the

coflow. Free-slip boundary conditions are prescribed on the lateral bound-

aries in the crosswise direction x, while an outflow is set at the end of the

9



domain in the streamwise direction y. A summary of the physical and numer-

ical parameters for these DNS is presented in Tab. 1. The analysis focuses on

two di↵erent cases, with identical thermo-chemical properties but di↵erent

pressure. In this case, the solutions are obtained using the multi-step ap-

proach with unity Lewis numbers and the corresponding code and numerical

methods described above. The results are reported in Sec 3.2.

3. Results

3.1. Linear regime: cut-o↵ length scale

0 0.5 1 1.5

20 10 6.66 5 4

�c/`T ⇠ 15 �c/`T ⇠ 6

-0.5

0.0

0.5

1.0

0 1 2 3 4 5

5 2.5 1.66
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�c ⇠ 1.7 mm

k`T

�/`T

!
(k
)⌧

k [2⇡/mm]

� [mm]

p = 1 atm
p = 8 atm

Figure 2: Growth rate of the perturbation !(k) for di↵erent wavelengths � = 2⇡/k (dis-

persion relation) for two flames at di↵erent pressures, an equivalence ratio � = 0.7 and

unity Lewis numbers, obtained with multi-step chemistry DNS: p = 1 atm (red circles)

and p = 8 atm (blue triangles). The lines are fits to the DNS data. The results are shown

in dimensional form (left panel) and non-dimensionalized with the thermal flame thickness

and flame time (right panel).

The methodology described in Sec 2 has been applied to a number of

di↵erent cases to compute the cut-o↵ length scale and specifically to assess

its dependence on pressure. Figure 2 shows the dispersion relation for two
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cases characterized by identical thermochemical condition of the unburned

mixture but two di↵erent pressures of 1 and 8 atm, respectively. The results

are shown in both dimensional and non-dimensional units. In dimensional

units, the comparison of the two dispersion relations reveals a significant

decrease of the cut-o↵ length scale �c from 8.4 to 1.7 mm when the pressure

is increased from 1 to 8 atm. This behavior is not unexpected and has

been observed in other situations [4, 10, 25] and somehow ascribed to the

decreased flame thickness due to the elevated pressure. However, when the

dispersion relations are normalized with the thermal flame thickness `T , the

non-dimensional cut-o↵ scale �c/`T still shows a significant dependence on

pressure, proving that the scaling of the cut-o↵ scale with the laminar flame

thickness does not hold. The dependence of the cut-o↵ length scale �c on

pressure is summarized in Fig. 3(a). The figure also shows the thickness of

the flame as function of the pressure. Since the internal flame structure in

a multi-step chemical model might not be self-similar for di↵erent pressures,

three di↵erent definitions of the laminar flame thickness are reported in the

figure to check if di↵erent measures of the flame thickness could collapse the

cut-o↵ scale. The three definitions are: (i) the thermal thickness `T , (ii) the

di↵usive thickness lD = Dth/SL, and (iii) an inner layer thickness defined as

the distance between the two points where the reaction rate of the progress

variable is 20% of the peak. Comparing the variation with pressure of the

cut-o↵ length scale and the various thicknesses, it is evident that the cut-o↵

scale decreases faster than the thickness, regardless of the definition of the

latter. In order to assess a possible power-law scaling with pressure of the cut-

o↵ scale, Fig. 3(b) shows the same results in logarithmic scales. First of all,
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Figure 3: Comparison of the pressure dependence of the thermal (triangles), di↵usive

(diamonds), and reaction-layer (circle) flame thickness with the cut-o↵ length scale of the

hydrodynamics instability in linear (a) and logarithmic (b) scale. In (b) the results are

normalized with the values at p = 1 atm; the dashed lines indicate di↵erent power-law

pressure scaling. (c) Pressure dependence of the Zeldovich number (pentagons), expansion

ratio � (open circles), and laminar flame speed SL (open triangles). All results are shown

for the methane-air flame at Tu = 300 K, � = 0.7, unity Lewis numbers computed with

the multi-step chemistry model

this plot reveals that all the flame thicknesses have similar power-law scaling

with an exponent close to �0.3, in agreement with the work of Dahoe and

De Goey [42]. In addition, it is observed that the cut-o↵ length scale �c obeys

a power-law scaling �c / p
�0.8, which is remarkably di↵erent from the scaling

of the flame thicknesses. In conclusion, it is found that the non-dimensional

cut-o↵ scales with the power law �c/`T / �c/`D / p
�0.5, regardless of the

definition of the flame thickness. Additional quantities characterizing the
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Figure 4: Dependency of the cut-o↵ scale �c on pressure for: the multi-step chemistry

with Tu = 300 K, � = 0.7, Lei = 1 (green squares), Tu = 300 K, � = 0.7, Lei 6= 1

(purple triangles), Tu = 300 K, � = 0.8, Lei 6= 1 (orange diamonds), and for the one-

step chemistry at with parameters corresponding to a methane air flame at Tu = 300 K,

� = 0.7 and Le = 1 (black pentagons), Le = 0.88 (blue circles), Le = 1.22 (red circles).

