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Abstract: Examining the interplay between intestinal pathogens and the gut microbiota is crucial to
fully comprehend the pathogenic role of enteropathogens and their broader impact on human health.
Valid alternatives to human studies have been introduced in laboratory practice to evaluate the
effects of infectious agents on the gut microbiota, thereby exploring their translational implications in
intestinal functionality and overall health. Different animal species are currently used as valuable
models for intestinal infections. In addition, considering the recent advances in bioengineering,
futuristic in vitro models resembling the intestinal environment are also available for this purpose. In
this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter
jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella
sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with
specific emphasis on results derived from investigations employing animal and in vitro models.

Keywords: gut microbiota; intestinal infection; enteric pathogens; Clostridioides difficile; Campylobacter
jejuni; Escherichia coli; Salmonella enterica; Shigella; Vibrio cholerae; Bacillus cereus

1. Introduction

The gut microbiota is the most complex and biodiverse microbial consortium residing
in the human host [1]. Bacteria in the human colon, the most populated section of the
digestive tract, reach 1012 cells per gram of intestinal content, including more than 1500 fac-
ultative/obligate anaerobic species [2]. In healthy adults, Bacillota and Bacteroidota account
for up to 90% of the total bacterial load, with Bacteroides, Blautia, Clostridium, Enterococ-
cus, Eubacterium, Faecalibacterium, Lactobacillus, Peptostreptococcus, Prevotella, Roseburia, and
Ruminococcus as the main representative genera [2,3]. Actinomycetota (i.e., Bifidobacterium),
Pseudomonadota (i.e., Escherichia, Klebsiella), Verrucomicrobiota (i.e., Akkermansia), and other
phyla represent a minority in the consortium [2,3]. In recent decades, efforts have been
made to clarify the biophysiological roles of the gut microbiota, unravel its intricate microe-
cology, and explore the numberless interactions occurring among gut microbes, host cells,
and exogenous factors.

Since co-evolving in a mutualistic relationship with humans for thousands of years [4],
the gut microbiota gradually acquired essential functions to ensure the correct homeostasis
of the intestine and other organs and regions of the human body, thus playing crucial roles
both locally and systemically [5]. In addition to various metabolic, trophic, and modulatory
functions, the mere presence of microbial populations in the gut also reduces the rate of
intestinal colonization by pathogenic microorganisms, further highlighting the primary im-
portance of the gut microbiota in maintaining host health [5]. In fact, commensal microbes
activate different mechanisms to counteract colonization, overgrowth, and invasion by
enteric pathogens, carrying out defense strategies known under the name of “colonization
resistance”. The production of killing/inhibitory compounds (e.g., bacteriocins, short-chain
fatty acids (SCFAs)), harboring of strain-specific bacteriophages, and competition for nutri-
ents (e.g., sugars, amino acids, iron, succinate) and/or adhesion sites (e.g., mucosal glycans)
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are the main mechanisms of colonization resistance due to the gut microbiota [6–8]. The
loss of such a protective function, as in the case of radical qualitative and quantitative
alterations in the gut microbiota following prolonged antibiotic therapies [9], increases
vulnerability to endogenous (e.g., Clostridioides difficile) [10] and exogenous bacteria, as
well as fungi (e.g., Candida albicans) [11,12]. Nevertheless, bacterial pathogens such as
Campylobacter jejuni, diarrheagenic Escherichia coli, Salmonella enterica, Shigella spp., Vibrio
cholerae, and Bacillus cereus can cause infection even in the presence of a healthy microbiota
since their virulence is not always restrained by the local microbiota. In addition to the
well-known pathogenetic mechanisms of each enteropathogen targeting human cells and
tissues, the introduction of such microorganisms in the intestinal environment could also
lead to aberrations in the gut microbiota itself. Fully understanding this side effect is
important for human health, as it may contribute to the overall clinical manifestation and
amplify the negative impact on the host by affecting the normal balance and functionality
of the gut microbiota.

This review explores the effects of the most relevant bacterial intestinal pathogens
on the gut microbiota, especially focusing on the results obtained from studies involv-
ing animal and in vitro models. Furthermore, the mechanisms underlying alterations in
the intestinal microbial communities during infection and the colonization resistance to
pathogens (if known) will be highlighted.

2. Animal Models or In Vitro Models for Gut Microbiota Research? A Controversial Decision

Since studies on humans are often limited by compliance, ethical issues, and the
impossibility of constant monitoring and sample collection, many alternatives to clinical
trials have been developed and introduced in common practice to study the gut microbiota
and the effects of specific factors on its composition and functions.

Animal models were first proposed as human surrogates, especially to establish the
association between certain clinical phenotypes and the harboring of distinctive intestinal
consortia [13]. Various genetically engineered and drug-treated animal models were created
to be used as disease models of specific pathological or infectious conditions [14]. Germ-
free animals were also used as pristine canvases in evaluating the colonization process in
uncontaminated body regions that are normally densely populated in naturally colonized
animals [15,16]. Among the species available for experimental purposes, mice and rats
have been commonly selected due to the similarity of their gastrointestinal tract and gut
microbiota to those of humans [17,18]. Other non-rodent models have also been proposed,
including zebrafish, rabbit, chicken, dog, and pig, even if often less relevant than rodents
in the context of the gut microbiota [19]. Animal models are very flexible and able to
represent several clinical pictures. Their user-friendly nature facilitates easy handling and
administration of factors, along with the collection of samples that would otherwise be
impossible to obtain from humans. Nevertheless, despite the efforts in developing such
valuable models and the important discoveries made through their use, time and cost, low
reproducibility, the difficulty in translating results to humans due to genetic, physiological,
and dietary differences from animals, and the ethical issues related to the management of
animals remain insurmountable limitations of using animal models [14].

In parallel to animal models, in vitro models mimicking as much as possible in vivo
intestinal topography and conditions (e.g., oxygen partial pressure and gradient, pH,
flow, nutrients, hepatopancreas-secreted fluids) have been designed and made available
in recent years. The growing interest in these models arises from the need to circumvent
the main limitations of working with animals and humans. In fact, working in vitro offers
significant advantages, including high experimental reproducibility, continuous monitoring
of culture conditions, convenient accessibility, cost-effectiveness, and avoidance of ethical
concerns [20]. However, these advantages are attained by creating a working environment
that is comparatively less intricate than the complex intestinal setting.

Research in this field began with traditional cell cultures in culture plates, which
certainly represent a static environment that is far from the dynamics of the intestinal
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tract. The in vitro cultivation of a cell monolayer to test with intestinal microbes is easy
to obtain, inexpensive, reproducible, and provides raw results for preliminary studies.
Caco-2, HT-29-MTX, T84, LS174T, and CCD 841 CoN are the most used cell lines for
gastrointestinal in vitro models due to their specific properties [21]. For instance, Caco-
2 and HT-29 cells, the latter able to secrete mucus, were co-cultured in the presence of
enterotoxigenic E. coli (ETEC) H10407 to investigate the role of mucus in inducing and
shaping ETEC gene expression [22]. The same cell lines were also used to test the effect
of conditioned media and microbial by-products from in vitro-cultured microbiota on
the human host mimicking intestinal inflammation and cell immunomodulation [23]. In
addition to the simplest two-dimensional (2D) cell monolayers, different gels and scaffolds
can be used to support cell growth, offering a three-dimensional (3D) environment for
cultivation. This approach more accurately represents the complex non-flat architecture
of the intestinal mucosal environment [24,25]. Caco-2 and HT-29 cells were cultured on
hydrogel scaffolds to demonstrate that mucus was a protective factor against bacterial
colonization by adherent-invasive E. coli (AIEC) [26]. Raw and mucin-coated 3D gelatin
electrospun membranes were successfully used as scaffolds to culture the human gut
microbiota in vitro and reproduce the three-dimensional architecture of the intestinal
mucosa and the arrangement of bacteria on it [27–29]. Cells assembled in organoids
were also recently used in gut microbiota research. Organoids are spherical 3D culture
systems derived from self-organized pluripotent or adult stem cells that can differentiate
into lineages of intestinal epithelial cells and produce villus- and crypt-like structures
resembling the architecture of the intestinal epithelium [30]. Single microbial species,
pools of different microorganisms, or even fecal samples can be microinjected inside the
lumen of organoids, making organoids effective in co-culturing epithelial cells with gut
microbes [31]. In addition to in vitro models consisting of cells and microbes, increasingly
technological devices have been developed to approach the complexity of the human
intestine. Among these, Transwell, Human Oxygen Bacteria Anaerobic (HoxBan), Host–
Microbiota Interaction (HMI), TNO In vitro Model (TIM-1), TNO In vitro Model of the
Colon (TIM-2), Human–Microbiota Crosstalk (HuMiX), and Simulator of Human Intestinal
Microbial Ecosystem (SHIME) are just some of the systems created in the last decades
following advances in the fields of bioengineering, millifluidics, and microfluidics [21].
Modern artificial devices are currently being used in numerous in vitro studies focused
on the gut microbiota. These devices recreate environments that faithfully replicate those
found in vivo and deliver highly reproducible and translatable results [21].

