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Many-valued logics
and bivalent modalities

Abstract. In this paper, we investigate the family LS0.5 of many-valued
modal logics LS0.5’s. We prove that the modalities � and ♦ of the logics
LS0.5’s capture well-defined bivalent concepts of logical validity and logical
consistency. We also show that these modalities can be used as recovery
operators.
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Introduction

The last few years have witnessed a growth of interest in many-valued
logics (MVLs). Examples can be found in their application to the anal-
ysis of semantic paradoxes ((Priest, 1979), (Da Ré et al, 2018)) or in
the study of rationality ((Belnap, 1977), (Kubyshkina, 2016), (Bezerra,
2020)). These fruitful exercises have indirectly responded to the criti-
cism that MVLs have received in the literature, due to the conceptual
difficulties in characterizing the meaning of their intermediate logical
values (Pogorzelski, 1994).

Despite their philosophical significance, MVLs have been challenged
on their own ground, due to their metatheoretical bivalence. As Suszko
(1977) observed, the concepts of tautology and logical consequence only
take into account whether a value t is designated (truth-like) or non-
designated (false-like). In other words, due to the bi-partition of the set
of truth values, the notions of tautology and logical consequence acquire
a classical character, contrary to the multiplicity of truth values they
display.

In this paper, we develop Suszko’s observation by capturing this bi-
valent character of the meta-theory in modal terms. Concretely, we
will extend MVLs with modalities that we shall call Suszkian modalities,
which are able to formally capture the notions of tautology and logical
consistency. These modalities, that we will indicate with the familiar
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symbols � and ♦, are intended to interpret the concepts of “it is logi-
cally valid that”, respectively, “it is logically consistent that”. Since the
formulas �ϕ and ♦ϕ only receive classical values they will therefore cap-
ture the bivalent character of these meta-theoretical notions. Modalities
intended to capture these notions have already appeared in the literature
(Lemmon, 1957). They were introduced by Lemmon, together with the
modal logic S0.5 to offer a meta-theoretical analysis of validity and con-
sistency of classical logic. In this work we will extend Lemmon’s ideas to
a general framework, considering MVLs, and we will use these modalities
to capture the classical aspects of the meta-theory of non-classical logics.
By analysing these modalities in a broad family of logics, we will thus
account for the most general properties of these meta-theoretical notions
in modal terms.

The internalization of meta-theoretical concepts within the object
language by means of modal tools is a fairly standard procedure. Its most
successful example is the modal formalization of the notion of provability
as developed in provability logics (Boolos, 1993). However, in this paper
we will analyze a more semantic/model-theoretical concept of validity.

The paper is structured as follows. In §1 we introduce the basic
notation which will be used in this paper. In §2 we introduce the family
LS0.5 of many-valued modal logics, consisting of modal counterparts of n-
valued modal logics. We prove a theorem of adequacy between validity
and consistency in these logics and their modal characterizations. In
§3 we present the logic ŁS0.5

3 ∈ LS0.5, the modal extension of the three-
valued Łukasiewicz logic Ł3, and discuss the possibility of using Suszkian
modalities as recovery operators. After presenting, in §4, possible lines
of future research, we end the paper with Appendix A, where we present
a few technical results about ŁS0.5

3 .

1. Matrix semantics

An n-valued logic L, for n ∈ N, is a logic expressed in a language
LL = {V, ck1

1 , . . . , c
km
m }, where V = {pi | i ∈ N} is a set of propositional

variables1 and ck1
1 , . . . , c

km
m are connectives of such that the arity cki

i is
ki. The set of formulas of LL, For(LL) is defined inductively as usual:

1 For the sake of simplicity, we use the variables p,q,r, . . . instead of p0,p1,p2,p3,
. . .
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(i) pi ∈ For(LL); and (ii) if ϕ1, . . . , ϕk ∈ For(LL), then cki
i (ϕ1, . . . , ϕk)

for 1 ≤ i ≤ m.

Definition 1.1. A matrix for L is a structure ML = 〈Vn, o
k1
1 , . . . , o

km
m ,

DL〉 where Vn = { m
n−1 | 0 ≤ m ≤ n − 1,m, n ∈ N} is the set of truth-

values, ok1
1 , . . . , o

kn
n are operations on Vn such that the arity of oki

i is ki,
and DL ⊂ Vn is the set of designated values { r

n−1 , . . . , 1}, for r > 0. We
will assume the values 1 and 0 to denote the classical values of truth and
falsity. A valuation for L v is a homomorphism v : V → Vn which is
extended to For(LL) as usual.

v(ckm
m (ϕ1, . . . , ϕk)) = okm

m (v(ϕ1), . . . , v(ϕk)).

The set of valuations v : For(LL) → Vn is called the semantics of L,
semL.

Definition 1.2. For ϕ ∈ For(LL), we say that vL is a model for ϕ if
vL(ϕ) ∈ DL. For Γ ⊆ For(LL), we say that vL is a model of Γ if vL is a
model of each γ ∈ Γ. If vL(ϕ) ∈ DL, for some (resp., for every) vL ∈ semL,
we say that ϕ is satisfiable (resp., a tautology of) in L. If vL(ϕ) /∈ DL
for every vL ∈ semL, then ϕ is a contradiction of L. The semantic
consequence relation |=L is the relation on ℘(For(LL))× For(LL) given
by: Γ |=L α iff whenever vL(γ) ∈ DL, for every γ ∈ Γ, then vL(α) ∈ DL.

Notation 1.3. (Rescher, 1969) A n-valued connective ckm
m is called nor-

mal with respect to a matrix ML if its corresponding interpretation okm
m

in ML agrees with a classical connective ? (for ? ∈ {∧,∨,→,↔,¬})
when restricted to the truth-values 1 and 0. A logic L is normal if all its
connectives are normal.

The n-valued logics that we investigate here are normal. This as-
sumption guarantees that when we consider only classical values, we
obtain classical propositional logic (CPL).

2. n-valued modal logics and bivalent modalities

The modal logics we consider contain two modal operators {�,♦}, where
� and ♦ are unary operators.

Definition 2.1. Given a language LL, we define its modal extension by
L�♦

L = LL ∪ {�,♦}.
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Definition 2.2. Fix an n-valued normal logic L, with corresponding
language LL and matrix ML = 〈Vn, o

k1
1 , . . . , o

km
m , DL〉. An ML-modal

model is a structure of the form ML = 〈W,N,R, v〉 where W is a set
of worlds, N ⊆ W is a proper subset of W of normal worlds, R is a
relation such that (a) wRw for all w ∈ N and (b) for every y ∈W there
is some w ∈ N such that wRy, and v is an assignment such that for
every w ∈W , vw(p) ∈ Vn. The function v is recursively extended in the
standard way for the connectives that are not modalities:

1 vw(ckm
m (ϕ1, . . . , ϕk)) = okm

m (vw(ϕ1), . . . , vw(ϕk)).

The interpretation of the modal operators runs as follows:

2.1 For any w ∈ W , vw(�ϕ) = 1 if w ∈ N and for all y ∈ W such that
wRy, vy(ϕ) ∈ DL; otherwise vw(�ϕ) = 0;

2.2 If w /∈ N , the value of vw(�ϕ) is arbitrary in Vn;
3.1 For any w ∈ W , vw(♦ϕ) = 1 if w ∈ N and for some y ∈ W such

that wRy, vy(ϕ) ∈ DL; otherwise vw(♦ϕ) = 0;
3.2 If w /∈ N , the value vw(♦ϕ) is arbitrary in Vn.

