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Correctly identifying the orientation of objects in
space is crucial in many aspects of our life, from
daily activities requiring efficient tool use to geometri-
cal learning.

Vannuscorps et al. (2021), in the current issue,
finely characterize the interesting case of a woman,
Davida, who fails to recognize orientation. Davida, a
teenager with a normal medical history, no evidence
of cortical abnormalities, and proficient in many
visual tasks, performs poorly when she has to
process visually the orientation of high contrast 2D
shapes. Davida, however, performs perfectly when
she is asked to recognize items haptically. The
authors interpreted this pattern of deficits as the con-
sequence of an impairment at an intermediate stage
of processing from a pure retinotopic frame of refer-
ence to a complete spatiotopic representation of
space that is independent of our body/gaze direction.
The authors refer to this intermediate level as an
“intermediate shape-centred representation” (ISCRs)
that should correspond to an allocentric frame of
reference (centred on the visual object). A large
body of literature demonstrates that the brain simul-
taneously uses many frames of reference (Cohen &
Andersen, 2002; Goodale, 2014), and the fact that
only one frame can be affected in an otherwise
typical woman strongly corroborates the idea of mul-
tiple representations, showing the complexity and the
fragility of the mechanisms which generate space
representation.

Davida’s impairments are consistent with damage
at an early stage along the cortical visual pathways
in contrast to earlier studies that demonstrated

damage at a higher tier of multimodal cortical proces-
sing (Castaldi et al., 2018; Goodale, 2014). We have
recently described a group of children with lesions
at the level of the periventricular white matter (PVL)
that presented agnosia for mirror orientation that
was specific only for diagonal orientations (Castaldi
et al., 2018). They consistently confused diagonal
orientations with their mirror counterpart, while per-
ception of cardinal orientations was preserved. The
deficit generalized to stimuli varying in many low-
level features, such as oriented gratings or bars or
second order stimuli (i.e., collinear short lines
embedded within randomly oriented lines) and also
affected the haptic modality. The selectivity of their
deficit for diagonal orientations allowed us to test
the specificity of this deficit for retinotopic vs. spatio-
topic frame of reference and we demonstrated that
the visual orientation deficit remained selective for
the diagonal orientations in space, indicating that
the effect occurred in spatiotopic and not retinotopic
coordinates and that it was independent of gravity
and of the monitor frame of reference (allocentric rep-
resentation). One of implications of the deficits
described in our PVL patients is that perception of
visual orientation of oblique and cardinal stimulus
relies on partially separate mechanisms. In this
respect it would be interesting to test Davida also
with oblique orientations in those conditions that
yield high performance with cardinal orientations
(e.g., low contrast).

Perception of object orientation in space is
achieved through a cascade of visual processing
steps, the first of which consists of the identification
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of 2D edges and lines allowing for detection and seg-
regation of the objects’ borders from the background
(Burr et al., 1989, 1992; Morrone & Burr, 1988). There is
evidence that the identification and discrimination of
edges and lines is supported by regions along both
the ventral (V4) and the dorsal stream (caudal part
of the intraparietal sulcus, transversal occipital
sulcus, dorsal LO and V3A), irrespective of these fea-
tures being defined by luminance or chromatic con-
trast (Castaldi et al., 2013; Perna et al., 2005, 2008).
Areas along the dorsal pathway presumably start
from this local information and compute objects’
orientation independently of retinotopic coordinates
and even irrespective of the modality, visual or
tactile (Kitada et al., 2006), to support action guidance
(Goodale, 2014). In the light of this evidence, it is likely
that the deficit observed in our PVL patients arises
from a lesion of the posterior parietal cortex, which
is often reported to be damaged in this pathology
(Fiori et al., 2015) and is consistent with their deficit
being invariant to spatiotopic coordinates.

The case study of Davida, clearly different from our
PVL children, probably occurred at an earlier stage of
visual analysis, her dependence on contrast of the orien-
tation deficit strongly supporting this view. She showed
small deficits or none at all when the oriented stimuli
were blurred or defined by small dots, or lines, or had
low contrast (i.e., with low energy stimuli). To interpret
these findings, the authors suggested the formation
along the extrastriate pathways of multiple indepen-
dent “intermediate shape-centred representations”
(ISCRs) associated with the different visual cues (like
colour, luminance, low contrast, high contrast, etc).

However, simpler explanations are equally poss-
ible. High contrast stimuli do not always lead to
better perception and Davida is not the only patient
showing consistent deficits only at high contrast.
Tadin’s work (2003, 2015) has shown a significant
drop in performance for high contrast motion
stimuli and we demonstrated it in typical participants
as well as those with dyslexia (Bhat et al., 2018; Perani
et al., 2021). In Perani et al. (2021) discrimination per-
formance topped between 10% and 30% Michelson
contrast and then, surprisingly, dropped at higher
contrast, in particular in a subgroup of dyslexic indi-
viduals carrying a specific genetic variant (the
DCDC2 gene deletion). Interestingly, motion contrast
sensitivity and high contrast accuracy in these individ-
uals correlated with the fractional anisotropy in the

optic radiations and ventral tracts located in the
inferior temporal cortex (inferior longitudinal and
inferior fronto-occipital fasciculi), which provide
input/output to V1. These deficits are stronger at
high spatial frequency stimuli (see Fig 1G&H in
Perani et al., 2021), and this is consistent with
Davida’s perception showing stronger deficits for
objects defined by sharp edges. Also, the apparently
normal perception that Davida displays in Experiment
5.9, 5.10 and 6.10 is consistent with the hypothesis
that high contrast explains the deficit: despite the
high contrast of the single dots or pixels, the low
density of dots or pixels defining either the shapes
or the motion in those paradigms reduce dramatically
the effective contrast of the stimuli after accounting
for the small blurring associated with normal acuity.

One possible explanation for these and Davida’s
contrast-dependent deficits might be that contrast
is correctly computed in V1, but then the read-out
of this first stage by higher order areas (such as V4
in the case of Davida) is impaired. Neural responses
to increasing luminance contrast levels are typically
described by sigmoid-like functions, defined by a
monotonic increase in neural firing with increasing
contrast up to a maximum saturation level (Albrecht
& Hamilton, 1982). However, this pattern is not
common to all neurons in all visual processing
stages. For example, neurons in macaque area V4
can display bandpass tuning response for contrast
(Sani et al., 2013) during an orientation discrimination
task. Interestingly the non-monotonic U-shaped
selectivity emerged only later in the neuronal
response (at around 150 ms after stimulus onset)
suggesting a longer integration time. Sani et al.
(2013) proposed that contrast should be considered
an independent and basic feature, such as color or
orientation, and that the slower non-monotonic
type of response might correspond to a contrast cat-
egorization stage. Psychophysical studies seem to
support the existence of contrast selective neurons
in humans as well, by showing that adapting to a con-
trast defined (2nd order) pattern of fixed contrast
impairs the visibility of test patterns composed of
elements with straddling contrast (Wolfson &
Graham, 2007, 2009). These are hallmarks of a
sensory domain which represents contrast flexibly.

In the light of these results, it would be interesting
to test Davida with a similar contrast adaptation para-
digm to evaluate whether some of these channels
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coding for medium to high contrast are impaired and
cause the reported orientation deficit.
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