To date, there is no right choice regarding how to conduct a scientific study on the
gut microbiota. Each model displays its own pros and cons and the choice of one over the
other often depends on the study objective and the degree of compromise investigators are
willing to accept for their results.

3. Intestinal Pathogens and Gut Microbiota

This section dissects the impact of C. difficile, C. jejuni, diarrheagenic E. coli, S. enterica
serovars Typhimurium and Enteritidis, S. flexneri and S. sonnei, V. cholerae, and B. cereus
on the gut microbiota, examining alterations in its composition and in microbial-derived
metabolites. In addition, it explores the defensive strategies used by gut commensals to
counteract gut colonization by pathogens. The overall data collected from studies involving
animal, in vitro, and in silico models are reported throughout the text and summarized in
Table 1. Studies involving humans are not included in the table but are widely discussed
in the appropriate subsections. The names of bacterial taxa in the lists are presented in
descending order from the highest to the lowest taxonomical rank and in alphabetical
order within the same rank, regardless of the relevance of increases or reductions in
microbial abundances.
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Table 1. Summary of studies using animal, in vitro, and in silico models for gut microbiota research
in association with infections by human enteropathogens.

Bacterial Species Used Models Results References

Clostridioides difficile Mice

↑ Akkermansia, Anaerotignum, Bacteroides,
Clostridium, Enterocloster, Murimonas, Turicibacter

Develop more severe CDI 1 when
↑ Enterococcus, Helicobacter, Klebsiella

[32]

Mice

Soy-protein-based diet induces
↑ gut colonization by C. difficile, Lactobacillus,

Ligilactobacillus murinus
↓ survival rate to CDI 1

[33]

In vitro

↑ Bacteroides, Clostridium XIVa
↓ α-diversity, Bacillota, Bacteroidota,

Pseudomonadota, Lachnospiraceae, Ruminococcaceae,
Veillonella

[34]

In vitro
When 2′-FL 2 was present

↑ Blautia
↓ C. difficile

[35]

Campylobacter jejuni Broiler chickens ↑ Ruminococcaceae, Streptococcus
↓ Corynebacterium, Lactobacillus [36]

Broiler chickens

↑ α-diversity, Barnesiella, Helicobacter,
Methanocorpusculum, Parasutterella, Rikenella
↓ Eggerthellaceae, Lachnospiraceae, Clostridium,

Lactobacillus, Monoglobus, Parabacteroides

[37]

Mice

Resistant to C. jejuni colonization when
↑ Bifidobacterium, Butyricicoccus, Clostridium XI,

Coprobacillus, Hydrogenoanaerobacterium,
Lactobacillus, Oscillibacter, Roseburia
↓ Other clostridia, Enterococcus

[36]

Escherichia coli In vitro

↑ Bacillota, Bacteroidota, Enterococcaceae,
Prevotellaceae, Eisenbergiella, Enterococcus,

Morganella, Peptoniphilus, Tyzzerella
↓ Actinomycetota, Acidaminococcaceae,

Bacteroidiaceae, Erysipelotrichaceae,
Ruminococcaceae, Veillonellaceae

[38]

In vitro
↑ Roseburia

↓ α-diversity, Bifidobacterium, Clostridium,
Lactobacillus

[22]

Salmonella enterica serovars
Typhimurium and

Enteritidis
Mice (Typhimurium)

↑ Enterobacteriaceae, Enterobacter cancerogenus,
Escherichia fergusonii, Proteus penneri

↓ α-diversity
[39]

Mice (Typhimurium) ↓ Total bacterial load, Enterococcus, Lactobacillus,
Clostridium coccoides, Eubacterium rectale [40]

Pigs (Typhimurium)
↑ Lactobacillus, Oscillaspira

↓ Ruminococcaceae, Coprococcus, Lachnospira,
Prevotella, Ruminococcus

[41]

Pigs (Typhimurium)
↑ Anaerobacter, Barnesiella, Catenibacterium,
Pediococcus, Prevotella, Pseudobutyrivibrio,
Sporacetigenium, Turicibacter, Xylanibacter

[42]

Pigs (Typhimurium)
↑ Citrobacter

↓ Bifidobacterium, Clostridium, Lactobacillus,
Ruminococcus

[43]
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Table 1. Cont.

Bacterial Species Used Models Results References

Broiler chickens
(Typhimurium)

↑ Bacteroides
↓ Species richness, Bacillaceae, Escherichia,

Lactobacillus
[44]

Broiler chickens (Enteritidis) ↑ Enterobacteriales
↓ Bifidobacteriales, Clostridiales, Lactobacillales [45]

Broiler chickens (Enteritidis) ↑ Enterobacteriaceae
↓ Lachnospiraceae [46]

Broiler chickens (Enteritidis)

↑ α-diversity, Bacillaceae, Eubacteriaceae,
Peptostreptococcaceae, Ruminococcaceae,

Streptococcaceae
↓ Anaeroplasmataceae, Chromatiaceae,

Lactobacillaceae, Leuconostocaceae, Planococcaceae,
Rhizobiaceae, Turicibacteriaceae

[47]

Broiler chickens (Enteritidis)
↑ Anaerostipes, Anaerotruncus, Bacillus,

Enterococcus, Flavonifractor, Intestinimonas
↓ Blautia, Shuttleworthia

[48]

Shigella flexneri
Shigella sonnei Mice (S. flexneri) Resistant to S. flexneri colonization when

↑ colicin-producing E. coli [49]

Mice (S. flexneri)
↑ Lachnospiraceae, Muribaculaceae, Prevotellaceae,

Alloprevotella, Prevotella
↓ Lactobacillaceae, Alistipes, Lactobacillus

[50]

Vibrio cholerae Zebrafishes
↑ Enterobacteriaceae, Cetobacterium, Fictibacillus,

Novosphingobium, Plesiomonas, Pseudomonas
↓ Aeromonas, Cloacibacterium, Fluviicola

[51]

In silico
Resistant to V. cholerae colonization when
↑ Bacteroides, Prevotella, Ruminococcus

↓ Streptococcus
[52]

Bacillus cereus Rats ↓ Coliforms, aerobes, anaerobes [53]

Mice

↑ Bacillota, Verrucomicrobiota, Lachnospiraceae,
Muribaculaceae, Rikenellaceae, Akkermansia,

Jeotgalicoccus, Lactobacillus, Roseburia
↓ Pseudomonadota, Prevotellaceae, Bacteroides

[54]

Nile tilapias
↑ Peptostreptococcaceae, Clostridium,

Acetobacterium
↓ Pseudomonas

[55]

Pengze crucian carps
↑ Growth performance, α-diversity, Clostridium,

Romboutsia
↓ Cetobacterium

[56]

Diamondback moths ↓ Enterobacter [57]

In vitro

↑ Bifidobacterium, Clostridium, Mitsuokella
↓ Total bacterial load, Pseudomonadota,

Akkermansia, Escherichia-Shigella, Faecalibacterium,
Lactobacillus

[58]

Abbreviations: 1 CDI: Clostridioides difficile infection; 2 2′-FL: 2′-fucosyllactose.

