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Abstract

Objective: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with

a complex etiology that lacks biomarkers predicting disease progression. The

objective of this study was to use longitudinal cerebrospinal fluid (CSF) sam-

ples to identify biomarkers that distinguish fast progression (FP) from slow

progression (SP) and assess their temporal response. Methods: We utilized

mass spectrometry (MS)-based proteomics to identify candidate biomarkers

using longitudinal CSF from a discovery cohort of SP and FP ALS patients.

Immunoassays were used to quantify and validate levels of the top bio-

markers. A state-transition mathematical model was created using the longitu-

dinal MS data that also predicted FP versus SP. Results: We identified a total

of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined

enrichment of pathways related to complement and coagulation cascades in

FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis

revealed a panel of 59 candidate markers that could segregate FP and SP

ALS. Based on multivariate analysis, we identified three biomarkers (F12,

RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of

disease progression. These proteins were validated in the discovery and a sepa-

rate validation cohort. Our state-transition model determined that the overall

variance of the proteome over time was predictive of the disease

progression rate. Interpretation: We identified pathways and protein bio-

markers that distinguish rate of ALS disease progression. A mathematical

model of the CSF proteome determined that the change in entropy of the pro-

teome over time was predictive of FP versus SP.

Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and

eventually fatal neurodegenerative disease.1 Clinical mani-

festation of the disease is variable and can mimic other

neurodegenerative diseases in early disease course. In

addition to clinical heterogeneity, ALS is also associated

with numerous pathogenic mechanisms resulting in a

heterogeneous patient population.2 Biomarkers that high-

light specific disease mechanisms may aid drug develop-

ment or stratify and/or enrich for a more homogenous

subset of patients for clinical trials.

Currently, neurofilament light chain (NfL)3,4 and phos-

phorylated neurofilament heavy chain (pNFH)5 are the

most promising biomarkers for ALS and have been used

as exploratory outcome measures in ALS clinical trials,6,7
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with treatment response reductions of NfL supportive for

the recent FDA approval of QALSODY for ALS patients

with SOD1 mutations.8 Neurofilaments have been studied

extensively in cerebrospinal fluid (CSF) and blood and

have demonstrated potential diagnostic and prognostic

utility.9 Levels of neurofilament proteins in CSF have also

been shown to differentiate ALS patients with fast disease

progression (FP) from those with slow disease progression

(SP), with SP typically exhibiting lower levels of neurofi-

lament in biofluids than FPs.10–12 While recent studies

have explored longitudinal changes of individual bio-

marker proteins in blood or CSF of ALS patients, the use

of unbiased methodologies to further discover longitudi-

nal biomarkers for ALS is lacking. Such information may

help identify pathologic mechanisms more specific to

clinical subtypes of ALS or exhibit alterations throughout

the disease course.

In this study, we performed shotgun proteomics on lon-

gitudinal CSF samples collected from a discovery cohort of

eleven ALS patients consisting of six FPs and five SPs. We

identified a combination of three biomarkers, retinoid

binding protein 4 (RBP4), kallistatin (SERPINA4), and

coagulation factor XII (F12), as the top candidates that seg-

regate FPs from SPs. These results were validated in a sepa-

rate patient cohort. Using computational workflows and

mathematical models we discovered that the variance of the

proteome over time within the individual differentiated FP

from SP. Our results identified proteins, pathways, and a

novel mathematical model that distinguish FP from SP

forms of ALS, highlighting the potential to stratify the ALS

population based on CSF proteomics that may be beneficial

for downstream drug development.

Methods

CSF sample collection

CSF was collected over three or more clinic visits from 22

ALS patients and obtained from the Northeast ALS Con-

sortium (NEALS) Biofluid Repository (Table 1) and

Table 1. Patient demographics.

Code

Number

of visits

Time elapsed

between

baseline and last

visit (months) Sex

Age at

symptom

onset

Age at

first visit

Change in

ALSFRS-r/month

Rate of

progression Onset site

Discovery

S1 4 28 F 43 46 0.32 Slow Limb

S2 4 24 M 53 57 0.29 Slow Limb

S3 4 20 F 31 65 0.21 Slow Bulbar

S4 4 18 M 56 57 0.00 Slow Limb

S5 3 6 F 34 36 0.28 Slow Limb

F1 4 13 M 56 57 1.69 Fast Bulbar

F2 4 12 F 65 67 1.66 Fast Limb

F3 3 8 M 54 55 1.50 Fast Limb

F4 5 35 F 59 59 1.00 Fast Limb

F5 4 21 M 52 53 2.33 Fast Limb

F6 4 20 M 40 41 2.67 Fast Limb

Validation

S6 3 12 F 58 65 0.03 Slow Limb

S7 3 8 M 38 41 0.07 Slow Limb

S8 3 11 F 64 66 0.48 Slow Bulbar

S9 3 8 F 27 43 0.03 Slow Limb

S10 3 9 M 46 54 0.17 Slow Limb

S11 3 9 M 63 66 0.12 Slow Limb

F7 3 8 M N/A 51 1.50 Fast Limb

F8 3 7 F 52 53 1.37 Fast Limb

F9 3 6 M 54 55 2.67 Fast Limb

F10 3 8 F 58 59 2.34 Fast Limb

F11 3 8 M 75 77 1.05 Fast Limb

Patient demographics from both discovery and validation cohorts used in this study. Each patient was characterized as having fast progressing (FP)

or slow progressing (SP) ALS based on the rate of change in ALSFRS-r over time. FP was defined as those that exhibited a rate of change ≥1 unit/

month. SP was defined as those that exhibited a rate of change <0.5 unit/month. No significant differences in age at onset (p = 0.14), onset site