A formula ϕ ∈ For(L�♦
L ) is true in a ML-modal model M iff for

every w ∈ N vw(ϕ) ∈ DL. A formula ϕ ∈ For(L�♦
L ) is ML-valid iff it is

true in every ML-modal model.

Definition 2.3. The Suszkian modal counterpart of L, which we indicate
by LS0.5, is the set of all ML-valid formulas in the language L�♦

L .

Definition 2.4. We denote the family of n-valued logics LS0.5 as LS0.5.

When ML is the two-valued classical matrix, LS0.5 corresponds to
S0.5, introduced by Lemmon (1957), where the modal operator � was
interpreted as “it is tautologous (by truth-tables) that”.

Definition 2.5. (Lemmon, 1957) S0.5 is a non-normal modal logic
which has the following axioms and rules:
(CPL) all propositional tautologies and inference rules;
(K) �(ϕ→ ψ)→ (�ϕ→ �ψ);
(T) �ϕ→ ϕ;
(D) �ϕ→ ♦ϕ;
(Df1) �ϕ↔ ¬♦¬ϕ;
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(Df2) ♦ϕ↔ ¬�¬ϕ;2
(Nec) If ϕ is a classical tautology, we infer ` �ϕ.

Let us notice that Definition 2.2 only comprehends finitely valued
logics, i.e., logics which are characterized by matrices where Vn is finite.
So, many paraconsistent logics (Carnielli et al, 2005) as well as intu-
itionistic logic (Gödel, 1933), for example, are beyond the scope of the
present work, because they cannot be characterized by finite matrices.
Such logics require a richer structure than the structure of Definition 2.2
in order to accommodate their non-truth-functional connectives.3

In (Cresswell, 1966), Cresswell presents a simplified semantic struc-
ture for S0.5 of the form 〈w∗,W, v〉, where w∗ is the unique normal world
and the worlds y ∈ W are the non-normal.4 Cresswell then proves that
these models are sound and complete with respect to the axioms and
rules of the Definition 2.5. Note that our construction of the logics in
LS0.5 differs from Priest’s extension (Priest, 2008) of n-valued logics to
modal logic. In his paper, Priest considers modal logics with an n-valued
logic as the underlying non-modal logic. Thus, formulas �ϕ and ♦ϕ are
allowed to receive intermediate truth-values.5 On the other hand, Def-
inition 2.2 imposes that these formulas can only be true or false in the

2 In normal modal logics � is usually introduced as primitive and ♦ can be defined
from �. Although S0.5 does not obey the principle of substitutivity of equivalents
(Milberger, 1978), we can introduce the operator ♦ by means of the usual definition,
still validating Df1 and Df2. But, since we are considering logics which are weaker
than the classical S0.5, Df1 and Df2 are not valid in some of them. For this reason,
we introduce ♦ as a primitive in the language L�♦

L as well as the axioms bridging �
and ♦ in S0.5.

3 For non-modal logics based on intuitionistic logic, we refer the reader to (Dal-
monte et al, 2020). In their work, Dalmonte et al use a semantic structure which
contains neighborhood functions to deal with the modalities � and ♦, and an order-
ing relation � to deal with implication. We conjecture that we should include such
an accessibility relation to accommodate intuitionistic implication in our framework.
We leave this possibility for further investigation.

4 Pietruszczak (2009) provides a series of characterization results for non-normal
modal logics by means of this simplified semantics. Among these systems, he proves
soundness and completeness for two fragments of S0.5: S0.50 and S0.50+. S0.50 is
obtained by S0.5 by dropping off the axiom T and D; and S0.50+ is obtained by S0.5
dropping off the axiom T.

5 In (Schotch et al, 1978), Schotch et al introduce a study of non-classically
based modal logic, where they consider the three-valued logic Ł3. In this work, they
provide an axiomatization in the class of all (standard) models 〈W, R, v〉 for Ł3M2,
which is obtained by extending Ł3 to the modal language where formulas �ϕ only
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worlds w ∈ N , the normal worlds, where thus the modal formulas only
receive classical values; in this sense these are Suszkian modalities.

The intended meanings of �ϕ and ♦ϕ are “ϕ is a tautology in L” and
“ϕ is logically consistent for L”. Notice that the formulas �ϕ and ♦ϕ are
not formulas of L and therefore cannot be tautologies of, or consistent
with, L. Therefore, the formulas in LS0.5 do not display iterated modali-
ties. This property of the interpretation is reflected in Definition 2.2 by
the distinction between normal and non-normal worlds, which has the
effect of invalidating all iterated modalities.

Under this meta-theoretical interpretation of the modalities, the ax-
iom K says that being a tautology is preserved under modus ponens. The
axiom T says that the � operator captures tautologies. The axiom D,
then, says that if ϕ is a tautology, then ϕ is consistent. That is, there is
at least one line of the truth-table where ϕ receives a designated value.
Therefore, we can see that S0.5 is sound with respect to its intended
interpretation. Although S0.5 captures tautological validity and con-
sistency, however, it does not display all meta-theoretical properties of
these classical notions. For example, S0.5 is not able to capture invalid-
ity, contrary to the decidability of CPL, since not all formulas of the form
¬�p are theorems of S0.5. It has been argued, in (Routley, 1968), that
this constitutes a semantic form of incompleteness of S0.5 with respect
to this intended interpretation.6 A possible response to this objection
is that we are asking from S0.5 too much, since we cannot expect it
to mirror all meta-theoretical properties at once, especially those global
properties that hardly fit with a local modal formalization.

Let us show, then, in which sense LS0.5 captures the intended inter-
pretation of the modalities.

2.1. Logics LS0.5’s and tautological validity

Our strategy is to define a theory of validity for L, in the sense of Skyrms
(1978). That is, we extend the language LL with a predicate V al, for
validity, a predicate Con, for consistency, and a sentence name ϕ, for
each ϕ ∈ LL. We name the resulting language LV C

L . Then, the set of

receive classical values. They suggest that this logic captures the idea that the modal
discourse is essentially two-valued.

6 In (Urquhart, 2010), one can find a logical system, called TS which contains
validities of the form ¬��pi as well as ¬�pi. However, contrary to S0.5, TS is not
finitely axiomatizable.
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formulas For(LV C
L ) is defined as follows: (i) For(LL) ⊆ For(LV C

L ); (ii)
if ϕ ∈ For(LL) and ϕ is a sentence name of ϕ, then V al(ϕ), Con(ϕ) ∈
For(LV C

L ).

Definition 2.6. A model for LV C
L is a structure MV C

L = 〈v+
0 ,ML, V 〉,

where ML is a matrix for L, V is a set of valuations vi ∈ semL (for
i ∈ |semL|) and v+

0 : For(LV C
L )→ {1, 0} is such that:

1. v+
0 (V al(ϕ)) = v+

0 (ϕ) = 1 if for all vi ∈ V , vi(ϕ) ∈ DL;
otherwise, v+

0 (V al(ϕ)) = v+
0 (ϕ) = 0;

2. v+
0 (Con(ϕ)) = 1 if for some vi ∈ V , vi(ϕ) ∈ DL;

otherwise, v+
0 (Con(ϕ)) = 0;

A formula ϕ ∈ For(LV C
L ) is true in MV C

L iff either v+
0 (ϕ) = 1, or

vi(ϕ) ∈ DL, for all vi ∈ V . A formula ϕ ∈ For(LV C
L ) is valid if it is true

in every model MV C
L .