3.1. Clostridioides difficile

Clostridioides difficile, formerly known as Clostridium difficile, is a spore-forming, obligate
anaerobic, Gram-positive bacterium [10]. It naturally colonizes the human intestinal tract
after the ingestion of spores and inhabits the gut as a peaceful commensal. Percentages
of C. difficile asymptomatic colonization range from 0% to 51% in the population, mainly
depending on age, geography, access to healthcare structures and hospitalization, and other
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environmental factors [59–62]. However, some toxigenic strains are sadly known for their
ability to cause antibiotic-associated diarrhea in hospitalized patients (healthcare-associated
infections), taking advantage of the intestinal dysbiosis resulting from prolonged use of
broad-spectrum antibiotics [63,64]. Nowadays, a high number of C. difficile infections (CDIs)
are also acquired outside of hospitals (community-acquired infections). In fact, a recent
report by the Centers for Disease Control and Prevention (CDC) declared that a total of
13,348 cases of CDI, consisting of 6769 community-acquired infections and 6579 healthcare-
associated infections, occurred in the US in 2021 [65]. In addition to exposure to oral
antibiotics, age (≥65 years), comorbidities (i.e., intestinal bowel disease, obesity, kidney
diseases), gastric bypass, and concomitant therapies (i.e., chemotherapy, protonic pump
inhibitor therapy) are all factors enhancing the risk of acquiring the infection [66]. Clinical
symptoms of CDI range from mild/moderate diarrhea to life-threatening diseases (i.e.,
pseudomembranous colitis, fulminant colitis, toxic megacolon) [63] and mainly depend
on the virulence of the infecting strain. For example, the hypervirulent C. difficile ribotype
027 strain displays high expression of toxins and antibiotic resistance, thus generally
causing more severe infections [10].

The overgrowth of C. difficile in the intestinal tract is normally kept under control
by gut commensals through the competition for nutrients and adhesion sites and the
production of microbial-derived compounds, such as bacteriocins, SCFAs, and secondary
bile acids [63,67]. Therefore, disruption of the gut microbiota is critical for CDI develop-
ment [68], while the restoration of homeostatic bacterial diversity and abundance of the
gut consortia is important for recovery [69]. The disruptive effects on the gut microbiota
composition of vancomycin and fidaxomicin as standard CDI antibiotic treatments were
widely evaluated in humans [70–74]. Orally administered vancomycin was shown to cause
a marked reduction in Actinomycetota (i.e., Bifidobacteriaceae, Choriobacteriaceae), Bacillota
(i.e., Clostridiaceae, Eubacteriaceae, Lachnospiraceae, Ruminococcaceae), and Bacteroidota (i.e.,
Bacteroidaceae, Prevotellaceae) and an increase in Pseudomonadota and Lactobacillaceae [72,73],
thus resulting in aberrant microbial populations. Critical reductions in both bacterial bio-
diversity and total load were also observed in concomitance with the vancomycin-based
treatment [74]. Surprisingly, fidaxomicin induced fewer variations and no increase in
Pseudomonadota [70,71], acting as a reliable therapeutic solution considering the poor impact
of this antibiotic on the intestinal communities. Similar to antibiotics, the role of fecal
microbiota transplantation (FMT) and probiotics in facilitating successful recovery from
CDI has also been extensively investigated [64,68].

Several clinical trials have been carried out to explore alterations in the fecal microbiota
in patients suffering from CDI [67–69,75–79]. The majority of studies examining the bidi-
rectional interaction between C. difficile and gut-residing microorganisms were conducted
on human subjects, with animal and in vitro models being comparatively underused until
now. The totality of clinical trials agreed in concluding that CDI is actually associated with
an overall loss of α-diversity and marked gut dysbiosis. A recent comprehensive review by
Vasilescu and colleagues reported that CDI in adults correlated with a dramatic reduction
in Actinomycetota, Bacillota, Bacteroidota, Bacteroidaceae, Bifidobacteriaceae (i.e., B. adolescen-
tis, B. longum), Clostridiaceae (i.e., C. scindens), Lachnospiraceae, Ruminococcaceae, Alistipes,
Anaerostipes, Bacteroides (i.e., B. ovatus, B. vulgatus), Blautia, Dorea, Ezakiella, Faecalibacterium,
Megamonas, Odoribacter, Prevotella, Pseudobutyrivibrio, Roseburia, Streptococcus, Subdoligranu-
lum, and Oscillibacter massiliensis, as well as with a significant increase in Pseudomonadota,
Enterobacteriaceae, Enterobacter, Enterococcus, Finegoldia, Fusobacterium, Lactobacillus, My-
cobacterium, Parabacteroides, Akkermansia muciniphila, and E. coli [79]. On the other hand, in
newborns, CDI was associated with a reduction in Bacillota, Bacteroidota, Bifidobacterium,
and Ruminococcus and higher abundances of Citrobacter, Enterococcus, Klebsiella, Shigella,
E. coli, and Staphylococcus aureus [79]. Bacteroidota and A. muciniphila showed the most
controversial behavior in CDI since some studies reported their increase and others their
reduction in the same condition [78].
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To make the clinical issue even more complex, patients who have “resolved” CDI often
suffer from C. difficile recurrences 2–8 weeks after the primary infection [68]. The gut micro-
biota of patients with recurrent CDIs was demonstrated to be even more dysbiotic than
that of CDI patients, with lower α-diversity and levels of Bacillota and Bacteroidota [80,81].
The reason why recurrences of CDI occurred was investigated by Henson and co-authors,
who hypothesized in silico the putative mechanisms at the basis of recurrent CDI [82]. The
authors developed a computational model of gut microbiota in CDI, which revealed an
overall reduction in the anabolism of secondary bile acids and an increase in the catabolism
of aromatic amino acids. These in silico predictions suggested that the metabolism of
expanding Enterobacteriaceae may help in creating a favorable intestinal environment for
C. difficile spore germination, vegetative cell replication, and toxin synthesis [82].

Within the spectrum of animal models, mice have been mainly used to study CDI in
relation to the gut microbiota. In mice, CDI correlated with higher abundances of Akker-
mansia, Anaerotignum, Bacteroides, Clostridium, Enterocloster, Murimonas, and Turicibacter [32].
Murine models were also useful in revealing that certain microbial communities in the gut
could potentiate the severity of developed CDI [32]. In this study, germ-free mice were
initially colonized by FMT from different human donors and then infected with C. difficile
ribotype 027, thus developing CDIs of different severity on the basis of the transferred
gut microbiota. In particular, mice harboring bacterial populations with a prevalence of
Enterococcus, Helicobacter, and Klebsiella developed a more severe CDI in comparison to mice
colonized by Anaerotignum, Blautia, Lactonifactor, and Monoglobus [32]. Therefore, infection
severity and subsequent clinical manifestations strongly depend on the composition of
the bacterial consortia residing in the gut. The susceptibility to CDI was also assessed
in mice considering the administration of different dietary regimes [33]. For instance, a
soybean-protein-based diet was demonstrated to increase intestinal levels of amino acids
and protein derivates, promote murine gut colonization by C. difficile, and reduce survival
rate after CDI compared to a regular purified diet [33]. The abundances of Lactobacillus spp.
and Ligilactobacillus murinus increased, thus resulting in a higher genesis of extracellular
amino acids facilitating C. difficile growth [33].