The results are scaled with the thermal (a) and di↵usive thickness (b). The dashed lines

indicate the scaling p�0.5
. (c) Ratio of the thermal and di↵usive thicknesses for the same

cases.

e↵ect of pressure on the flame are shown in Fig. 3(c). As expected given

the scaling of the thickness, the laminar flame speed scales with the power

law p
�0.7 [42]. It is worth noting that the expansion ratio � = ⇢b/⇢u has

no dependence on pressure; this is expected since the temperature of the

fresh mixture is kept constant when pressure is varied and the equilibrium

temperature is virtually independent of pressure. The dependence of the

Zeldovich number on pressure is well approximated by a scaling p
1.4. These
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quantities are shown because they are the input parameters of the single-step

chemistry model presented below.

The same analysis has also been applied for additional cases at di↵erent

conditions shown in Fig. 4. Regardless of the conditions and the value of

the Lewis numbers, the significant decrease of the normalized cut-o↵ length

scale is observed for higher pressure both normalizing with the thermal and

the di↵usive thickness.

Figure 4 shows also three cases computed with the one-step chemistry

approach. The parameters Ze and � in Eqs. 1 and 2 have been chosen to

match those of the multi-step chemistry at Tu = 300 K and � = 0.7. For the

Le = 1 case, the value selected for the 4 di↵erent pressures {1; 2; 4; 8} atm

are Ze = {9.89; 10.89; 14; 19.64} (cf. Fig 4) and a constant expansion ratio

� = 6.14. The same values are used also for the one-step chemistry cases

at Le = 0.88 and Le = 1.22. The one-step model can capture accurately

the pressure scaling of the non-dimensional cut-o↵ �c/`T and �c/`D already

observed with the multi-step chemistry, while di↵erences are observed in

the actual values. The quantitative disagreement can be explained by the

di↵erent flame models which yield a di↵erent, albeit similar, internal flame

structure and a di↵erent ratio of thermal to di↵usive thicknesses. In spite

of the di↵erences, these results clearly show that the pressure dependence

of non-dimensional cut-o↵ observed in the full multi-step DNS can be re-

produced in the one-step approach if variations of the Zeldovich number are

appropriately included. This fact also suggests that the main reason for the

observed pressure dependence is a di↵erent profile of the reaction rate, which

is mainly parametrized by the Zeldovich number. The Zeldovich number,
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as also suggested by the expression Ze = 4(Tb � Tu)/(Tb � T0), is related

to the value of the cross-over temperature T0, since the unburned Tu and

fully burned Tb temperature do not change appreciably with pressure. The

increase of T0 with pressure is related to the balance between chain branch-

ing and chain breaking reactions. T0 is the temperature at which the chain

branching reactions (mainly H + O2 ! OH + O) are balanced by the chain

breaking reactions (mainly H+O2 +M ! HO2 +M), which are often three-

body reactions. For larger (smaller) temperature than T0, the chain branch-

ing (chain breaking) reaction prevails. If pressure increases, chain breaking

increases relative to chain branching due to the three-body reaction and the

balance of the two occurs at higher temperature, increasing the Zeldovich

number. Given the typical shape of the dispersion relations in Fig. 2, which

shows that the wavelength of maximum growth �max is approximately twice

the cut-o↵ scale �c, �max is expected to scale with pressure in the same way

of �max. While the present analysis is limited to methane combustion, the

importance of radical recombination typically increases at higher pressure

independently of fuel. The observed increase of Ze with pressure and the

impact on �c should therefore hold for most fuels. In addition, since the

single-step chemistry formulation would be the same the for di↵erent fuels,

a similar behavior for the e↵ect of Ze on �c is expected.

The DNS results can be summarized in the following way. Employing

the multi-step chemistry, it is observed that the increase of pressure and the

subsequent decrease of the cut-o↵ lengthscale are associated with a significant

increase of the Ze number and a negligible variation of the expansion ratio;

for the methane combustion case considered here, the Lewis numbers do not

15



0

1

2

3

4

�1�0.5 0 0.5 1
0

1

2

3

4

�1�0.5 0 0.5 1

T
[K

]

y
/
H

x/H

Stable flame

x/H

400

600

800

1000

1200

1400

1600

1800Unstable flame

Figure 5: Visualization of the temperature field in the SP-1 stable and UP-8 unstable

slot-burner flames.

play a role as well. Therefore, the dependence of �c on pressure is related to

the dependence of Ze on pressure since the other non-dimensional parameters

remain constant if pressure changes. Since the full set of equations for the

multi-step model is di�cult to analyze in its non-dimensional form and the

di↵erent non-dimensional parameters cannot be specified independently, the

non-dimensional system for the single-step chemistry has been also employed.

A variation of only the Ze number, while the expansion ratio � and the Lewis

number are kept constant, causes a change of the non-dimensional cut-o↵

length scale, in agreement with the observation in the multi-step simulations.