It is important to remark that the sentence names ϕ introduced
above are not Gödel’s codes pϕq. While the latter are defined within
an arithmetical theory, the former are introduced as primitive objects in
LV C

L . The reason to introduce sentence names instead of Gödel names is
due to the expressive limitation of the logical theory considered here. By
Definition 2.6, V al(ϕ) is true whenever ϕ is a tautology of L. In stronger
theories, V al(ϕ) is true when ϕ is a valid formula. In these stronger the-
ories, a codification of the formulas a la Gödel would result in a modal
formalization of meta-theoretical notions that are incompatible with the
T axiom, as showed by Montague’s Theorem (Montague, 1963).

Now consider the following translation.

Definition 2.7. Let t : L�♦
L → LV C

L be a function defined as follows:

t(p) = p
t(ck

m(ϕ1, . . . , ϕk)) = ck
m(t(ϕ1), . . . , t(ϕk))

t(�ϕ) = V al(t(ϕ))
t(♦ϕ) = Con(t(ϕ))

We call this function the t-translation.

Notice that the t-translation is defined only for modal formulas with-
out iterations of modalities. However, since the logics we consider do not
allow such formulas among their validates, this is a harmless restriction.
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Proposition 2.8. Let t be the translation defined in Definition 2.7. For
every ϕ,ψ ∈ For(L�♦

L ):

If t(ϕ) = t(ψ), then ϕ = ψ. (1)

Proof. The proof runs by induction on the complexity of formulas.
For the atomic case, suppose that ϕ = p and ψ = q, where p 6= q. By

definition of t, we have that t(p) 6= t(q).
For the case where ϕ = cki

i (γ1, . . . , γk) and ψ = cki
i (γ′1, . . . , γ′k), sup-

pose that t(cki
i (γ1, . . . , γk)) = t(cki

i (γ′1, . . . , γ′k)). By the definition of t,
we obtain cki

i (t(γ1), . . . , t(γ1)) = cki
i (t(γ′1), . . . , t(γ′1)). By I.H., we obtain

γi = γ′i, for 1 ≤ i ≤ k. Therefore, cki
i (γ1, . . . , γk) = cki

i (γ′1, . . . , γ′k). The
case where ϕ = cki

i (γ1, . . . , γk) and ψ = cki
j (γ′1, . . . , γ′k), for i 6= j, is

straightforward.
For the case where ϕ = �γ and ψ = �γ′, suppose that t(�γ) =

t(�γ′). Since t is defined only for formulas without iteration of modal-
ities, γ and γ′ are also formulas of LL. Moreover, for every formula α
of LL, each α is a sentence name of α. By I.H., γ = γ′. Therefore,
V al(t(γ)) = V al(t(γ)

′
).

Then, t is an injective function whose inverse t−1 is also injective
over its co-domain.

Lemma 2.9. For every model MV C
L = 〈v+

0 ,ML, V 〉 for LV C
L there is

M = 〈W,N,R, v〉 for LS0.5 such that, for every v ∈ V ∪ {v+
0 } there is a

x ∈W , so that the following holds:

vx(ϕ) = v(t(ϕ))

For all ϕ ∈ For(L�♦
L ).

Proof. Given a modelMV C
L = 〈v+

0 ,ML, V 〉 we defineM = 〈W,N,R, v〉
as follows:
• W is the collection of words wi such that vwi

(p) = vi(p), for vi ∈ V ,
together with another world w+

0 such that vw+
0

(ϕ) = 1 iff for every
vi ∈ V , vwi(ϕ) ∈ DL,
• N = {w+

0 },
• R = 〈(w+

0 , wi)| wi ∈W 〉 ∪ 〈(w+
0 , w

+
0 )〉.

The proof that vwi
(ϕ) = vi(t(ϕ)) is a straightforward consequence

of the Recursion Theorem: there is only one evaluation of the formulas
that extends a fixed evaluation of the propositional variables.
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For what concerns vw+
0

(ϕ) = v+
0 (t(ϕ)) we only deal with the modal

cases. We have that vw+
0

(�ϕ) = 1 iff for every vi ∈ V , vwi(ϕ) ∈ DL iff
(since ϕ has no modalities and by the previous case vwi(ϕ) = vi(t(ϕ)))
for every vi ∈ V , vi(t(ϕ)) ∈ DL iff v+

0 (V al(t(ϕ)) = 1; otherwise we get
0. The case of ♦ψ equally depends on the definitions and the inductive
hypothesis.

Lemma 2.10. For every M = 〈W,N,R, v〉 for LS0.5 there is MV C
L =

〈v+
0 ,ML, V 〉 for LV C

L such that, for every w ∈W there is a v ∈ V ∪{v+
0 }

the following holds:

v(ϕ) = vw(t−1(ϕ))

For all ϕ ∈ For(LV C
L ).

Proof. LetM = 〈W,N,R, v〉 be aML-modal model for LS0.5. Without
loss of generality we can assume that N 6= ∅; otherwise there are no
modal formulas that are valid inM and, thus, the proof is trivial. Given
a w∗0 ∈ N , we know that w∗0Rwi, for all wi ∈W , by Definition 2.2. Notice
that the normal worlds display the same set of modal validities, since
they are all connected with all non-normal worlds. Then fix, w∗0 a world
in N . We now define a model MV C

L = 〈v+
0 ,ML, V 〉 as follows:

• V is the collection of all valuations vx ∈ semL, for x ∈W \N ,
• v+

0 is a valuation of the whole language LV C
L such that v+

0 (p) =
vw∗

0
(p)

It is straightforward to see that for all v ∈ V there is an x ∈ W
such that v(ϕ) = vw(t−1(ϕ)). Thus, consider the case v = v+

0 and when
ϕ = V al(ψ). As before we only need to deal with the modal case. Then,
v+

0 (V al(ψ)) = 1 iff vx(ψ) ∈ DL for every vx ∈ V iff (for the previous
case) vx(ψ)) ∈ DL for every x ∈W iff vw∗

0
(�ψ) = 1, which, by definition

of the t-translation, is equivalent to say vw∗
0
(t−1(V al(ψ)) = 1.

2.2. Some principles of logics LS0.5’s

Because LS0.5 includes a wide class of many-valued logics, the majority
of the characteristic modal principles are not valid for this family of
logics. This happens because we have to take into consideration the
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idiosyncrasies of each system LS0.5 ∈ LS0.5. The next theorem illustrates
this point.

Theorem 2.11. Let LS0.5 ∈ LS0.5. Then:

1. K is not valid in LPS0.5;
2. Nec is not valid in K3

S0.5;
3. T is not generally valid in RM3

S0.5;
4. �(ϕ ∧ ψ)→ (�ϕ ∧�ψ) and ♦(ϕ ∧ ψ)→ (♦ϕ ∧ ♦ψ) are not valid in

LS0.5 which have infectious designated values.7.
5. (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) is not valid in logics whose connective of

conjunction is such that vw(ϕ ∧ ψ) = 0 whenever vw(ϕ) 6= 1 or
vw(ψ) 6= 1.

6. The substitutivity of equivalents is not generally valid in logics LS0.5 ∈
LS0.5.

7. ♦ϕ↔ ¬�¬ϕ is not generally valid in logics LS0.5 ∈ LS0.5.