In vitro models have also been utilized for this purpose. Horvat and colleagues tested
the pathogenic role of three different toxigenic C. difficile ribotypes (both vegetative cells
and culture supernatants, separately; 027, 078, and 176) against in vitro-maintained fecal
microbiota from children [34]. Abundances of Bacillota, Bacteroidota, and Pseudomonadota
and overall α-diversity were found to be reduced for all the applied strains. In particular,
vegetative cells and conditioned media of all ribotypes significantly reduced the levels of
Veillonella and increased those of Bacteroides and Clostridium XIVa, with ribotypes 027 and
176 further inducing the specific lowering of Lachnospiraceae and Ruminococcaceae. Vegetative
cells alone determined higher levels of Morganella and lower levels of Flavonifractor, whereas
conditioned media surprisingly behaved in the opposite manner, reducing Morganella
and expanding Flavonifractor [34]. As a result of these changes in microbial composition,
metabolic profiles of in vitro-cultured microbiota also changed, positively influencing
the sporulation process of C. difficile [34]. The effect of specific dietary compounds on
C. difficile proliferation was also evaluated in an in vitro model mimicking CDI, named
CDi-Screen [35]. Vegetative cells and spores of C. difficile ATCC 43599 were separately
co-cultured with the gut microbiota in the model in the presence of 2′-fucosyllactose (2′-FL),
which was shown to significantly inhibit the overgrowth of C. difficile in vitro, reduce its
abundance, and enhance the levels of Blautia in a dose-dependent manner [35].

3.2. Campylobacter jejuni

Campylobacter jejuni is a slim, spiral-shaped, Gram-negative bacterium recognized
as one of the most common foodborne pathogens in the world, especially in developed
countries [83,84]. According to the recent 2021 zoonoses report of the European Food
Safety Authority (EFSA), campylobacteriosis ranks first among foodborne gastrointestinal
infections in Europe, with a total of 127,840 notified cases in 2021 alone [85]. The food
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vehicle often implicated in the transmission of zoonotic campylobacteriosis to humans
is contaminated poultry meat [84]. In fact, it is very common for chickens, turkeys, and
other avian species to asymptomatically harbor in their intestine a large number of C. jejuni,
which can accidentally cross-contaminate meats intended for human consumption [86].
Campylobacteriosis in humans is typically associated with acute intestinal symptoms (i.e.,
diarrhea, abdominal cramps, hemorrhagic colitis, appendicitis), but sometimes long-term
gastrointestinal pathologies (i.e., intestinal bowel disease, colorectal cancer, Barrett’s esopha-
gus) or even extra-intestinal dissemination (i.e., bacteriemia and sepsis, endocarditis, septic
thrombophlebitis, meningitis, brain abscesses, demyelinating neuropathies, Guillame-Barré
syndrome, pneumonia) can occur [87].

The relationship between C. jejuni and the gut microbiota in humans has been rarely
studied. In a pioneering study, Dicksved, Kampmann, and coworkers demonstrated that
the fecal microbiota from humans naturally infected by C. jejuni displayed lower biodi-
versity compared to healthy individuals, although abundances of Bacteroides, Escherichia,
Phascolarctobacterium, and Streptococcus were significantly increased [88,89]. Furthermore,
Dorea and Coprococcus spp. residing in the gut, both belonging to Lachnospiraceae family,
were pointed out as important actors in the protection against C. jejuni intestinal coloniza-
tion in humans [89].

Most of the studies aimed at exploring C. jejuni pathogenicity and its involvement in
human health were carried out in broiler chickens since poultry is the natural reservoir of
C. jejuni. In particular, the role of poultry intestinal communities in colonization resistance
was thoroughly investigated [90,91]. Colonization by C. jejuni in 56-day-old broiler chickens
was associated with a reduction in Corynebacterium and Lactobacillus and an increase in
Ruminococcaceae and Streptococcus [36]. The authors also found out that colonization was
positively correlated with Alistipes, Bacteroides, Blautia, Clostridium, Enterobacter, Enterococcus,
Escherichia-Shigella, Faecalibacterium, and Gallibacterium [36]. A more recent study based on C.
jejuni-infected chickens showed that α-diversity and richness of gut consortia were higher
than in healthy chickens and that several alterations emerged in the microbiota composition
in concomitance with the C. jejuni colonization [37]. In particular, levels of Barnesiella,
Helicobacter, Methanocorpusculum, Parasutterella, and Rikenella were increased, whereas
Eggerthellaceae, Lachnospiraceae, Clostridium, Lactobacillus, Monoglobus, and Parabacteroides
were significantly decreased [37]. Moreover, supplementation with probiotic Bifidobacterium
and Lactobacillus spp. to poultry reduced the C. jejuni colonization rate [92–95], probably
because of their positive in vitro-confirmed effects in promoting C. jejuni elimination and
enhancing the expression of interleukins and co-stimulatory molecules [96]. The generation
of secondary bile acids, such as deoxycholic acid, by probiotics and gut commensals was
also recognized as a contributing factor capable of positively reshaping the intestinal
microbiota and reducing C. jejuni counts in bird feces [97].

Mice have rarely been used as C. jejuni infection models, since the murine gut mi-
crobiota is intrinsically protective against intestinal colonization by C. jejuni [98,99]. In
fact, while untreated mice were highly resistant to the foodborne infection by C. jejuni
F38011, the oral administration of ampicillin, leading to profound alterations in the gut
communities, resulted in increased intestinal colonization by C. jejuni. This alteration
correlated with heightened symptoms, as well as with the extraintestinal spread of the
bacterium to mesenteric lymph nodes and spleen [100]. The colonization resistance seemed
to be associated with high abundances of Bifidobacterium, Butyricicoccus, Clostridium XI,
Coprobacillus, Hydrogenoanaerobacterium, Lactobacillus, Oscillibacter, and Roseburia, while
susceptibility to C. jejuni infection correlated with a prevalence of other clostridia and
Enterococcus [36]. Moreover, the innate toll-like receptor 4 (TLR-4) response to C. jejuni
lipooligosaccharide (LOS) is markedly weaker in mice than in humans [99]. For many
years, these findings dissuaded researchers from developing suitable murine C. jejuni infec-
tion models. However, novel murine models were recently developed, thus opening the
way for studies concerning C. jejuni in mammals [99]. In particular, genetically modified
knockout mice for the single-Ig IL-1-related receptor (SIGIRR; Sigirr−/−) [101,102] or IL-10
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(IL-10−/−) [103–105] were made available to sensitize mice to C. jejuni LOS. Sigirr−/− or
IL-10−/− mice treated with oral broad-spectrum antibiotics or human FMT to disrupt the
murine microbiota can represent a suitable mammal model for mimicking human C. jejuni
infection, thus overcoming the disadvantages associated with the use of wild-type mice.

To date, no in vitro models have been developed and validated for investigating the
influence of the human gut microbiota on C. jejuni colonization and infectious process or
the effects of C. jejuni on the resident microbial communities.