(p = 0.99) or sex (p = 0.57) were observed in the discovery cohort. No significant differences in age at onset (p = 0.61), onset site (p = 0.99), or

sex (p = 0.99) were observed in the validation cohort. F = female; M = male; N/A – not available.
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separated into discovery and validation cohorts. All ALS

subjects were defined by El Escorial criteria by experi-

enced neurologists and provided IRB approved informed

consent at the time of enrollment. CSF was collected

using methods previously described.13 Patients were segre-

gated into FP and SP based on the change over time in

their ALS Functional Rating Scale revised (ALSFRS-R)

scores which we defined as their progression rate. FP was

defined as those that exhibited a disease progression

rate ≥1 unit/month and SP had a disease progression

rate <0.5 units/month.

CSF sample preparation

One milliliter of each CSF sample was thawed on ice

and concentrated using Amicon Ultra (3 kDa molecular

weight cutoff) centrifugal filter spin columns (Millipore

Sigma, Burlington, MA). Columns were conditioned with

HPLC grade water and CSF samples were added and

spun at 10,000 × g for 45 min. The columns were subse-

quently inverted and spun at 1000 × g for 2 min and

remaining volume (50 μL) collected in low binding

tubes. Protein Separation Buffer A (Millipore Sigma,

Burlington, MA) was added up to a volume of 200 μL.
Concentrated CSF samples were subsequently added to

spin cartridges for depletion of six abundant proteins

(Agilent, Santa Clara, CA, Cat #5188-5230). Prior to

addition of the CSF samples, each depletion column was

conditioned with Buffer A. CSF samples were then

loaded and spun at 100 × g for 2 min. Buffer A was

added and spun at 100 × g for 3 min. The eluates were

collected and subjected to buffer exchange using the

Amicon Ultra (3 kDa molecular weight cut-off) centrifu-

gal filter spin columns. These columns were conditioned

with 50 mM ammonium bicarbonate (Ambic) and spun

at 10,000 × g for 10 min. The eluate from the depletion

steps were added to the columns and spun at 10,000 × g

for 45 min. 50 mM Ambic was added and spun at

10,000 × g for 45 min. The columns were inverted, spun

at 1000 × g for 2 min, and the remaining volume

(50 μL) collected in low bind tubes. Rapigest (Waters,

Milford, MA) was added to the CSF samples for a final

concentration of 0.1% (v/v) to aid with denaturation.

Proteins were reduced by incubating with 10 mM dithio-

threitol (DTT) for 1 h at 60°C and alkylated with

40 mM iodoacetamide for 30 min at room temperature.

Digestion was performed using Trypsin Gold (Promega,

Madison, WI) at 1:20 ratio and incubated overnight at

37°C. After digestion, trypsin was inactivated by adding

trifluoroacetic acid (TFA) to a final concentration of

0.5% (v/v). Peptides were desalted using a Sep-PAK C18

96 well plate (Waters) and resuspended in 0.1% formic

acid solution.

Mass spectrometry

Mass spectrometry data were acquired on a Thermo Orbi-

trap Fusion Lumos mass spectrometer interfaced with a

Waters nanoAcquity UPLC system. Peptides were first

loaded on a trap column (Waters Symmetry C18, 100 Å,

5 μm, 180 μm × 20 mm) at a flowrate of 7.5 μL/min for

10 min using 99.5% A (Water, 0.1% formic acid) and 0.5%

B (Acetonitrile, 0.1% formic acid). Post-loading, the trap

column was brought in-line with the analytical column

(Waters Peptide BEH C18, 130 Å, 1.7 μm, 100 μm ×
100 mm) and peptides were eluted over 95 min at a flow-

rate of 500 nL/min using the following gradient: 3–7% B in

1 min, 7–25% B in 72 min, 25–45% B in 10 min, 45–90%
B in 0.5 min, isocratic at 90% B for 1 min followed by

return to initial conditions in 0.5 min and column re-

equilibration for 10 min. The mass spectrometer was oper-

ated in data dependent mode with the following parame-

ters: Spray voltage of 1800 V, ion transfer tube temperature

of 275°C, full scan in Orbitrap over the scan range (m/z) of

400–1500 and a resolution of 120,000. Following parent

scan, top most abundant m/z peaks were fragmented via

HCD (CE 30%) and detection in ion trap. Only precursors

with charge state 2–7 selected for MS/MS, and a dynamic

exclusion duration of 60 seconds was employed to prevent

resampling of the same precursors. The mass spectrometry

proteomics data have been deposited to the ProteomeX-

change Consortium via the PRIDE partner repository14

with the dataset identifier PXD035026.