Proof. 1. Let MLP = 〈{1, 1
2 , 0},¬,∧, {1,

1
2}〉 be the matrix for LP

(Priest, 1979), where vw(¬ϕ) = 1− vw(ϕ); and vw(ϕ∧ψ) = min(vw(ϕ),
vw(ψ)), where ϕ → ψ := ¬(ϕ ∧ ¬ψ). Let M = 〈W,N,R, v〉 be a MLP-
modal model such that W = {w, y}, N = {w}, R = {(w,w), (w, y)} and
v an assignment such that vw(p) = vy(p) = 1

2 and vw(q) = vy(q) = 0.
Then, vw(p→ q) = vy(p→ q) = 1

2 . Since p and p→ q take a designated
value in every world of W , then vw(�p) = vw(�(p → q)) = 1. On the
other hand, vw(�q) = 0. Therefore, vw(�(p→ q)→ (�p→ �q)) = 0.

2. Let MK3 = 〈{1, 1
2 , 0},¬,∧, {1}〉 be the matrix of K3 (Kleene, 1938)

where ¬ and ∧ are defined as in LP. It is a well known fact that the
matrix of MK3 of K3

S0.5 has no truth-functional operation o2
k such that

o2
m(1

2 ,
1
2) ∈ {1, 0}. Since 1

2 /∈ {1}, then there is no tautology in K3
S0.5.

Then K3
S0.5 has no theorems of the form �ϕ.

3. LetMRM3 = 〈{1, 1
2 , 0},¬,→, {1,

1
2}〉 be the matrix for RM3 (Anderson

and Belnap, 1975) where vw(ϕ → ψ) = 0 whenever vw(ϕ) > vw(ψ).
Let M = 〈W,N,R, v〉 be a MRM3-modal model such that W = {w, y},
N = {w}, R = {(w,w), (w, y)} and v an assignment such that vw(p) =

7 The first infectious logic in the literature was proposed by Bochvar (1981). For
an example of infectious logic which has a designated value, check Paraconsistent
Weak Kleene (Bonzio et al, 2017). We invite the reader to check Szmuc (2016) for a
systematic investigation of these logics.
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vy(p) = 1
2 . By the definition of �, we obtain vw(�p) = 1. By the

definition of →, we obtain vw(�p→ p) = 0.

4. A truth-value r is called infectious if, whenever it is an input of
a truth-function, r is an output, for every truth-function of a given
matrix. A logic L is called infectious if its characteristic matrix has
at least one infectious value. Let ML be a matrix for an infectious
logic L and let M = 〈W,N,R, v〉 be a ML-modal model such that
W = {w, y}, N = {w}, R = {(w,w), (w, y)} and v an assignment such
that vw(p) = vy(p) = ti, where ti ∈ DL is an infectious value, and
vw(q) = vy(q) = 0. So vw(p∧q) = vy(p∧q) = ti. By the truth-definition
of �, we obtain vw(�(p ∧ q)) = vw(�p) = 1 and vw(�q) = 0. Then,
ww(�p ∧�q) = 0. Therefore, vw(�(p ∧ q)→ (�p ∧�q)) = 0. The case
of ♦(p ∧ q)→ (♦p ∧ ♦q) is similar.

5. A truth-value r is called immune (Da Ré and Szmuc, 2021) if, when-
ever it is an input of a truth-function along with a truth-value r′, r′ is the
output. ML be a matrix for an immune logic L such that 1 and d are the
designated values of the matrix such that v(ϕ ∧ ψ) = 1 iff v(ϕ) = 1 and
v(ψ) = 1, v(ϕ ∧ ψ) = 0 otherwise; and letML = 〈W,N,R, v〉 be a ML-
modal model. Suppose that vw(�p) = vw(�q) = 1, for w ∈ N . Then,
for every y ∈W such that wRy, vy(p) ∈ {1, d} and vy(q) ∈ {1, d}. If, for
some z ∈W such that wRz, vz(p) = 1 and vz(q) = t, then vz(p∧ q) = 0.
Therefore, vw(�(p ∧ q)) = 0.8

6. The classical S0.5 does not validate the substitutivity of equivalents.
To see why this principle fails, consider a model M = 〈{w0, y}, {w0},
{(w0, w0), (w0, y)}, v〉 such that vy(�ϕ) = 1 and vy(�¬¬ϕ) = 0. So, we
obtain vy(�ϕ ↔ �¬¬ϕ) = 0. Therefore, vw0(�(�ϕ ↔ �¬¬ϕ)) = 0.
Since all logics LS0.5 ∈ LS0.5 are fragments of classical S0.5, the same
holds for them.

7. Let LPS0.5 be the logic presented in item 1. W = {w, y}, N = {w},
R = {(w,w), (w, y)} and v an assignment such that vw(p) = vy(p) = 1

2 .
Then, vw(�¬p) = vw(♦p) = 1. By applying the negation, we obtain
vw(¬�¬p) = 0. Therefore , vw(♦p→ ¬�¬p) = 0.

8 Immune logics are new in the literature. We refer the reader to (Da Ré and
Szmuc, 2021) where they were first introduced.
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The items 6 and 7 of Theorem 2.11 justify the introduction of both
modal operators as primitive. From a conceptual point of view one could
argue that logical validity and logical consistency are, in this context,
two independent notions. The item 2 of Theorem 2.11 says that the
logic K3 does not have any tautologies. But this does not constitute a
problem. It reinforces the claim that the meaning of logical validity is
local, depending on the formal system where it is defined.

Definition 2.2 covers a myriad of many-valued modal systems LS0.5s.
So an axiomatization à la Hilbert of the most general modal principles
which all systems LS0.5 ∈ LS0.5 satisfy would constitute an important
result about validity and consistency of logics L. But, as Theorem 2.11
shows, many modal principles interact with the truth-functional connec-
tives and these significantly vary according to the logic L. So, it is not
immediate for us how to obtain such a general axiomatization. Two gen-
eral possible routes towards the proof-theoretical characterization of the
logics LS0.5 ∈ LS0.5 would be the modal extension of n-sided sequents pro-
vided by Baaz et al (1993) and the modal extension of labelled tableaux
provided by Carnielli (1987). Such proof-theoretical characterizations
will be investigated in a further work.

Although we do not have a general axiomatization for all logics LS0.5,
we can establish the following semantic fact about the modal logics of
Definition 2.2:

Proposition 2.12. The following principles hold for any LS0.5 ∈ LS0.5.

1. |=LS0.5 �ϕ→ ♦ϕ;
2. �ϕ |=LS0.5 ϕ;
3. ϕ |=LS0.5 ♦ϕ;
4. �ϕ→ �ψ,�ϕ |=LS0.5 �ψ
5. If ψ is a LS0.5-tautological consequence of ϕ, then �ϕ |=LS0.5 �ψ.

Proof. 1. Suppose that everyML-modal modelM is such that vw(�ϕ)
= 1, for every w ∈ N . Then, for every y ∈ W , such that wRy,
vy(ϕ) ∈ DL. Then, since R is reflexive over N , vw(ϕ) ∈ DL. So there is
y ∈ W such that vy(ϕ) ∈ DL. Therefore, vw(♦ϕ) = 1. By Notation 1.3,
we obtain vw(�ϕ→ ♦ϕ) = 1.

2. Suppose that every model M for LS0.5 is such that vw(�ϕ) = 1, for
every w ∈ N . Then, for every y ∈ W , such that wRy, vy(ϕ) ∈ DL.
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Then, since R is reflexive over N , we obtain vw(ϕ) ∈ DL.