3.3. Diarrheagenic Escherichia coli

Escherichia coli is a rod-shaped, genetically and metabolically versatile, Gram-negative
bacterium [106]. The species includes strains that behave as commensals in the intestines
of humans and other animals and opportunistic/pathogenic strains able to cause infec-
tion [106]. Among the pathogenic strains, uropathogenic E. coli (UPEC), sepsis-causing
E. coli (SEPEC), and neonatal meningitis-associated E. coli (NMEC) are the three patho-
types determining extraintestinal infections (i.e., of the genitourinary tract, bloodstream,
and central nervous system, respectively) in humans [107]. On the other hand, Shiga-
toxin-producing E. coli (STEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli
(EPEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enterotoxigenic
E. coli (ETEC), adherent-invasive E. coli (AIEC), diffusely adhering E. coli (DAEC), and cell-
detaching E. coli (CDEC) are the nine pathotypes currently recognized as causative agents
of E. coli-related human gastroenteritis [107]. Each pathotype displays its own virulence
profile that allows the microorganism to establish the infectious process [108]. The ingestion
of food or water contaminated with fecal material from infected individuals is the main
route of infection [106], which mainly involves children (<5 years old), dysbiotic adults,
and immunocompromised individuals in both developed and developing countries [109].
The most relevant worldwide E. coli foodborne outbreaks from 2006 to 2015 were reviewed
by Yang and coworkers [109]. This study pointed out the main pathotypes involved in
human disease in recent decades [109]. In the US, mainly in northwestern states, 6034 cases
of STEC infection occurred in 2017, with STEC O157:H7 accounting for 40% of cases [110].
EFSA also reported the number and distribution of infections by STEC in the European
territories in 2021, surprisingly showing a total of 6084 notified cases, of which 275 were
foodborne cases from 31 separate outbreaks [85].

A robust healthy gut microbiota plays a crucial role in preventing diarrheagenic
E. coli infections. Especially Bacteroides (i.e., B. fragilis, B. thetaiotaomicron) [111,112], Lac-
tobacillus (i.e., L. acidophilus, L. reuteri) [113,114], Bifidobacterium (i.e., B. breve) [115,116],
and butyrate-producing bacteria (i.e., Clostridium butyricum and tyrobutyricum, Anaerostipes
butyraticus) [117–119] were shown able to reduce infection susceptibility in mice and cattle
and protect animals from pathogenic E. coli colonization in different ways, including the
restriction of bacterial growth and the inhibition of virulence gene expression [120]. In
particular, among the various mechanisms of colonization resistance, the direct production
of SCFAs (i.e., acetate), secondary bile acids, and bacteriocins by microbial commensals, as
well as of antimicrobial peptides and secretory IgA by host eukaryotic cells, were shown to
be the most effective means to counteract ETEC invasion [121]. Conversely, some commen-
sals (i.e., B. thetaiotaomicron) make nutrients indirectly available for E. coli by degradation of
complex polysaccharides or mucus layer and enhance the expression of E. coli virulence
genes, thus promoting infection [120,122].

Apart from the pathogenic role of Shiga toxins as proinflammatory factors and harm-
ful effectors inducing cell death and disruption of microvilli of the intestinal epithelial
layer, limited information is available regarding the interaction between STEC and bacterial
consortia residing in the gut. The impact of STEC, particularly of strain O26:H11, on the
gut microbiota was evaluated by Gigliucci and coworkers in naturally infected Italian
children [123]. Infected children displayed lower levels of Bifidobacteriales, Clostridiales,
Bifidobacterium, Butyrivibrio, Coprococcus, Faecalibacterium, and Roseburia in their fecal sam-
ples compared to healthy controls, as well as a higher abundance of Lactobacillus [123].
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Curiously, strain O157:H7, which is the main cause of global infections by STEC, has
never been investigated for this purpose in vivo or in vitro. Gallardo and colleagues also
explored the effect of diarrheagenic E. coli on the gut communities of Chilean children [124].
After infection, the infant gut microbiota underwent severe alterations, including a re-
duction in Bacillota and the expansion of Bacteroidota, Pseudomonadota, Enterobacteriaceae,
Bacteroides, Escherichia-Shigella, Pseudocitrobacter, Escherichia albertii, Citrobacter werkmanii,
Haemophilus sputorum, and Yersinia enterocolitica subspecies paleartica [124]. Comparable
results were obtained by Mizutani, in a study that also highlighted a reduced α-diversity
in the microbial consortia of infected individuals [125]. Lately, the pathways of histamine
and L-ornithine metabolism were found to be altered in association with gut microbiota
changes after E. coli infection [126]. Histamine was shown to be overproduced and linked to
an increased amount of resident Bifidobacterium stercoris, Citrobacter werkmanii, Enterobacter
hormaechei, and Shigella spp. Conversely, L-ornithine exhibited an opposing pattern, being
less prevalent in conjunction with a higher prevalence of Enterococcus faecalis, Escherichia
spp., and Streptococcus anginosus [126]. High levels of ETEC in fecal samples from infected
children and adults from Bangladesh were found to be associated with a greater probability
of co-infection with other pathogenic E. coli strains (i.e., EAEC) [127]. Additionally, they
displayed a higher prevalence of antimicrobial resistance genes, and distinctive alterations
in the gut microbiota were observed depending on the age of the individuals [127]. In
children, the observed alterations were limited to a decrease in Bifidobacterium and an
increase in Enterobacteriaceae, Streptococcus, and Comamonas. In contrast, adults exhibited
more pronounced scenarios of ETEC-associated gut dysbiosis, characterized by increased
abundances of Campylobacteria, Gammaproteobacteria, Burkholderiales, Enterobacteriaceae, Pas-
teurellaceae, Veillonellaceae, Citrobacter, Klebsiella, and Salmonella enterica and a reduction in
the abundance of the Bacilli and Clostridia classes [127].

To overcome the challenges posed by the limited susceptibility of mice to natural
and experimental infection by EHEC and EPEC, potential approaches include the oral
administration of broad-spectrum antibiotics to disrupt the balance of intestinal micro-
biota or the utilization of germ-free mice [122]. Stromberg and colleagues used germ-free
mice colonized with altered Schaedler flora (ASF), a synthetic community composed of
eight standard bacterial species [128], and infected them with EHEC 278F2 [129]. ASF mice
were effectively colonized and infected with EHEC, providing a well-defined murine model
suitable for conducting infection experiments with pathogenic E. coli [129]. However, mice
subjected to such treatment are useless if the aim of the study is to explore the impact of
pathogenic E. coli on the murine gut microbiota and, in a translational context, on that
of humans.

As regards ETEC, two in vitro models mimicking the intestinal mucosa were de-
veloped to selectively decipher the E. coli interactions with cultured mucus-adhering
microbes [22,38]. The colonic mucus-associated microbiota of piglets was cultured in the
MPigut-IVM system in the presence of the ETEC strain Ec105 [38]. The authors demon-
strated substantial deviations in the examined communities, revealing a significant increase
in Bacillota, Bacteroidota, Enterococcaceae, Prevotellaceae, Eisenbergiella, Enterococcus, Morganella,
Peptoniphilus, and Tyzzerella along with a notable decrease in Actinomycetota, Acidaminococ-
caceae, Bacteroidiaceae, Erysipelotrichaceae, Ruminococcaceae, and Veillonellaceae. Contextually,
higher levels of propionate, 3-phenylpropionate, caproate, valerate, isovalerate, and tyra-
mine, and higher expressions of pro-inflammatory factors encoding genes were detected
when ETEC was present in the model [38]. Sauvaitre and colleagues tested the ETEC strain
H10407 in the TIM-1 system simulating the upper human intestinal tract [22]. As a result,
the α-diversity of the cultured consortia decreased after infection, and a reduced abundance
of Bifidobacterium, Clostridium, and Lactobacillus was observed. Conversely, members of the
Roseburia genus were significantly expanded [22].
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3.4. Non-Typhoidal Salmonella enterica Serovars Typhimurium and Enteritidis

Microorganisms belonging to the Salmonella genus are rod-shaped, facultative anaer-
obic, Gram-negative bacteria that cause the second most frequently reported foodborne
infection in humans after campylobacteriosis [130]. Since Salmonella spp. are abundant in
the intestinal tract of several animal species, which represent their natural reservoir, foods
of animal origin, vegetables, and water contaminated with feces are the main vehicles for
gastrointestinal infections in humans [131]. Depending on the serovars, S. enterica is able
to cause both typhoidal (i.e., S. enterica serovars Typhi and Paratyphi) and non-typhoidal
(i.e., S. enterica serovars Typhimurium and Enteritidis) salmonellosis in humans. While
the typhoidal clinical picture usually includes enteric typhoid/paratyphoid fever, bac-
teriemia, and gastroenteritis, non-typhoidal manifestations are mainly associated with only
foodborne gastroenteritis [130]. In Europe, a total of 60,050 cases of salmonellosis were
reported in 2021, including 6755 cases resulting from 733 separate foodborne outbreaks [85].
S. enterica Enteritidis, Typhimurium, and Infantis were, in order, the most isolated serovars
determining non-typhoidal salmonellosis [85]. Furthermore, the number of infections due
to multi-drug resistant Salmonella strains is increasing worldwide [132].