Protein identification and quantification

Raw spectra were searched in MaxQuant v1.5.2.8 against

a Homo sapiens database (Swissprot/UniProtKB, 2017)

using the Label Free Quantitation (LFQ) method with

trypsin digestion. Peptides were allowed a maximum of

two missed cleavages. N-term acetylation and methionine

oxidation were set as variable modifications, and cysteine

carbamidomethyl as a fixed modification. Precursor ion

tolerance of 4.5 ppm and ion fragment tolerance of

20 ppm were used for peptide confidence.

Statistical analysis

Data were background corrected and normalized by vari-

ance stabilizing transformation (vsn function in limma R

package). Batch effects were adjusted (removeBatchEffect

function in limma R package) and differential protein

abundance analysis was performed with the DEP R

package.15 Normalized LFQ intensities were used to calcu-

late differential protein abundance between FPs and SPs at

the first time point and last time point collected for

patients in each group. Proteins that exhibited a fold-
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change >1.5 and an adjusted p-value ≤0.0125, as assessed
using Mann–Whitney test with a Benjamini-Hochberg post

hoc correction, were considered as significantly differen-

tially abundant. Principal components analysis (PCA) was

performed using mixOmics.16 Enriched pathways differen-

tiating FP and SP were determined using Ingenuity Path-

way Analysis (IPA) (QIAGEN Inc., https://www.qiagen

bioinformatics.com/products/ingenuity-pathway-analysis).

For each cross-sectional analysis, protein fold-changes and

adjusted p-values were input into IPA and mapped against

the Human Ingenuity Knowledgebase with default parame-

ters. StringDB analysis was applied to the significant pro-

teins to reveal known protein interaction networks between

the candidate markers.17 Interactions were filtered for a

String confidence score ≥0.7 and no additional interactors

were allowed. To determine markers that best segregate FPs

versus SPs, significant proteins identified in the cross-

sectional analyses were analyzed using the Multivariate

Methods with Unbiased Variable package (MUVR

v0.0.972, R v3.6.1)18 and Random Forest modeling. The

plotMV and plotVIP functions of MUVR were utilized with

default parameters to graphically represent the precision

and strength of the model. Logistic regression was used to

determine the sensitivity, specificity, and area-under-curve

(AUC) of single markers and combined panels of bio-

markers, after bootstrapping 1000 samples with 95% confi-

dence intervals for each specified cut-off value of the

criterion. A generalized linear ROC model was generated

using the pROC R package.19

Longitudinal analysis of the top candidates from

MUVR was performed using random slope, random

intercept linear mixed modeling with age at first draw as

a covariate. This analysis was performed in R using the

package Lme4 to estimate slopes for each biomarker com-

bined with the package lmerTest to assess significance

between FPs and SPs (p-value <0.05). To further assess

differences between FP and SP, significantly differential

baseline abundances of each biomarker were also com-

pared using a Mann Whitney test (p-value <0.05 consid-

ered significant), using GraphPad Prism v.9.0. Differences

in categorical variables (sex and onset site) between FP

and SP were assessed with Fisher’s exact test (p-value

<0.05). Statically significant differences in average age at

first draw and age of onset between FP and SP were

assessed by a Mann–Whitney test (p-value <0.05).

To create a state-transition mathematical model of ALS

that distinguishes FP from SP, we first performed a PCA

of the longitudinal mass spectrometry data from each

participant. The first principal component (PC1) sepa-

rated FP from SP and revealed the dynamics of proteome

change over time during ALS progression. Mutual infor-

mation was used to identify the top 20 proteins most

strongly associated with slow or fast progression, with

protein abundance as a continuous variable and slow or

fast progression as a discrete variable.20 The top 20 pro-

teins ranked by mutual information score from this anal-

ysis are shown in Table 3. We next used PC1 plotted over

time to construct a model of the proteome variance for

each ALS patient and used an Ornstein–Uhlenbeck sto-

chastic differential equation to model ALS progression as

reflected in PC1 as described below.

Immunoassays

Validation was performed on top biomarker candidates

using both the discovery cohort and a separate validation

cohort (Table 1). Measurements of human retinol binding

protein 4 (RBP4) and kallistatin (SERPINA4) were per-

formed using DuoSet ELISA kits (R&D systems; Minneapo-

lis,per MN) following the manufacturer’s protocol.

Measurements of coagulation factor XII (F12) were per-

formed using human F12 ELISA kit (Abcam; Cambridge,

MA) also following the manufacturer’s instructions. CSF

samples were diluted prior to ELISA measurements at

1:100, 1:1000, and 1:10 for SERPINA4, RBP4, and F12,

respectively. Assay precision was assessed by average intra

and inter coefficient of variations (CVs). Intra-CVs were less

than 7%, 8%, and 8% for SERPINA4, RBP4, and F12,

respectively. Inter-assay CVs were less than 10%, 10%, and

7% for SERPINA4, RBP4, and F12, respectively. All samples

and standards were run in duplicate on each plate. Measure-

ments for CHIT1 and NfL were as previously described.21

Results

Patient cohorts

Eleven ALS patients were used in the discovery cohort

(Table 1). Six patients were classified FPs as demonstrated

by the change in ALSFRS-r/month ≥1 while five were SPs

as demonstrated by the change in ALSFRS-r ≤ 0.5/

month. No significant differences in age at onset

(p = 0.14), onset site (p = 0.99), or sex (p = 0.57) were

observed in this cohort between FPs and SPs. In addition

to the discovery cohort, we also obtained a separate vali-

dation cohort of eleven ALS patients with five FPs and six

SPs (Table 1). No significant differences in age at onset

(p = 0.61), onset site (p = 0.99), or sex (p = 0.99) were

observed in this second cohort.