3. Same as 2.

4. This follows from Notation 1.3, since the reasoning only involves the
classical values 1 and 0.

5. Suppose that ψ is a tautological consequence of ϕ in LS0.5. Then, for
every ML-modal modelM, for all w ∈ N , vw(ϕ) ∈ DL implies vw(ϕ) ∈
DL. Since ψ is a tautological consequence of ϕ, it is the case all worlds
y ∈ W . By definition of models for LS0.5, every y ∈ W is accessed by a
normal world w ∈ N . Then, vw(�ϕ) = 1 implies vw(�ψ) = 1.

Even if Proposition 2.12 establishes general facts for logics LS0.5, they
are certainly not complete for all logics LS0.5, as the classical S0.5 (Defi-
nition 2.5) witnesses.

3. Recovery operators and modalities

Because of the bivalence of the modalities investigated, we argue that
� and ♦ can also work as recovery operators.9 Recovery operators are
devices to recover inferences which we lose when we depart from classical
logic. They were carefully investigated in the fields of paraconsistent and
paracomplete logics. We now exemplify the use of the operators � and
♦ to recover inferences from S0.5 in a many-valued modal logic.

Definition 3.1. The three-valued Łukasiewicz logic Ł3 is characterized
by the matrix MŁ3 = 〈{1, 1

2 , 0},¬,→, {1}〉 whose connectives ¬ and →
are interpreted by the following truth-tables:

¬
1 0
1
2

1
2

0 1

→ 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2
0 1 1 1

9 On this topic see Coniglio and Peron (2013) for an application to the paracon-
sistent case and Marcos (2005) for non-classical negations in general. Here we are
dealing with the even more general case of many-valued logics.
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The modal three-valued Łukasiewicz logic ŁS0.5
3 is characterized by

the MŁ3-modal model M = 〈W,N,R, v〉 in accordance with Definition
2.2.

In the definition below, we present an axiomatic system for ŁS0.5
3 .

Our axiomatization is inspired by Schotch et al (1978) with some obvious
modifications, given that we are dealing with non-normal modalities.10

Definition 3.2. The logic ŁS0.5
3 has the following axioms and rules:

(I) Propositional axioms of Ł3 (Wajsberg, 1931):

(Ł3-1) ϕ→ (ψ → ϕ);
(Ł3-2) (ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ));
(Ł3-3) (¬ϕ→ ¬ψ)→ (ψ → ϕ);
(Ł3-4) ((ϕ→ ¬ϕ)→ ϕ)→ ϕ.
(MP) From `ŁS0.5

3
ϕ and `ŁS0.5

3
ϕ→ ψ we infer `ŁS0.5

3
ψ;

(II) Modal axioms:

(K) �(ϕ→ ψ)→ (�ϕ→ ψ);
(T) �ϕ→ ϕ;
(D) �ϕ→ ♦ϕ;
(D�¬) �¬ϕ→ ¬♦ϕ;
(T♦) ϕ→ ♦ϕ;
(Biv1) ¬(�ϕ↔ ¬�ϕ);
(Biv2) ¬(♦ϕ↔ ¬♦ϕ);
(NecŁ3) If `ŁS0.5

3
ϕ and ϕ is a Ł3-tautology, we infer `ŁS0.5

3
�ϕ;

(RKŁ3) If `ŁS0.5
3

ϕ→ ψ and ϕ→ ψ is a Ł3-tautology, we infer
`ŁS0.5

3
♦ϕ→ ♦ψ.

The axioms Biv1 and Biv2 say that the modalities do not receive
intermediate values. They are easily provable in S0.5 as the following
result shows:

Theorem 3.3. The following formulas are theorems of S0.5:
10 It is worth noticing that Schotch et al’s axiomatization of the modal counter-

part of Ł3 is ♦-free. As we will see, the bivalent modalities of the modal counterpart of
Ł3 break the interdefinability between � and ♦. Therefore, it is necessary to introduce
both operators as primitive in order to give a completeness proof for the full language.
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1. `S0.5 ¬(�ϕ↔ ¬�ϕ);
2. `S0.5 ¬(♦ϕ↔ ¬♦ϕ).

Proof. For (1), consider the formal derivation:

1. `S0.5 (�ϕ↔ ¬�ϕ)→ (ϕ ∧ ¬ϕ) CPL
2. `S0.5 ¬(ϕ ∧ ¬ϕ)→ ¬(�ϕ↔ ¬�ϕ) CPL, 1
3. `S0.5 ¬(ϕ ∧ ¬ϕ) CPL
4. `S0.5 ¬(�ϕ↔ ¬�ϕ) MP 2,3

The reasoning for (2) is exactly the same. This concludes the proof.

Theorem 3.4. In ŁS0.5
3 the following schemas are not valid:

1. ¬�¬ϕ→ ♦ϕ;
2. ¬♦¬ϕ→ �ϕ.

Proof. For (1), consider the model M = 〈W,N,R, v〉 such that W =
{w, y}, N = {w}, R = {(w,w), (w, y)} and vw(ϕ) = vy(ϕ) = 1

2 . Then,
vw(¬ϕ) = vy(¬ϕ) = 1

2 . So, we obtain vw(�¬ϕ) = 0 and vw(¬�¬ϕ) = 1
and vw(♦ϕ) = 0. Therefore, vw(¬�¬ϕ → ♦ϕ) = 0. The reasoning for
(2) is similar. This concludes the proof.

In virtue of Theorem 3.4, Df1 and Df2 cannot be axioms of ŁS0.5
3 .

The characterization results for the system ŁS0.5
3 will be proved in Ap-

pendix A.

Definition 3.5. Given the operations ¬ and → of Ł3, we define the
connectives ∨, ∧, and the recovery operator ? as follows:

ϕ ∨ ψ := (ϕ→ ψ)→ ψ
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
?ϕ := ¬(ϕ↔ ¬ϕ)

They display the following truth-tables.

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 0 0

↔ 1 1
2 0

1 1 1
2 0

1
2

1
2 1 1

2
0 0 1

2 1

?

1 1
1
2 0
0 1
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Informally, the connective ? is interpreted as “ϕ is determinated.”
Interestingly, some remarkable principles are not valid in Ł3.

Proposition 3.6. The following items hold for Ł3:

1. 2Ł3 ¬(ϕ ∧ ¬ϕ)
2. 2Ł3 ϕ ∨ ¬ϕ
3. ϕ→ (ϕ→ ψ) 2Ł3 ϕ→ ψ

The verification of Proposition 3.6 is simple and it is left to the
reader. With the presence of the connective ?, it is possible to recover
the invalidities of Proposition 3.6.

Proposition 3.7. The following items hold for Ł3:

1. ?ϕ |=Ł3 ¬(ϕ ∧ ¬ϕ)
2. ?ϕ |=Ł3 ϕ ∨ ¬ϕ
3. ?ϕ, ?ψ, ϕ→ (ϕ→ ψ) |=Ł3 ϕ→ ψ

In the light of Proposition 3.6 and Proposition 3.7 we can say that Ł3
is a Logic of Formal Undeterminedness (LFU, for short) Marcos (2005).
Roughly speaking, L is a LFU if it does not validate excluded middle,
while it validates a restricted version of such principle, such as item 2
of Proposition 3.7. In fact, it is possible to prove that the connective
? recovers classical inferences which are lost in Ł3 when “determined
assumptions” are made. The following theorem is a version, for Ł3, of
da Costa’s Derivability Adjustment Theorem (Da Costa, 1974).