As for other intestinal pathogens, gut commensals act as the first line of defense
to resist the colonization of the intestinal mucosa by Salmonella [133]. The competition
for adhesion sites and nutrients, the production of bacteriocins, antimicrobial peptides,
and SCFAs, and the stimulation of mucosal secretory IgA are the main anti-Salmonella
mechanisms deployed by the gut microbiota and the intestinal epithelium to prevent
colonization [134–136]. The active production of propionate by Bacteroides spp. was
shown to directly inhibit S. ent. Typhimurium growth in vitro [135]. Furthermore, the
intestinal commensalism by colicin- and/or microcin-producing Enterobacteriaceae reduced
the colonization rate by S. enterica [136]. It is important to emphasize that certain strains
of Salmonella are also able to secrete colicin and microcins, which can target and eliminate
intestinal microbes, particularly those belonging to Enterobacteriaceae and Gram-negative
bacteria. This underlines the existence of a competitive intra-family struggle for dominance
in the intestinal environment. However, since Salmonella displays a limited repertoire of
bacteriocins compared to E. coli and other Enterobacteriaceae, alternative mechanisms must
be activated to escape colonization resistance and infiltrate the intestinal mucosa. These
mechanisms include the use of the type VI secretion system (T6SS) and injected effector
proteins to eliminate the local microbiota [136]. By using an in vitro two-compartment
co-culture system, S. ent. Typhimurium SL1344 growth was shown to be inhibited by
E. coli, confirming the abovementioned struggle among Enterobacteriaceae [137]. Conversely,
the survival of Lactobacillus gasseri and Bifidobacterium bifidum was strongly reduced by
Salmonella ent. Typhimurium, indicating that Salmonella not only causes harm to human
tissues but also directly affects resident commensal bacteria [137].

Several animal models, such as mice, pigs, and chickens, have been used to explore the
dynamic interactions between Salmonella enterica and the gut microbial consortia [138,139].
Initially, mice were proposed as a model to study S. ent. Typhimurium pathogenicity,
interaction with and impact on the gut microbiota during the infectious process, and both
local and systemic Salmonella-related diseases [134]. S. ent. Typhimurium caused a reduction
in α-diversity of the intestinal microbial consortia and an increase in Enterobacteriaceae,
Enterobacter cancerogenus, Escherichia fergusonii, and Proteus penneri in mice [39]. On the
other hand, real-time quantitative PCR experiments showed that the same species induced
a strong reduction in the total bacterial load within the intestine, along with reductions
in Enterococcus, Lactobacillus, Clostridium coccoides, and Eubacterium rectale compared to
uninfected mice [40].

Unlike S. ent. Choleraesuis, which has evolved to specifically infect swine hosts,
S. ent. Typhimurium accidentally infects pigs, but they were still exploited as reliable
Salmonella infection models [41]. While weaned pigs infected by S. ent. Typhimurium
displayed higher abundances of Lactobacillus and Oscillaspira than uninfected controls,
Ruminococcaceae, Coprococcus, Lachnospira, Prevotella, and Ruminococcus were more abun-
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dant in uninfected swine [41]. Despite these important alterations in the gut microbial
composition, no differences in Shannon indexes between the two groups were reported.
Moreover, post-weaning microbiota maturation and abundances of commensals corre-
lated with breastfeeding were revealed to be determining factors for pig susceptibility to
S. ent. Typhimurium infection [41]. Another study in swine models reported that S. ent.
Typhimurium increased the intestinal levels of Anaerobacter, Barnesiella, Catenibacterium,
Pediococcus, Prevotella, Pseudobutyrivibrio, Sporacetigenium, Turicibacter, and Xylanibacter [42].
Regarding the mucus-adhering microbiota in pigs, there was an increase in Citrobacter
levels in the presence of S. ent. Typhimurium, whereas levels of Bifidobacterium, Clostridium,
Lactobacillus, and Ruminococcus significantly decreased [43].

Chickens were also extensively exploited as S. ent. Typhimurium and, mainly, En-
teritidis infection models. Robinson and colleagues infected broiler chickens with S. ent.
Typhimurium ATCC 14028 to evaluate if the subsequent modulation of the cecal microbiota
could facilitate Salmonella colonization [44]. The tested pathogenic strain determined an
overall reduction in species richness associated with a time-dependent lowering of Bacil-
laceae, Escherichia, and Lactobacillus, as well as an increase in Bacteroides, thus allowing more
effective and stable colonization of chicken cecum by S. ent. Typhimurium [44]. Several
studies investigated the impact of S. ent. Enteritidis on chicken gut microbiota, providing
complementary results [45–48]. At the order level, infection with S. ent. Enteritidis 147 was
associated with an increase in Enterobacteriales and a reduction in Bifidobacteriales, Clostridi-
ales, and Lactobacillales [45]. At the family level, Mon and coworkers initially reported
that S. ent. Enteritidis TN2 infection induced an expansion of the Enterobacteriaceae family,
of which Salmonella is a member, and a reduction in Lachnospiraceae in young chicks [46].
Subsequently, the same research group obtained further comprehensive insights into the
impact of the TN2 strain on the chicken microbiota [47]. Chao-1 indexes were significantly
different between uninfected and infected chickens, with the latter displaying an increased
α-diversity. Abundances of Bacillaceae, Eubacteriaceae, Peptostreptococcaceae, Ruminococcaceae,
and Streptococcaceae were increased after Salmonella infection, while the opposite occurred
for Anaeroplasmataceae, Chromatiaceae, Lactobacillaceae, Leuconostocaceae, Planococcaceae, Rhizo-
biaceae, and Turicibacteriaceae [47]. Considering the main genera, Anaerostipes, Anaerotruncus,
Bacillus, Enterococcus, Flavonifractor, and Intestinimonas were increased by S. ent. Enteritidis
CVCC3377, whereas Blautia and Shuttleworthia were reduced [48]. The overall results ob-
tained via animal infection models could be helpful to partially comprehend the role of the
human gut microbiota in protecting from S. enterica infection and the pathogen’s negative
impact on intestinal homeostasis and systemic health.

A few in vitro models have been developed to study Salmonella–host “microbiota”
interactions, but none of these models actually includes the entire gut microbiota up to date.
They rather harbor eukaryotic cells in co-culture with single microbial strains or primordial
synthetic communities [140]. For this reason, the analysis of those works, despite being
interesting, goes beyond the aim of the present review and will not be included herein.

3.5. Shigella flexneri and Shigella sonnei

Shigella flexneri and Shigella sonnei are Gram-negative bacteria responsible for almost
the totality of cases of shigellosis in the world and are common causes of traveler’s diarrhea
in developing countries [141,142]. Shigellosis is a highly transmittable infection acquired by
the ingestion of food and water contaminated with at least 10 shigellas or through a direct
fecal–oral route, and mainly affects children (<5 years old) [142]. Shigellas can colonize
the crypts of the colonic mucosa despite the presence of resident microbiota and invade
the epithelium leading to its disruption [49,143]. Clinical manifestations of shigellosis
include watery/mucoid/bloody diarrhea, gastrointestinal discomforts, nausea, vomiting,
abdominal cramps, and fever [144]. According to a 2023 CDC report, approximately 5% of
Shigella infections in 2022 were caused by extensively multi-drug resistant strains compared
to a net 0% in 2015 [145]. In fact, Shigella spp., especially S. sonnei, can easily acquire
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antibiotic resistance genes through horizontal genic transfer, thus leading to the expansion
of resistant strains worldwide [49].