Finally, it is interesting to discuss the pressure dependence of the cut-

o↵ scale in the context of analytical models. It is worth noting that the

theoretical analyses available in the literature [1, 13, 14] do not show an

explicit dependence of the cut-o↵ scale on pressure and its relation with the

Zeldovich number. The dispersion relation derived from asymptotic analyses

is typically written as [1]:

!(k) = !0SLk � `D[B1 + Ze(Le� 1)B2 + PrB3]SLk
2 (3)
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where the coe�cients !0 and Bj are positive and depend only on the expan-

sion ratio � and Pr is the Prandtl number. Since the expansion ratio � and

the Prandtl number Pr are virtually independent of pressure, the pressure

dependence of the value of k at which !(k) = 0 (the cut-o↵ scale �c) could be

ascribed to the term Ze(Le� 1)B2 only when the Lewis number is not one.

However, the pressure dependence of the cut-o↵ scale has been observed also

for unity Lewis number, as shown in Fig. 4; therefore, it is possible to con-

clude that Eq. 3 does not include the pressure e↵ect observed in the DNS.

The theoretical relation in Eq. 3 is truncated at the second order and, as

noted by Matalon [1], should be extended with a forth (or even higher) order

term to provide a comprehensive characterization of short wavelength stabi-

lization. The coe�cient of the forth order term, contrary to the second order

one, was never derived explicitly in the context of hydrodynamic theory, with

the exception of the scaling proposed by Sivashinsky [11] only valid for weak

thermal expansion [1]. Therefore, it is reasonable to assume that the fourth

order term may depend on all the non-dimensional parameters, including the

expansion ratio and the Lewis and Zeldovich numbers. It follows that either

the pressure dependence should be related to the fourth and higher order

terms or that some of the hypotheses used to derive Eq. 3 should be relaxed

and the coe�cient of the second order term be modified to include a pres-

sure dependence, possibly via a dependence on Ze that does not disappear

for unity Lewis number.
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3.2. Non linear regime: flame morphology at di↵erent pressures in a Bunsen

burner

In order to observe flame instability in a Bunsen burner, the overall di-

mension of the flame surface needs to be large enough to accommodate un-

stable wavelengths, i.e., larger than the cut-o↵ length scale �c. It has been

shown extensively [18], that the jet slot width H can be appropriately used

as a measure of the overall flame dimension. In this study, it was observed

that characteristic signatures of the instability were present if the slot width

H was larger than the cut-o↵ scale �c. Therefore, we consider two Bunsen

flames, at di↵erent pressures (p = 1 atm, SP-1 and p = 8 atm UP-8), with

the same slot width H, measured in units of flame thickness `T , H = 12`T ,

c.f. Tab. 1. Knowing that the normalized cut-o↵ scale �c/`T is significantly

di↵erent at the two di↵erent pressures, the two cases at p = 1 atm and

p = 8 atm are characterized by a slot width smaller and larger than the

cut-o↵ scale, respectively. Figure 5 shows a visualization of the temperature

field for p = 1 atm (SP-1) and p = 8 atm (UP-8). It is evident that the

flame at higher pressure features a significantly higher flame wrinkling and

the presence of typical Darrieus-Landau cusps with high negative curvature.

It is worth noting that, for the low-pressure case, the only significant cusp is

at the flame tips and is not ascribed to intrinsic instability. The flame mor-

phology is statistically analyzed in terms of the probability density functions

PDF of the flame front curvature as shown in Fig. 6. The PDF of the UP-8

case is wider than that of the SP-1 case with a more pronounced negative tail.

The large negative values of curvature in the SP-1 case are, as noted above,

related to the flame tip. The skewness of the two distributions, which has
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Figure 6: Probability density function of the flame front curvature, conditioned at T =

600K, for the SP-1 stable flame (red circles) and UP-8 unstable flame (blue triangles).

been recently used as a marker of Darrieus-Landau instability [18, 21, 25],

is -1.5 and -5.4 for the case at p = 1 atm (SP-1) and at p = 8 atm (UP-8),

respectively, confirming the presence of instability only in the high pressure

flame. These observations confirm that the e↵ect of pressure in the non-linear

regime is akin to that observed in the linear phase.

4. Conclusions

The e↵ect of pressure on the hydrodynamic stability limits of methane-air

flames has been studied with DNS. It is found that the cut-o↵ length scale

�c between stable and unstable perturbations decreases significantly with

pressure and that this behavior cannot be ascribed completely to the decrease

of flame thickness, since the pressure scaling of the cut-o↵ �c ⇡ p
�0.8 is

significantly steeper than the pressure scaling of both the thermal `T ⇡ p
�0.3

and di↵usive thickness `D ⇡ p
�0.3. This behavior is observed also with

a one-step chemistry approach if the Zeldovich number appearing in the

model is varied according to the results from multi-step chemistry to take

into account variations of the cross-over temperature, which are caused by

increasing importance of chain-breaking reactions at high pressure. Finally,
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the strong variation with pressure of the normalized cut-o↵ �c/`T has been

observed also in two-dimensional slot flames characterized, when unstable, by

the cusp-like structures typical of the non-linear regime of the hydrodynamics

instability.
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