Proteomic analyses

From the discovery cohort, a total of 1148 proteins were

identified across all longitudinal samples from FPs and

SPs. To identify candidate biomarkers that were signifi-

cantly different between FPs and SPs, four cross-sectional
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Figure 1. Cross-sectional pairwise comparisons of the CSF proteome of fast progression (FPs) versus slow progression (SPs). FPs and SPs were

compared at (A) the last time point and (B) the first time point. To identify candidate biomarkers that segregate FPs from SPs throughout

disease progression, comparisons were made between (C) FPs at the first time point versus SPs at the last time point and conversely (D) FPs at

the last time point versus SPs at the first time point. Proteins with a –log10 p > 1.9 and log2 fold change (FC) > 0.58 were considered

significant. Differentially abundant proteins are highlighted in orange (increased) and blue (decreased) signifying those that are significant in FPs

and SPs, respectively. (E) Bar chart showing top 10 pathways identified by Ingenuity Pathway Analysis on the proteomics data. Orange bars

denote upregulated pathways in FPs while blue bars denote downregulated pathways in FPs (i.e., upregulated in SPs). Bars represent the z-score

and black line denotes p-values of significant pathways. (F) Venn diagram of all significant proteins from the cross-sectional comparisons made

in A–D.
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analyses were utilized (Fig. 1). We first compared FPs ver-

sus SPs at the first time point (Fig. 1A) and FPs versus

SPs at the last time point (Fig. 1B). Second, to verify that

the candidate biomarkers could segregate FPs from SPs

throughout disease progression, we compared FPs at the

first time point versus SPs at the last time point (Fig. 1C)

and FPs at the last time point versus SPs at the first time

point (Fig. 1D). Significantly enriched pathways in each

of the four comparisons were compared to deduce the

top pathways that were consistently altered between FPs

and SPs (Fig. 1E). Pathways related to inflammatory

responses such as acute phase response signaling, coagula-

tion systems, and complement systems were significantly

upregulated in the FPs while pathways related to synapto-

genesis and glycolysis/gluconeogenesis were downregulated

in FPs suggesting the presence of distinct molecular signa-

tures that contribute to the progression of the disease.

Across the four comparisons above, 88, 143, 81, and 160

proteins were considered significantly differentially abun-

dant, respectively. Within this protein list were CHIT1

and NFL, two protein biomarkers previously shown to

distinguish between fast and slow disease progression.12,21

We note 59 candidates significant across all four group

analyses (including CHIT1 but not NEFL) and these were

further interrogated (Fig. 1F and Table S1). Within these

59 candidates are 6 members of the serpin family of ser-

ine protease inhibitors, 6 members of the apolipoprotein

gene family, and 8 members of the complement family.

While most of these genes are expressed in the periphery

and abundant in the blood, many of them are also

expressed in the nervous system.

These 59 candidate biomarkers showed differences in

expression between all FP and SP samples across all time

points (Fig. 2A). Partial least squares discriminant analysis

showed distinct separation of FP and SP (Fig. 2B).

Protein–protein interaction analysis using StringDB

revealed that 47 out of 59 candidate proteins have anno-

tated associations with each other (Fig. S1). Interestingly,

all these proteins with annotated interactions were upre-

gulated in FPs, while the four proteins (GFRA2,

CAMK2A, ERAP1, FAM19A2) upregulated in SPs lacked

annotated interactions (Fig. S1).

Multivariate analysis

Multivariate method for Unbiased Variable Selection in R

(MUVR)18 was employed to identify optimal candidates

that segregate FPs versus SPs. This iterative approach tests

combinations of biomarkers and measures their misclassi-

fication rates, which is subsequently used to determine

the optimal combination to distinguish FPs and SPs.

Based on the Random Forest modeling algorithm, it was

determined that a three-biomarker model consisting of

Coagulation Factor XII (F12), kallistatin (SERPINA4),

and retinol binding protein-4 (RBP4) best distinguished

the two groups. To confirm these results, this model was

applied to our discovery cohort to test its accuracy. Three

markers accurately classify 43 out of 44 ALS patient sam-

ples into FPs and SPs (Fig. 3A). In each lane, the spread

in the prediction probabilities demonstrate the precision

of the model, with 35 out of 44 samples being correctly

classified with a prediction probability >0.9. Only F4 V2

was misclassified as a SP, with a prediction probability of

approximately 0.83.

The specificity and sensitivity of each individual bio-

marker was determined, with AUCs of 0.570, 0.789, and

0.662 for SERPINA4, RBP4, and F12, respectively (Fig. 3B).

The combination of all three biomarkers resulted in an

improvement over each marker alone (AUC = 0.882). Col-

lectively, these results suggest that the combination of F12,

SERPINA4, and RBP4 most clearly distinguish FPs and

SPs, as opposed to a single biomarker. Parameters of the

logistic regression analysis are provided in Table 2.