Considering their remarkably low infectious doses, S. flexneri and S. sonnei are pre-
sumed to have developed specific defensive mechanisms to survive in the intestinal envi-
ronment and triumph in the competition against the local microbiota while being definitely
outnumbered [49]. It is probable that the production of bacteriocins, such as SF1 and colicin,
by certain strains of S. flexneri and S. sonnei, respectively, may help in killing members
of the gut microbiota (i.e., E. coli, Bacteroides fragilis), thus ensuring a selective advantage
for the pathogen during the colonization and invasion processes [146,147]. On the other
hand, bacteriocins produced by intestinal commensals were demonstrated to be equally
effective in protecting against S. flexneri colonization. In particular, colicin produced by
E. coli was shown to be protective in E. coli-monocolonized germ-free mice and guinea pigs,
thus allowing us to infer possible competition among different members of the Enterobacte-
riaceae family [49]. Species of Lactobacillus were also pointed out as important defenders
against Shigella infection, due to their anti-inflammatory activity and surface proteins of the
S-layer that inhibit the adhesion of S. sonnei to epithelial cells [148–151]. Lactobacillus reuteri,
L. ruminis, L. DJF-RP24, L. KLDS 1.0718, and L. TSK G32.2 were specifically demonstrated
to carry out antagonistic interactions against Shigella [151,152].

Children naturally infected with Shigella have been commonly recruited to study the
microbial dynamics arising from the interaction between Shigella spp. and the infant gut
microbiota [152,153]. Lindsay and colleagues demonstrated that infant diarrheal stool
containing high levels of Shigella displayed lower abundances of Prevotella and higher
abundances of Streptococcus compared to healthy controls [153]. Contextually, Ndungo and
co-authors pointed out that there were no differences in α-diversity between healthy and
infected children and that Fusicatenibacter saccharivorans and Lachnospiraceae NK4A136 were
significantly increased after Shigella infection [152].

With regard to studies on animal models, Shigella flexneri ATCC 12022 was orally
and intraperitoneally administered to mice to evaluate its impact on the murine gut mi-
crobiota [50]. Intraperitoneal inoculation led to decreased α-diversity without severely
altering the composition of intestinal consortia. In contrast, oral administration resulted
in a significant decrease in Lactobacillaceae, Alistipes, and Lactobacillus, as well as a strong
increase in Lachnospiraceae, Muribaculaceae, Prevotellaceae, Alloprevotella, and Prevotella [50].
The increase in Prevotella and Alloprevotella was hypothesized to be associated with more
massive inflammatory states and recruitment of inflammatory cells in the intestine. The
reduction in Lactobacillaceae and Lactobacillus could correlate with lower resistance to colo-
nization and more serious Shigella infection. In addition to being more severe, changes in
the gut microbiota caused by the natural oral route of infection were also faster compared
to those obtained via the intraperitoneal route [50].

S. flexneri and S. sonnei have never been tested together with the gut microbiota within
in vitro models. As for other enteropathogens, the in vitro approach to evaluate how
Shigella spp. act in the intestine and interact with the human gut microbiota could be
clinically relevant.

3.6. Vibrio cholerae

Vibrio cholerae is a curved, rod-shaped, Gram-negative bacterium, globally known as
the causative agent of cholera, an acute watery diarrhea illness that has epidemically been
affecting humans for centuries [154]. V. cholerae is endemic in many regions of Africa and
Asia and a recent report by the World Health Organization (WHO) stated that a total of
472,697 cases of cholera were reported worldwide in 2022 [155]. Gastrointestinal infection
with V. cholerae is commonly acquired through the ingestion of contaminated food and
water [154].

Once it reaches the intestine, V. cholerae must adapt to the intestinal environment,
penetrate within the mucus layer by hydrolyzing mucins, and adhere to the intestinal
epithelium for stable colonization [156]. There, V. cholerae can release the cholera toxin and
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deliver effector proteins to eukaryotic and prokaryotic cells through its T6SS, which were
pointed out as two crucial virulence factors of the pathogen [157]. Especially T6SS was
demonstrated to have a role in killing gut commensals and shaping the host gut microbiota.
In fact, V. cholerae T6SS mediated the killing of E. coli and other intestinal Gram-negatives
in vitro [157], suggesting that V. cholerae acts directly against intestinal microorganisms,
thus worsening the outcome of the infectious process. On the other hand, microbes of
the gut microbiota can suppress the expression of V. cholerae T6SS by converting bile salts
to their deconjugated forms via microbial bile salt hydrolases [158,159]. Although the
interaction between deconjugated bile salts and T6SS-encoding genes is totally unknown,
bile salts play a key role in preventing infection by V. cholerae. Qin and coworkers also
demonstrated that taurocholate was able to disrupt the mature biofilm of V. cholerae by
altering its matrix and promoting its degradation [158], further corroborating the anti-
Vibrio effects of certain bile acids. However, the crosstalk between intestinal microbes
and V. cholerae is very complex and many other factors surely contribute to that intricate
interaction (i.e., SCFAs, bacteriocins, quorum sensing) [158,160].

Since members of the Vibrio genus naturally live in aquatic environments, including
freshwaters, estuarine waters, and sea waters [156], fishes were proposed to be suitable
models for studying V. cholerae pathogenicity [51,161,162]. In particular, zebrafish (Danio re-
rio) are endemic in those areas where V. cholerae is also endemic and their immune system
displays high similarity with that of humans [163]. Notably, their intestinal microbiota
does not require alterations to allow V. cholerae colonization [51,164]. Breen and colleagues
investigated the efficacy of five different strains of V. cholerae (i.e., 254-93, AM-19226, V52,
E7946, and N16961) in determining infection in zebrafish, demonstrating that strain-specific
qualitative and quantitative modulations of gut microbiota occurred during infection [51].
All strains determined a reduction in Aeromonas, Cloacibacterium, and Fluviicola, whereas
differences were highlighted concerning the increase in specific taxa after infection with
different strains. V. cholerae 254-93 raised levels of Pseudomonas, AM-19226 of Plesiomonas
and Novosphingobium, V52 of Cetobacterium and Plesiomonas, E7946 of Plesiomonas and Enter-
obacteriaceae, and N16961 of Fictibacillus. Moreover, while V52 and E7946 determined an
increase in α-diversity and total bacterial load in zebrafish gut communities, AM-19226
and N16961 strains induced a reduction in diversity, with no quantitative alterations in the
microbial load [51]. Altogether, the results obtained in zebrafish largely contributed to the
knowledge of the effects of V. cholerae infection on intestinal microbial populations.

Other animal models were tested as V. cholerae infection models, although requiring
physiological and/or surgical modifications and removal of their own intestinal micro-
biota to be suitable infection models [51]. Cholera toxin was shown to be as lethal for
wild-type mice as for humans, but its mechanism of action does not determine watery
diarrhea in mice, which is, conversely, the main symptom in humans [165]. The murine
microbiota is highly resistant to V. cholerae colonization since mice are not natural hosts
for the bacterium [165]. Nevertheless, investigations conducted in clindamycin-treated
and germ-free mice showed the capacity of Bacteroides spp. and, in particular, Bacteroides
vulgatus, a relevant commensal of both the murine and human gut microbiota, to suppress
V. cholerae infection by reducing the pathogen intestinal count by 75-fold [166]. This finding
suggested that certain Bacteroides-derived metabolites could be implied in the resistance
against V. cholerae. Since mice infected by V. cholerae displayed lower levels of intestinal
SCFAs (i.e., propionic acid, butyric acid, and valeric acid) and B. vulgatus is able to synthe-
size large amounts of propionic and butyric acids [167], it was hypothesized that SCFAs
produced by B. vulgatus could act as main molecules involved in the Bacteroides-mediated
antagonism against V. cholerae [158,166].