Theorem 3.8. For every Γ ⊆ For(LŁ3), for every ϕ ∈ For(LŁ3),

Γ |=CPL ϕ iff Γ, {?p1, . . . , ?pn} |=Ł3 ϕ (2)

where {p1, . . . , pn} is the set of propositional variables which occur in
Γ ∪ {ϕ}.11

Now, in the case of ŁS0.5
3 , it is possible to recover the inferences of the

classical S0.5 without the use of connective ?. Given the modal operator
�, the formula

�ϕ ∨�¬ϕ (3)
11 A general version of this theorem for finite many-valued logics can be found

in Ciuni and Carrara (2020).
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expresses a form of non-contingency.
The modal notion of non-contingency was introduced by Montgomery

and Routley (1966) and investigated by Humberstone (1995) and Cress-
well (1988). By the semantic condition of � in ŁS0.5

3 , �ϕ∨�¬ϕ receives
the truth-value 1 in normal worlds w if and only if ϕ receives 1 or 0 in
all worlds y and z accessible to w. Thus, the formula 3 reflects some
intuitions of the truth-functional connective ?, but now from a modal
perspective. So, formula 3 says that ϕ only receives classical values.

The fact that the truth-functional connectives of ŁS0.5
3 are normal will

play a significant role in the next result. The next theorem states the
possibility of recovering inferences of S0.5 in ŁS0.5

3 under certain “non-
contingency assumptions”. In order to state the next result we need the
following definition.

Definition 3.9. Let ϕ ∈ For(L�♦
ŁS0.5

3
) be a ŁS0.5

3 formula. The modal
degree of ϕ, md(ϕ), is defined as follows:

1. if ϕ = p, then md(p) = 0;
2. if ϕ = ¬ψ, then md(¬ψ) = md(ψ);
3. if ϕ = ψ → γ, then md(ψ → γ) = max(md(ψ),md(γ));
4. if ϕ = �ψ, then md(�ψ) = md(ψ) + 1;
5. if ϕ = ♦ψ, then md(♦ψ) = md(ψ) + 1.

Theorem 3.10. For every Γ ⊆ For(L�♦
Ł3

) containing a finite number of
propositional variables, such that md(γ) ≤ 1, for every γ ∈ Γ, and for
every ϕ ∈ For(L�♦

Ł3
) such that md(ϕ) ≤ 1,

Γ |=S0.5 ϕ iff Γ, {�p1 ∨�¬p1, . . . ,�pn ∨�¬pn} |=ŁS0.5
3

ϕ (4)

where {p1, . . . , pn} is the set of propositional variables which occur in
Γ ∪ {ϕ}.

The proof is a routine exercise, based on the fact that the non-
contingency of the propositional variables force the (non-vacuous) val-
uation in ŁS0.5

3 to be either the classical top element of or the bottom
element of Łukasiewicz’s logic Ł3. Moreover, notice that Theorem 3.10
does not generalise to any modal degree, as one can easily see by con-
sidering the formula �(�p ∨ ¬�p).

Corollary 3.11. The following items hold for ŁS0.5
3 :
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1. �p ∨�¬p |=ŁS0.5
3
¬(p ∧ ¬p)

2. �p ∨�¬p |=ŁS0.5
3

p ∨ ¬p
3. �p ∨�¬p,�q ∨�¬q, p→ (p→ q) |=ŁS0.5

3
p→ q

By Suszko’s reduction result, we could have worked with the bivalent
counterpart of the logic Ł3 and define modal structures for ŁS0.5

3 .12 How-
ever, the reason for presenting here a matricial semantics for Ł3 stems
from the fact that matrix semantics are more user-friendly than bivalent
semantics. Besides, not every many-valued semantics can directly define
a recovery operator, because of their lack of expressive power. In this
case, the signature of the logic needs to be extended with a new symbol
for the recovery operator.13 In this sense, the meta-theoretical move of
adding Suszkian modalities is not completely alien to the study of many
valued logics. Moreover, the possibility that these modalities offer in re-
covering classical inferences confirms both their connection with Suszko’s
thesis and their (classical) meta-theoretical interpretation of validity and
consistency.

4. Concluding remarks

We have seen that the modalities � and ♦ can capture a form of validity
and consistency for many-valued logics L, when we consider sets of val-
uations in the meta-theory. The results proved in Subsections 2.1 show
that the logics LS0.5 capture a well-grounded notion of model-theoretical
validity. We saw that one of the fundamental properties of the predicate
of validity is reflexivity. That is, if ϕ is valid, then ϕ is the case. More-
over, the modalities � and ♦ of the logics LS0.5 capture the predicates
V al and Con of tautological validity and logical consistency, respectively,
in the language LV C

L .
In the case of L = CPL, we have by the results of Subsection 2.1 the

following valid schemas:

Kt V al(t(ϕ)→ t(ψ))→ (V al(t(ϕ))→ V al(t(ψ)));
Tt V al(t(ϕ))→ t(ϕ);

12 We refer the reader to (Malinowski, 1993, Chapter 10) for a bivalent semantics
for Ł3.

13 The problem of the bivalent reduction of MVLs with weak expressive power is
discussed in (Caleiro et al, 2005).
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Dt V al(t(ϕ))→ Con(t(ϕ));
Nect If t(ϕ) is a tautology, we infer ` V al(t(ϕ)).

Let V al∗ be a validity predicate which satisfies the principles K,
T, D and Nec, and has Gödel numbers instead of sentence names as
arguments. Ketland (2012) showed that V al∗ is consistent with PA.
Because of the similarities between V al∗ and V al, we conjecture that
S0.5 is also the logic of the predicate V al∗. But, we leave this question
for future work.

Now we turn to the relation between the modalities investigated here
and the meaning of recovery operators. It is not difficult to find in
the literature arguments defending that recovery operators, such as ?,
internalize metalogical concepts in the object language of the logic. In
the case of Ł3 it is said that ? internalizes a form of decidability. But
it is clear that ?ϕ and �ϕ ∨ �¬ϕ differ in meaning, as the following
validities show. First, let ∆ϕ be an abbreviation of �ϕ ∨�¬ϕ.

1. |=ŁS5
3

(?(ϕ ∨ ψ) ∧ (ϕ ∨ ψ))→ ((?ϕ ∧ ϕ) ∨ (?ψ ∧ ψ))
2. 2ŁS5

3
(∆(ϕ ∨ ψ) ∧ (ϕ ∨ ψ))→ ((∆ϕ ∧ ϕ) ∨ (∆ψ ∧ ψ))

As a consequence, ?ϕ does not have the same interpretation as the
modal formula �ϕ∨�¬ϕ. Since the results of Subsection 2.1 show that
� and ♦ have well justified interpretations of validity and consistency,
we cannot say the same with respect to ?. That is, it is not obvious that
? incorporates a metalogical notion in the object language of the logic.

Another interesting question we leave for further investigation is
about the provability interpretation of many-valued logics. Indeed, an
investigation of many-valued counterparts of the modal logic GL may
establish general provability principles of arithmetical theories based on
many-valued logics.

A. Characterization results for ŁS0.5
3

First we will show that the axiom system for ŁS0.5
3 is sound with respect

to the models of Definition 3.1.