Validation of RBP4, SERPINA4, and F12

We validated our multivariate analysis using enzyme-

linked immunoassays (ELISA) specific to each protein

using CSF from both the discovery and a separate valida-

tion cohort (Figs. 4 and 5). In the discovery cohort, base-

line levels of all three candidates were significantly higher

in FPs (Fig. 4A–C, left). Linear mixed effects modeling

analysis revealed that SERPINA4, RBP4, and F12 abun-

dances remain largely unchanged over time in both FP

and SP samples (Fig. 4A–C, right). Collectively, these

results suggest that, over time, SERPINA4, RBP4, and F12

remain constant but levels are significantly higher in FPs

as compared SPs. Within a separate validation cohort,

only SERPINA4 exhibited significant differences between

FPs and SPs (Fig. 5). To further validate that these bio-

markers can distinguish FPs from SPs, ROC analysis was

first performed on the discovery cohort, with AUCs of

0.665, 0.782, and 0.684 for SERPINA4, RBP4, and F12,

respectively (Fig. 6A). Additionally, the combination of all

Figure 2. A panel of 59 proteins that segregate FPs and SPs. (A) Supervised clustering of the 59 candidate biomarkers in FPs (red bar) and SPs

(green bar). Dendrograms were created using correlation-based distances and the Ward method of agglomeration was used in the analysis. (B)

Principal component analysis based on the panel of 59 proteins reveals a clear segregation between FPs (green circles) and SPs (red triangles).
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three biomarkers outperformed (AUC = 0.801) the indi-

vidual biomarkers. The combination of SERPINA4, F12,

and RBP4 was also able to distinguish FPs and SPs

(AUC = 0.907) in the validation cohort and outper-

formed RBP4 (AUC = 0.633) and F12 (AUC = 0.715)

alone (Fig. 6B). However, the combination was compara-

ble to SERPINA4 alone (AUC = 0.904) in this separate

validation cohort. Parameters of the logistic regression

analysis are provided in Table 2. Taken together, these

results, which were obtained from two separate cohorts

and two methodologies, suggest this biomarker panel dis-

tinguishes FPs and SPs.

While NfL, neurofilament medium chain (NfM), and

chitinase-1 (CHIT1) exhibited alterations between fast and

slow progressors in the discovery cohort by mass spec-

trometry (Table S1), NfL and NfM did not exhibit signifi-

cant changes across all four group comparisons and

therefore were not included in the Random Forest multi-

variate analysis. We independently determined the AUC

using NfL and CHIT1 immunoassay data generated from

the validation cohort (Fig. 7A). CHIT1 alone distinguishes

FP from SP (AUC = 0.904) with NfL measures only pro-

viding a small increment (combined AUC = 0.922). Levels

of both CHIT1 and NfL protein also exhibited significant

Figure 3. Multivariate analysis was performed using Multivariate Method for Unbiased Variable Selection in R (MUVR) to determine proteins that

best distinguish FPs and SPs. (A) Swim lane plot, where each lane shows individual time points and overall predictions for each patient type using

the three variables model with FP in red and SP in green. Predictions from individual repetitions are represented by the smaller dots in a lane and

the larger dots represent the average class prediction probability across all repetitions. Misclassified samples are highlighted with a black circle (F4

V2). (B) Receiver operator characteristic (ROC) curves using label-free quantitation (LFQ) intensities from the MS measurements to assess area

under the curve (AUC) of SERPINA4 (green), RBP4 (red), F12 (blue), and the combination of all three biomarkers (purple) comparing FP and SP

ALS.
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baseline differences between SP and FP and remain sepa-

rated over time in longitudinal samples (Fig. 7B,C).

Mathematical modeling of ALS disease
progression

We next used the longitudinal mass spectrometry data to

construct a mathematical model and study the proteome

variance as a dynamic biomarker of ALS progression. The

model was generated using an Ornstein–Uhlenbeck
stochastic differential equation which predicts the steady

and irreversible progression of the proteome from a

reference state to a subsequent state of ALS.22 A similar

state-transition model was recently used to predict the

development of acute myeloid leukemia using longitudi-

nal transcriptomics data.23 Our state-transition model

describes the rate of change of the proteome over time

(dXt) as the combination of drift of the proteome away

from a reference ALS state (state 1) to a subsequent ALS

state (2) (μ) and stochastic fluctuations, which represent

proteome entropy over time relative to normal, modeled

as a Brownian process (Bt) with variance
ffiffiffiffiffiffiffiffiffiffi
2β�1

p
and cor-

relation Bti ,Btj

� � ¼ δi,j where δi,j is the Dirac Delta

function23 as follows:

dXt

z}|{
Rate of change

of proteome

¼ θ μ�Xtð Þ
zfflfflfflfflffl}|fflfflfflfflffl{

Progression

of ALS

þ
ffiffiffiffiffiffiffiffiffiffi
2β�1

q
dBt

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Stochastic fluctuations

proteome entropyð Þ

We applied the mathematical model to mass spectrom-

etry datasets from the FP and SP ALS patient data using

the PC1 over time as a representation of the proteome

state (Xt), as PC1 captured the most variation between

the fast and slow progressing samples (Fig. 8A). Mutual

information was used to identify the top 20 proteins most

strongly associated with either SP or FP, with SERPINA4

the top protein (Table 3). All of these proteins except for

A2M and KLK6 are also contained in the top 59 protein

list in Table S1. The rate of ALS progression is repre-

sented as the overall configuration of CSF protein abun-

dances over time and is given by the constant θ, which is

proportional to the rate of symptomatic onset. The loss

of regulation of the proteome network, through disrup-

tion of feedback loops in protein–protein interactions,

degenerative processes, etc., is modeled as an increase in

overall entropy, or an increase in the number of possible

protein abundance configurations (mass peak intensities),

or eigenstates, given by the variance of the Brownian pro-

cess, β�1. Therefore, to model different rates of ALS pro-

gression seen in FP and SP patients, we consider the

changes in both the rate constant (θ) which determines

the timescale of transition from one state of ALS to

another, and the rate of stochastic fluctuation of the pro-

teome over time (β�1), such that θS < θF , and β�1
S < β�1

F

(Fig. 8A, left panel). Note the model represents individual

patients as distinct colored lines in Figure 8A, with the

longitudinal CSF proteome from time 0 (first CSF draw)

until 30 months. The overall proteome variance is much

greater in FP versus SP patients (Fig. 8A, left panel). The

middle panel represents simulations down sampled to be

comparable to the data. The right panel is the plot of

PC1 values for each FP (blue) and SP (red) over time.

While most of the SP patients exhibit a more consistent

and stable change over time, one patient displayed more

variability and is denoted with an arrow in the lower

right panel, with an elevated change in proteome between

10 and 20 months when compared to the state of ALS

(μ). This individual may be converting from SP to FP,

though additional clinical information to confirm this

hypothesis is not available. By initiating the model at a

pre-symptomatic state, we can mathematically turn back

the clock to study and predict if or when the proteome

may become increasingly unstable prior to symptom

onset, when initial CSF samples were collected. These

simulations suggest that FP ALS patients may exhibit sig-

nificant proteome variance very early in the disease pro-

cess (Fig. 8B). Future studies using longitudinal CSF

samples from patients collected before the time of symp-

tom onset will help confirm these results.

Table 2. Logistic regression analysis for each individual biomarker

and the 3-biomarker panel.

AUC (95% CI) Criterion Specificity Sensitivity

Figure 4B

SERPINA4 0.570 (0.377–0.763) 0.148 0.917 0.368

RBP4 0.789 (0.656–0.923) 0.577 0.542 0.947

F12 0.662 (0.485–0.840) 0.240 0.958 0.421

Panel 0.882 (0.783–0.980) 0.323 0.842 0.750

Figure 6A

SERPINA4 0.665 (0.493–0.837) 0.181 0.818 0.526

RBP4 0.782 (0.631–0.934) 0.529 0.591 1.00

F12 0.684 (0.518–0.850) 0.229 0.773 0.579

Panel 0.801 (0.654–0.949) 0.376 0.682 1.00

Figure 6B

SERPINA4 0.904 (0.802–1.00) 0.186 1.00 0.722

RBP4 0.633 (0.440–0.827) 0.576 0.667 0.556

F12 0.715 (0.537–0.892) 0.230 0.933 0.444

Panel 0.907 (0.808–1.00) 0.789 1.00 0.722

Logistic regression analysis for the LC/MS–MS discovery cohort

(Fig. 4B), immunoassay results of the discovery cohort (Fig. 7A), and

immunoassay results of the validation cohort (Fig. 7B). The area under

the curve (AUC) for individual biomarkers and the cumulative 3-

biomarker panel is shown for each experimental condition.
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Discussion

In this study, we evaluated the CSF proteome in longitu-

dinal samples from FP and SP ALS patients to define pro-

teomic alterations that differentiate FP from SP patients.

Overall, a total of 1148 proteins were identified by mass

spectrometry across all CSF samples. To interrogate this

unbiased longitudinal dataset, we employed multiple

cross-sectional analyses of the CSF proteome at the first

and last time points individually and across these two

time points (Fig. 1). Combining results from these ana-

lyses, we identified 59 biomarkers that can temporally

segregate FP and SP ALS (Fig. 2 and Table S1). A multi-

variate analysis identified a combination of three bio-

markers that distinguish FP from SP patients, which were

validated in a separate patient cohort (Figs. 3–6). We also

generated a mathematical model that separated FP from

SP ALS patients based on the overall proteome variance

over time (Fig. 8). High proteome variability corresponds

to a fast rate of disease progression, providing an unbi-

ased mass spectrometry approach to predict rate of dis-

ease progression.