Currently, there are no established in vitro models to represent the effect of V. cholerae
on the gut microbiota. However, a recent in silico model predicted the level of V. cholerae in-
fection in humans based on the composition of gut communities [52]. The authors declared
that putative high levels of Bacteroides, Prevotella, and Ruminococcus and low abundances
of Streptococcus were associated with a resistant phenotype in humans. Interestingly, Bac-
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teroides was pointed out again as a protective genus of the gut microbiota against V. cholerae
infection, confirming the data obtained from mice models.

3.7. Bacillus cereus

Bacillus cereus is a rod-shaped, spore-forming, Gram-positive bacterium responsible for
food poisonings (i.e., emetic and diarrheal syndromes) and severe extra-intestinal infections
(i.e., bacteremia and sepsis, endophthalmitis, endocarditis, and infections of the central
nervous system, respiratory system, genitourinary tract, wounds, and mammary glands) in
humans and mammals [168–171]. The production of spores and the ability to form biofilms
make B. cereus highly resistant and globally distributed in soil, water, organic debris,
and the gastrointestinal tracts of many animal species, including humans. Although it is
estimated that gastrointestinal infections by B. cereus are common, the number of reported
worldwide foodborne infections is low and probably underestimated. This discrepancy
may be attributed to scarce diagnoses correlated with the modest clinical relevance and
the self-limiting nature of the gastrointestinal symptoms [172]. However, severe localized
outbreaks have been registered in recent decades [170,173–176]. Conversely, some strains
of B. cereus are totally harmless or even display beneficial properties. For this reason, they
were characterized and made available for probiotic administration to animals [177,178].

Although the mechanisms involved in the pathogenesis of B. cereus infections are now
well known, B cereus interactions with gut commensals are still almost unexplored. The
effects modulating the gut microbiota after oral administration of pathogenic or probi-
otic strains of B. cereus were demonstrated in vivo in different animal models, including
rodents, fishes, and insects. While the administration of spores and vegetative cells of
B. cereus F4433/73R to rats did not cause substantial alterations in the gut community
by PCR-DGGE, concomitant plate counts described a significant reduction in the total
amount of coliforms, aerobes, and anaerobes [53]. In mice, the ingestion of the probiotic
B. cereus strain HMPM18123 was demonstrated to ameliorate symptoms of dextran sulfate
sodium (DSS)-induced colitis, by improving intestinal barrier integrity, reducing local
inflammation and macrophage infiltration, and modulating the gut microbiota [54,179].
Microbial diversity was partially restored in B. cereus-treated mice, with higher abundances
of Bacillota, Verrucomicrobiota, Lachnospiraceae, Muribaculaceae, Rikenellaceae, Akkermansia,
Jeotgalicoccus, Lactobacillus, and Roseburia, and lower levels of Pseudomonadota, Prevotellaceae,
and Bacteroides than in DSS-induced colitis models [54]. In Nile tilapia (Oreochromis niloti-
cus) the addition of the probiotic B. cereus strain NY5 to aquaculture water determined an
increase in intestinal Peptostreptococcaceae, Clostridium, and Acetobacterium and a reduction
in Pseudomonas [55], thus revealing a propensity of B. cereus to induce the expansion of
Gram-positive microbes in fishes. A similar result was also obtained in Pengze crucian
carps (Carassius auratus var. Pengze) when B. cereus was administered to solve dysbiosis
associated with a high-plant-protein diet [56]. B. cereus-treated fishes displayed improved
growth performance and gut microbial diversity, with increasing levels of Clostridium
and Romboutsia and a reduction in Cetobacterium [176]. The authors hypothesized that
clostridia were pivotal in improving fish health after the high protein diet, considering
their relevant contribution to amino acid, lipid, and carbohydrate metabolisms [56]. The
diamondback moth (Plutella xylostella) was also investigated as a lepidopteran model for
this purpose. Bacillus cereus ATCC 17788, unable to produce bacteriocins, and the zwitter-
micin A-producing B. cereus strain 6A4 were separately injected in P. xylostella, resulting
in a significant reduction in Enterobacter spp. after the administration of both strains [57].
Moreover, Raymond and coworkers found out that the strain ATCC 17788 was not associ-
ated with overall alterations in microbial biodiversity in the insect gut, while strain 6A4
became the predominant bacterium within the microbial community profoundly altered by
zwittermicin A [57]. These findings suggest that the ability of a bacterial strain to synthetize
and actively secrete bacteriocins can be a determinant in accentuating differences in the
outcomes even within the same animal model.
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The impact of B. cereus on gut communities was also investigated in vitro by Calvi-
gioni and colleagues [58]. Following a combined approach of 16S rDNA-targeting real-time
qPCR and Illumina sequencing, microbial consortia of in vitro cultured fecal samples were
analyzed after the addition of vegetative cells or culture supernatants of the pathogenic
B. cereus strain ATCC 14579. The obtained results showed that B. cereus was able to reduce
the total bacterial load, Pseudomonadota, Akkermansia, Escherichia-Shigella, Faecalibacterium,
and Lactobacillus and increase the amount of Bifidobacterium, Clostridium, and Mitsuokella [58].
The increase in Bifidobacterium spp. in the presence of B. cereus could be explained by analo-
gous findings obtained in previous studies on Bacillus subtilis C-3102, which was shown
to be able to secrete specific bifidogenic factors (i.e., Val-based cyclic-dipeptides) [180,181].
However, the production of such bifidogenic factors has never been confirmed in B. cereus
ATCC 14579.

4. Concluding Remarks and Perspectives

The present review aimed at exploring the intricate net of interactions between the
most relevant enteropathogens and the gut microbiota, focusing on the alterations in mi-
crobial composition derived from the presence of the infectious agent. Infections caused
by different enteropathogens lead to distinct outcomes not only with regard to the clinical
manifestations but also to the modulation of the gut microbiota. These infections often af-
fect the biodiversity and richness of the microbial populations, leading to alterations in the
proportions of specific resident taxa. Pooling data from animal studies, in vitro models, and
in silico predictions, it becomes evident that Gram-negative pathogens typically compete
with other Gram-negative commensals for gut colonization. Conversely, Gram-positive
pathogens tend to cooperate with other resident Gram-positive bacteria rather than engage
in competition during the infection process, for example promoting the growth of commen-
sal Clostridium, Romboutsia, or Mitsuokella spp. Bifidobacterium, Lactobacillus, and SCFA- and
bacteriocin-producing commensals were confirmed to be protective against exogenous and
endogenous enteric infections. Although several studies were cited in this review, there is a
clear a dearth in the scientific literature of studies using in vitro systems for this purpose
since only C. difficile, E. coli, and B. cereus have been investigated in vitro together with the
gut microbiota. This fact demonstrates that researchers are still focusing their attention and
efforts on human studies and animal models, rather than being committed to designing
and developing new reliable in vitro models that may overcome the intrinsic limitations
of humans and animals. In vitro models should now be recognized as novel powerful
tools for their capacity to elucidate situations where animal models have limitations. These
innovative models have the potential to provide insights into the mechanisms and the
impact that enteropathogens have on the intestinal microbiota and vice versa. In the future,
those findings, together with the knowledge derived from human and animal studies,
could contribute to the global comprehension of the pathogenic role of enteric pathogens,
not only in determining the damage to host cells and tissues but also in making the gut
microbiota dysbiotic, thus amplifying the pathological outcome of the infection.
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