Theorem A.1. ŁS0.5
3 is sound with respect to the models of Definition

3.1.
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Proof. We will show that the axioms of ŁS0.5
3 are valid with respect to

the models M = 〈W,N,R, v〉 and that the rules of inferences preserve
validity. We will only analyse the modal axioms. The validity of non-
modal axioms can be found in Wajsberg (1931).
Axiom K. Suppose that �(ϕ → ψ) → (�ϕ → �ψ) is not valid. Then
there is a model M = 〈W,N,R, v〉 such that vw(�(ϕ → ψ) → (�ϕ →
�ψ)) ∈ {0, 1

2}, for some w ∈ N . Since modal formulas receive only
classical values we will only analyse the case where vw(�(ϕ → ψ) →
(�ϕ → �ψ)) = 0. So, vw(�(ϕ → ψ)) = vw(�ϕ) = 1 and vw(�ψ) = 0.
By definition, there is y ∈ W such that wRy and vw(ψ) ∈ {0, 1

2}. Also,
by definition, for every z ∈ W such that wRz, vz(ϕ → ψ) = vz(ϕ) = 1,
including y ∈ W . By semantic modus ponens, we obtain vz(ψ) = 1.
Then so, vy(ψ) = 1. Contradiction. Therefore, vw(�(ϕ→ ψ)→ (�ϕ→
�ψ)) = 1, for all modelsM = 〈W,N,R, v〉.
The reasoning for the axioms T, T♦, D and D�¬ is straightforward.
Axiom Biv1. Suppose that ¬(�ϕ ↔ ¬�ϕ) is not valid. Then there is
a model M = 〈W,N,R, v〉 such that vw(¬(�ϕ ↔ ¬�ϕ)) ∈ {0, 1

2}. For
the same reason as K, we will only analyse the case where vw(¬(�ϕ↔
¬�ϕ)) = 0. Then, vw(�ϕ↔ ¬�ϕ) = 1 and we have the following cases
to consider: (i) vw(�ϕ) = vw(¬�ϕ) = 1; (ii) vw(�ϕ) = vw(¬�ϕ) = 0;
and (iii) vw(�ϕ) = vw(¬�ϕ) = 1

2 . The cases (i) and (ii) are impossible
in virtue of the semantic definition of negation and (iii) is impossible
because modal formulas do not receive the value 1

2 in worlds in N . Then,
vw(¬(�ϕ↔ ¬�ϕ)) = 1, for all modelsM = 〈W,N,R, v〉. The reasoning
for Biv2 is the same.
Rule NecŁ3 . Suppose that ϕ is a Ł3-tautology. Then vy(ϕ) = 1 for all
y ∈ W , including w ∈ N . Therefore, by definition of R, vw(�ϕ) = 1.
The reasoning for RKŁ3 is similar. This concludes the proof.

Characterization results for propositional Ł3 are easily found in the
literature (e.g., (Wajsberg, 1931), (Golberg et al, 1974), (Epstein, 1990)).
So, the set of valid formulas of Ł3 and its set of theorems coincide. Then,
whenever we use a Ł3-tautology or inference rule in a ŁS0.5

3 -demonstration
we will justify the step as Ł3.

Let ⊥ stand for any negated theorem of Ł3 (e.g., ⊥ := ¬(p → p)).
The following theorem presents some formulas which will be used for the
results below:
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Theorem A.2. The following formulas are theorems of ŁS0.5
3 .

1. `ŁS0.5
3

(ϕ→ ⊥)→ (ϕ→ ¬ϕ)
2. `ŁS0.5

3
(ϕ→ ψ)→ (¬ψ → ¬ϕ);

3. `ŁS0.5
3

((ϕ ∧ ψ)→ γ)→ (ϕ→ (ψ → γ));
4. `ŁS0.5

3
�(ϕ1 ∧ . . . ∧ ϕn)↔ (�ϕ1 ∧ . . . ∧�ϕn) (n ≥ 2);

5. `ŁS0.5
3
♦(ϕ1 ∧ . . . ∧ ϕn)→ (♦ϕ1 ∧ . . . ∧ ♦ϕn) (n ≥ 2).

The proof of Theorem A.2 is the same as in the classical case and it
will be left for the reader.

Definition A.3. Let Γ ⊆ For(L�♦
ŁS0.5

3
) be a set of formulas. Then we say

that

1. Γ is consistent if there are no γ1, . . . , γn ∈ Γ such that (γ1∧. . .∧γn)→
⊥ ∈ Γ and ¬γ ∈ Γ. Γ is inconsistent if it is not consistent;

2. Γ is Ł3-consistent if there are no γ1, . . . , γn ∈ Γ such that (γ1 ∧ . . .∧
γn) → ⊥ ∈ Γ and (γ1 ∧ . . . ∧ γn) → ⊥ is substitution instance of a
Ł3-tautology.

Lemma A.4 (Lindenbaum’s Lemma). Let ∆ be a consistent set of for-
mulas in the language of ŁS0.5

3 . Then, there is a maximal consistent set
of formulas Γ of ŁS0.5

3 such that ∆ ⊆ Γ.

Definition A.5. The canonical model M = 〈W,N,R, v〉 of ŁS0.5
3 is

defined as follows:

1. w ∈ N is a maximal consistent set of ŁS0.5
3 formulas;

2. Every w ∈ W \N is a maximal Ł3-consistent set of formulas in the
language of ŁS0.5

3 .
3. The relation R is defined as follows. Let w, y ∈W .

(a) For w ∈ N : if �ϕ ∈ w, then we let wRy iff λ(w) ⊆ y (λ(w) =
{ϕ|�ϕ ∈ w});

(b) For w ∈ N : if ♦ϕ ∈ w, then we let wRy iff µ(w) ⊆ w (µ(w) =
{♦ϕ|ϕ ∈ y}).

4. For every w ∈ W , the assignment v is defined over atomic proposi-
tions as follows:

vw(p) = 1 iff p ∈ w;
vw(p) = 1

2 iff p /∈ w and ¬p /∈ w;
vw(p) = 0 iff ¬p ∈ w.

Since the operator ♦ was introduced as primitive and �ϕ ↔ ¬♦¬ϕ
and ♦ϕ ↔ ¬�¬ϕ are not valid in ŁS0.5

3 , then we separately introduced
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the sets λ(w) and µ(w). In the classical case, we could introduce only
the set λ(w) because of the validity of both biconditionals.

Proposition A.6. Let w ∈ N be a maximal consistent set of ŁS0.5
3

formulas such that ¬�ϕ ∈ w. Then there is a (Ł3-) consistent set such
that ϕ /∈ λ(w).

Proof. Suppose that ϕ ∈ λ(w) (∗′) and let γ1, . . . , γn be formulas of
ŁS0.5

3 . Since ϕ→ (ψ → ϕ) is a instance of a Ł3 tautology, we obtain:14

1. ` ϕ→ ((γ1 ∧ . . . ∧ γn)→ ϕ) Ł3
2. ` (γ1 ∧ . . . ∧ γn)→ ϕ (∗′), MP
3. ` �((γ1 ∧ . . . ∧ γn)→ ϕ) NecŁ3

4. ` �((γ1 ∧ . . . ∧ γn)→ ϕ)→ (�(γ1 ∧ . . . ∧ γn)→ �ϕ) K
5. ` �(γ1 ∧ . . . ∧ γn)→ �ϕ MP 3,4
6. ` (�γ1 ∧ . . . ∧�γn)→ �(γ1 ∧ . . . ∧ γn) Thm A.2
7. ` (�γ1 ∧ . . . ∧�γn)→ �ϕ Ł3 5,6

Since γ1, . . . , γn ∈ λ(w), we obtain by the maximality of w:

8. ` �γ1 ∧ · · · ∧�γn

9. ` �ϕ MP 7,8

Which contradicts the consistency of w. Therefore, ϕ /∈ λ(w).