Pathway analysis determined that proteins related to

inflammatory processes such as acute phase response signal-

ing, coagulation systems, and complement systems were

upregulated in FPs while pathways related to synaptogen-

esis signaling and glucose metabolism were upregulated in

SPs (Fig. 1E). A recent study compared the plasma prote-

ome between fast and slow progressors,24 with metabolism

and glycolysis specifically upregulated in SPs and immune

response pathways increased in FPs, similar to our results

in the CSF. There was an overlap of specific proteins

(APOD, ITIH3, TGFB1, BASP1, CPN1, HBA1, CF1,

FCN3, and CPB2) that were significantly altered in FPs

versus SPs in both the CSF and plasma proteome. These

results highlight common pathways in both the CNS and

periphery that differ between FP and SP, though further

studies are needed to determine the origin of proteins and

relationships to blood–brain barrier (BBB) leakage or

change in CSF flow rate.25 In a prior study, complement

proteins, immunoglobulins, and extracellular matrix pro-

teins exhibited increased abundance over time in ALS CSF

whereas proteins related to axonal guidance, synapse

assembly, neuropeptide signaling, and RNA processing

were reduced over time.26 However, this study did not

consider rate of disease progression as a variable in their

analysis. Our findings provide novel insight by addressing

this gap and suggests that distinct molecular mechanisms

may drive ALS disease progression in both subgroups.

Based on our observation that FPs exhibit increased abun-

dance of many proteins of blood origin including comple-

ment and coagulation proteins in CSF, we hypothesize

that there may be an increased level of BBB, blood–spinal
cord barrier (BSCB), or blood–CSF barrier (BCSFB) dis-

ruption in FP ALS. These disruptions have been implicated

in ALS pathogenesis based on studies performed in SOD1

mouse models27–30 and in ALS postmortem tissues.31–33

Recent studies by our group have also demonstrated dis-

ruptions in tight junction proteins, compromised vascular

integrity, and increased immune cell infiltration into the

choroid plexus of ALS cases.34 Collectively, these studies

highlight BBB, BSCB, and BSCFB dysfunction in ALS

pathogenesis and our findings suggest barrier dysfunctions

may correlate with disease progression rate. Our unbiased

mass spectrometry data also confirmed prior studies indi-

cating chitotriosidase-1 (CHIT1) and neurofilament pro-

teins (NEFL and NEFM) distinguish fast and slow

progressors, which was further validated in a separate

patient cohort (Fig. 7).

Additionally, our data demonstrate an enrichment in

pathways associated with synaptogenesis and glucose

metabolism in SPs. Dysregulation in metabolic pathways

have been widely implicated in ALS pathogenesis.35

Increased activity of proteins involved in glycolysis (i.e.,

hexokinase and phosphofructokinase) and the Krebs cycle

(i.e., citrate synthase and malate dehydrogenase) has been

observed in synaptosomes isolated from the spinal cord

and motor cortex of SOD1G93A mice36 relative to wild

type. Previous metabolomics studies have also demon-

strated increased abundances of glycolytic metabolites and

intermediates in ALS CSF37 and plasma38 relative to con-

trols. While the functional consequences of these observa-

tions require further exploration, a recent study

demonstrated that a high glucose diet elicited a neuropro-

tective effect by improving motor deficits and survival in

Drosophila models that over-expressed TDP-43.39 There-

fore, we propose that alterations in glucose metabolism

are occurring in SP ALS patients in an attempt to elicit a

neuroprotective response. Further studies are required to

explore this possibility and confirm our results.

Figure 4. Baseline and longitudinal protein levels of (A) SERPINA4, (B) RBP4 and (C) F12 from ALS patients in the discovery cohort. Solid black

bars in the left panels represent the average and each dot represents an individual patient. Each dotted line in the right panels represent an

individual patient. The solid lines in the right panels represent the overall linear fit of the longitudinal measurements of each candidate biomarker

in FPs (red) and SPs (blue). A Mann–Whitney test was used to assess differences in baseline measurements. **p < 0.01; *p < 0.05. p-values from

linear mixed effects modeling indicate the significance level in which the slopes differs from 0 as assessed by r with p < 0.05 being considered

significant.
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Our multivariate analysis and Random Forest model-

ing using the top 59 candidates predicted the combina-

tion of three biomarkers (SERPINA4, RBP4, and F12)

best distinguish FP and SP ALS across time (Fig. 3).

Immunoassays for each protein confirmed the mass

spectrometry data in the discovery cohort (Fig. 4) but

only SERPINA4 protein was further validated in a

separate cohort (Fig. 5). SERPINA4 (Kallistatin) has

been identified in a prior proteomic screen of ALS CSF

where reduced abundance was observed compared to

controls.40 Another study demonstrated altered protein

levels in the prefrontal cortex of Alzheimer’s disease

compared to controls.41 While these studies highlight

differential expression/abundance of SERPINA4, its

Figure 5. Baseline and longitudinal measures of (A) SERPINA4, (B) RBP4, and (C) F12 from ALS patients in the validation cohort. Solid black bars

in the left panels represent the average and each dot represents an individual patient. Each dotted line in the right panels represent an individual

patient. The solid lines in the right panels represent the overall linear fit of the longitudinal measurements of each candidate biomarker in FPs

(red) and SPs (blue). A Mann–Whitney test was used to assess differences in baseline measurements. *p < 0.05. p-values from linear mixed

effects modeling indicate the significance level in which the slopes differs from 0 as assessed by r with p < 0.05 being considered significant. NS

= not significant.

Figure 6. Receiver operator characteristic (ROC) curves using targeted measurements of candidate markers of progression by ELISA in the (A)

discovery and (B) validation cohorts. Respective area under the curve (AUC) for SERPINA4 (green), RBP4 (red), F12 (blue), and combination

(purple) are provided.

ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 13

L. Vu et al. Longitudinal Biomarkers of ALS Disease Progression



mechanistic role in ALS and other neurodegenerative

diseases is unknown though it does play a role in the

inhibition of oxidative stress and inflammation.42,43

Therefore, we propose that increased levels of SER-

PINA4 in CSF of FP ALS patients could indicate a

compensatory response to reduce inflammation in the

Figure 7. (A) Receiver operator characteristic (ROC) curves using measurements of CHIT1 (orange), NfL (light blue), and combined (purple) in the

validation cohort. Baseline and longitudinal measures for (B) CHIT1 and (C) NfL in the validation cohort. For baseline measures, solid black bars in

represent the average and each dot represents an individual patient. *p < 0.02. For longitudinal measures the solid lines represent the overall

linear fit of the measurements of each protein and the dotted lines represent individual participants.

14 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Longitudinal Biomarkers of ALS Disease Progression L. Vu et al.



Figure 8. (A) Mathematical model simulations of ALS progression as an Ornstein–Uhlenbeck stochastic process of the state of the proteome (Xt )

in CSF over time (months) for each participant. Each line is a realization of the model based on the mass spectrometry results for each study

participant, with the same initial time value (first CSF collection = 0 months). A clinical diagnosis of ALS occurs at a critical threshold

corresponding to a state of ALS (μ), which occurs stochastically for each patient (left column). Simulations are down sampled to be comparable to

the data (middle column). Patients with fast or slow progression of ALS are modeled as having different rates of ALS (θS < θF ) and intrinsic rate of

entropy β�1
S < β�1

F . The first principal component (PC1) plotted over time (right panel) reveals distinct trajectories of fast and slow progressing

patients, with proteome changes of slow progressors more consistent over time than fast progressors. One slow progressing patient showed

proteome variation more like those of the fast progressors (black arrow). (B) Mathematical model simulations initiated at a presymptomatic state

are used to turn back to clock to predict the proteome state prior to the initial sample collection (time = 0 months). The model predicts

continued large CSF proteome variance (Xt ) for fast progression when compared to slow progression that would approach time of symptom

onset. A clinical diagnosis of ALS would occur once the individual reached a critical threshold corresponding to a clinical state of ALS (μ), which

would occur sometime near time t = 0 months in this representation.
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central nervous system. Further studies are needed to

address this hypothesis.

We developed a mathematical model that distinguishes

FP from SP ALS patients based on the overall CSF prote-

ome variance detected by mass spectrometry. The model

identifies significant differences in even the initial CSF

sample that can distinguish FP from SP. This novel finding

suggests that patients with a rapid disease progression

exhibit significant alterations in cellular pathways and

secreted proteins, metabolism, and/or involvement of mul-

tiple cell types in the disease process that result in consider-

able protein/peptide variance in the CSF. The overall

protein variance is much lower in slow-progressing ALS

patients, consistent with a slow course of disease. The

model predicts that overall proteome variance would dis-

tinguish fast and slow progressors very early in disease

course. While recent ALS clinical trials have focused on

one or a small number of biomarkers to examine treatment

effect in more rapidly progressing ALS patients,8,13,44,45 it

may be more beneficial to examine treatment effect on the

overall proteome variance as a more unbiased biomarker

to demonstrate impact of treatment on overall biologic

pathways and cell types linked to disease.

Limitations of our study include the low number of FP

and SP patient derived longitudinal samples analyzed by

mass spectrometry, and the absence of healthy controls to

determine if any proteomic fluctuations over time also

occur in an age-matched control population. An addi-

tional limitation to our study is that the time from the

first to last sample collection was shorter in the validation

cohort when compared to the discovery cohort. Future

studies will further explore our biomarker candidates

using longitudinal samples from larger numbers of fast

and slow progressors to confirm our current findings and

extend these findings to asymptomatic mutation carriers.

Taken together, we identified a set of 59 protein bio-

markers that best distinguish FP and SP ALS and deter-

mined that distinct molecular pathways drive disease

progression. Of these 59 proteins, a panel of three bio-

markers best distinguished FP from SP ALS. Our novel

mathematical model demonstrated that the overall prote-

ome variance differentiates FP from SP ALS patients.

These results identify specific protein biomarkers and a

model for longitudinal proteome variance that predicts

the rate of ALS disease progression as well as pathways

that represent potential therapeutic targets and bio-

markers for specific clinical subtypes of ALS.
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Table 3. Top 20 ranked proteins used in the mathematical model for

ALS disease progression.

Protein Mutual information score

SERPINA4 0.677

CNTNAP2 0.675

SERPINF2 0.656

HPX 0.641

FETUB 0.634

APOA4 0.604

HABP2 0.602

CP 0.601

KNG1 0.591

SERPINC1 0.580

A2M 0.575

EFNA3 0.571

TCN2 0.565

F12 0.563

C2 0.561

CPN2 0.560

KLK6 0.560

AMBP 0.552

CDH13 0.552

TGFBI 0.547

List of top 20 ranked proteins used in the mathematical model provid-

ing mutual information for the mathematical model that distinguishes

FP from SP ALS patients.
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