Proposition A.7. Let y be a maximal (ŁS0.5
3 -) consistent set of ŁS0.5

3
formulas. For all y, if ϕ /∈ y, then µ(w) ∪ {¬♦ϕ} is consistent.

Proof. Suppose that µ(w) ∪ {¬♦ϕ} is not consistent. Then by Defini-
tion A.3, there are ♦γ1, . . . ,♦γn ∈ µ(w) such that

1. ` (♦ϕ1 ∧ . . . ∧ ♦ϕn ∧ ¬♦ϕ)→ ⊥ Def A.3
2. ` (♦ϕ1 ∧ . . . ∧ ♦ϕn)→ (¬♦ϕ→ ⊥) Ł3 1
3. ` (¬♦ϕ→ ⊥)→ (> → ¬¬♦ϕ) Ł3
4. ` (♦ϕ1 ∧ . . . ∧ ♦ϕn)→ (> → ¬¬♦ϕ) Ł3 2,3
5. ` ♦(γ1 ∧ . . . ∧ γ)→ (♦γ1 ∧ . . . ∧ ♦ϕn) Theorem A.2

Since ♦γ1, . . . ,♦ϕn ∈ µ(w), then γ1, . . . , γn. By the maximality of y,
we obtain γ1∧ . . .∧γn ∈ y. Then, by definition of µ(w), ♦(γ1∧ . . .∧γn).
Then by modus ponens we obtain:

14 To facilitate the reading, we will drop the subscript in `.
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6. ` > → ¬¬♦ϕ

Since > ∈ µ(w), we obtain by modus ponens:

7. ` ¬¬♦ϕ

Which amounts to

8. ` ♦ϕ

So ♦ϕ ∈ w. By definition µ(w), ϕ ∈ y, which contradicts the (Ł3-)
consistency of y which we supposed not to contain ϕ. Therefore, µ(w)∪
{¬♦ϕ} is consistent. This concludes the proof.

Proposition A.8. Let w ∈ N be a maximal consistent set of ŁS0.5
3

formulas. Then:

1. If �ϕ /∈ w, then w ∪ {¬�ϕ} is consistent.
2. If ¬�ϕ /∈ w, then w ∪ {�ϕ} is consistent.
3. If ♦ϕ /∈ w, then w ∪ {¬♦ϕ} is consistent.
4. If ¬♦ϕ /∈ w, then w ∪ {♦ϕ} is consistent.

Proof. We will prove only the statement (1). The others follow the
same reasoning. Suppose that w ∪ {¬�ϕ} is not consistent. Then, for
γ1, . . . , γn ∈ λ(w):

1. ` (γ1 ∧ . . . ∧ γn ∧ ¬�ϕ)→ ⊥ Def.
2. ` (γ1 ∧ . . . ∧ γn)→ (¬�ϕ→ ⊥) Ł3 1

Since γ1, . . . , γn ∈ w, then, by maximality of w, we obtain

3. ` γ1 ∧ . . . ∧ γn

4. ` ¬�ϕ→ ⊥ MP 2,3
5. ` (¬�ϕ→ ⊥)→ (¬�ϕ→ ¬¬�ϕ) Ł3
6. ` ¬�ϕ→ ¬¬�ϕ MP 4,5
7. ` ¬�ϕ ¬�ϕ ∈ w ∪ {¬�ϕ}
8. ` ¬¬�ϕ MP 6,7
9. ` ¬¬�ϕ→ �ϕ Ł3
10. ` �ϕ MP 8,9
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Since w is maximal, �ϕ ∈ w, contradicting the consistency of w.
Therefore, w ∪ {¬�ϕ} is consistent.

Lemma A.9. Let M be a canonical model for ŁS0.5
3 . Then, for every

w ∈W and every formula ϕ of ŁS0.5
3 :

vw(ϕ) = 1 iff ϕ ∈ w;
vw(ϕ) = 1

2 iff ϕ /∈ w and ¬ϕ /∈ w;
vw(ϕ) = 0 iff ¬ϕ ∈ w.

Proof. The proof runs by induction on the complexity of ϕ. We will
only consider the modal cases. Moreover, since the semantic definition
of modalities are defined only in normal worlds, we will only focus in the
case where w ∈ N .

ϕ = �ψ. If �ψ ∈ w, then ψ ∈ y for every y ∈ W such that λ(w) ⊆
y. Moreover, since �ψ → ψ ∈ w, we obtain ψ ∈ w. By I.H., we
obtain vw(ψ) = 1 and vy(ψ) = 1, for all y ∈ W such that wRy. Then,
vw(�ψ) = 1.

Conversely, if ¬�ψ ∈ w, then by Proposition A.6, there is a (Ł3-)
consistent set λ(w) such that ψ /∈ λ(w). Now, we have two possibilities
to consider: (i) ¬ψ ∈ λ(w) and (ii) ¬ψ /∈ λ(w). In the case (i) λ(w) ∪
{¬ψ} ⊆ y, where y is a (Ł3-) maximal consistent set of formulas. Since
ψ /∈ y and ¬ψ ∈ y, vy(ψ) = 0 for some y ∈ W such that wRy. Then,
vw(�ψ) = 0. In the case (ii), λ(w) ∪ {ψ ↔ ¬ψ} is consistent, and then,
λ(w) ∪ {ψ ↔ ¬ψ} ⊆ y and y is maximal (Ł3-) consistent. Since ψ /∈ y
and ¬ψ /∈ y, we obtain by I.H. vy(ψ) = 1

2 . Given that wRy, vw(�ψ) = 0.

ϕ = ♦ψ. If ¬♦ψ ∈ w, then ψ /∈ y for every y ∈ W such that µ(w) ⊆ w.
Moreover, since (ψ → ♦ψ) → (¬♦ψ → ¬ψ) ∈ w and ψ → ♦ψ ∈ w, we
obtain ¬♦ψ → ¬ψ ∈ w. By modus ponens again, we obtain ¬ψ ∈ w.
By I.H., vy(ψ) ∈ {1

2 , 0} and vw(ψ) = 0. Then, vw(♦ψ) ∈ {0, 1
2}. By the

semantic definition of the modal operators, we obtain vw(♦ψ) = 0.
Conversely, if vw(♦ψ) = 0, then for every y ∈ W such that wRy,

vy(ψ) ∈ {1
2 , 0}. By I.H., ψ /∈ w for every (Ł3-) maximal consistent set of

formulas. By Lemma A.7, µ(w)∪{¬♦ψ} is consistent. By Lindenbaum’s
lemma, µ(w)∪{¬♦ψ} ⊆ w and w is a maximal consistent. Then, ¬♦ψ ∈
w.

Now we will show that modal formulas �ψ and ♦ψ cannot receive
intermediate values. By Proposition A.8, if �ψ /∈ w, then ¬�ψ ∈ w;
and if ¬�ψ ∈ w, then �ψ /∈ w. If it were the case that �ψ,¬�ψ /∈ w,
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we would obtain, by propositional Ł3, �ψ ↔ ¬�ψ ∈ w, which would
contradict the axiom Biv1, ¬(�ψ ↔ ¬�ψ) ∈ w, which means that
modal formulas �ϕ are bivalent in normal worlds. The same reasoning
applies to the case of ♦ψ. This concludes the proof.

Therefore, we have the following result:

Theorem A.10. If ϕ is valid in MŁ3-modal models, then `ŁS0.5
3

ϕ.
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