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ABSTRACT
The non-destructive estimation of doping concentrations in semi-
conductor devices is of paramount importance formany applications
ranging from crystal growth to defect and inhomogeneity detec-
tion. A number of technologies (such as LBIC, EBIC and LPS) have
been developed which allow the detection of doping variations via
photovoltaic effects. The idea is to illuminate the sample at several
positions and detect the resulting voltage drop or current at the con-
tacts. Wemodel a general class of such photovoltaic technologies by
ill-posed global and local inverse problems based on a drift-diffusion
system which describes charge transport in a self-consistent elec-
trical field. The doping profile is included as a parametric field. To
numerically solve a physically relevant local inverse problem, we
present three approaches, based on least squares,multilayer percep-
trons, and residual neural networks. Our data-drivenmethods recon-
struct the doping profile for a given spatially varying voltage signal
induced by a laser scan along the sample’s surface. The methods
are trained on synthetic data sets which are generated by finite vol-
ume solutions of the forward problem. While the linear least square
method yields an average absolute error around 10%, the nonlinear
networks roughly halve this error to 5%.
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1. Introduction

Noninvasively estimating doping inhomogeneities in semiconductors is relevant for many
industrial applications, ranging from controlling the semiconductor crystal purity dur-
ing and after growth, the recent redefinition of the 1 kg to detecting defects in the final
semiconductor devices such as solar cells. Doping variations lead to local electrical fields.
Experimentalists may exploit this mechanism to identify inhomogeneities, variations, and
defects in the doping profile by systematically generating electron-hole pairs via some form
of electromagnetic radiation. Due to the local fields generated by the doping inhomo-
geneities, the charge carrier tends to redistribute in the region surrounding the excitation to
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Figure 1. On the top left we show the schematic of a photo-sensitive silicon crystal (in red) coupledwith
the voltage metre having resistance R (rendered on the right). On the bottom left, we show the domain
!, the ohmic contacts "D1 and "D2 , and the laser probing area#.

minimize the energy. The remaining charge carriers will flow through the external circuit,
and induce a current whichmay bemeasured. By scanning the semiconductor sample with
the electromagnetic source at different positions, one can eventually visualize the distribu-
tion of electrically active charge-separating defects and variations in the doping profile of
the sample along the scan locations.

Several different technologies use the described photovoltage mechanism to analyse
doping inhomogeneities. They are classified according to either the type of excitation used
to induce the local generation of electron-hole pairs, or the contact placement to measure
the generated current, or how the collected signal is related to the doping variation. Elec-
tron Beam Induced Current (EBIC) [1], Laser Beam Induced Current (LBIC) [2], scanning
photovoltage (SPV) [3], and Lateral Photovoltage Scanning (LPS) [4,5] are some of such
photovoltaic technologies, using as electromagnetic sources either localized electron beams
(EBIC) or laser beams (LBIC, SPV, and LPS). A typical outcome of these techniques is an
image where the intensity of each pixel is proportional to the total current signal induced
by a beam shone on the pixel location.

The LPS method, proposed in Refs [4,6] and schematically shown in Figure 1 right
panel, is especially useful in the context of crystal growth, where it is virtually impossible
to predict the quality (i.e. the symmetry) of a semiconductor crystal during its growth in
a furnace. During the growth process, thermal fluctuations near the solid–liquid interface
introduce local fluctuations (or striations) in the doping profile. LPS detects such dop-
ing inhomogeneities non-invasively at wafer-scale and room temperature. It is especially
suitable for low doping concentrations (1012 cm−3 to 1016 cm−3).

Mathematically speaking, all of the discussed technologies result in inverse problems.
The forward problem assumes that we know the doping profile and a set of laser spot
positions. We then want to know the corresponding (laser spot dependent) photovoltage
signals at the contacts. The inverse problem, on the other hand, assumes we have mea-
sured photovoltage signals at the contacts for a laser scan across the sample. Then we want
to reconstruct the doping profile at least in the probing region but ideally in the whole
domain. We model a general class of photovoltaic technologies introduced above by ill-
posed global and local inverse problems based on a drift-diffusion system which describes
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charge transport in a self-consistent electrical field, the so-called van Roosbroeck system.
The doping profile is included as a parametric field. We point out that a key difficulty in
the mathematical modelling and numerical simulation is that the probing area where the
laser or electron beam operates is significantly smaller (even up to one spatial dimension)
than the region in which we would like to recover the doping profile. This means that the
solution of such incomplete inverse problems cannot be unique and we have to look for
appropriate minimizers or rely on some physically meaningful assumptions on the doping
regarding periodicity or variation in only one spatial dimension.

Ill-posed inverse (PDE) problems have been studied for a long time from an analytical
and a numerical point of view. We refer to the general overviews [7,8] and the refer-
ences therein. Burger, Markowich and others analysed inverse semiconductor problems
[9,10]. Since the analysis is challenging, they often consider linearized/unipolar settings, no
recombination/generation, only small external biases, linear diffusion as well as standard
Dirichlet-Neumann boundary conditions. In Ref. [10], they discuss the identifiability of
the doping profile from capacitance, reduced current-voltage or laser beam-induced cur-
rent (LBIC) data. As for the doping reconstruction, previous numerical methods relied
on optimization [11], the level set [9] or the Landweber–Kaczmarz methods [10]. Espe-
cially, the latter proved to be unstable and costly. For this reason, we propose in this paper
data-driven approaches to solve the local inverse photovoltage PDE problem.

In particular, we focus on three data-driven approaches: First, noting that under spe-
cial conditions the photovoltage signal is related to the doping profile by linear operations,
namely differentiation and convolution, we try a classical least squares approach. Second,
allowing also a nonlinear relationship between doping profile and photovoltage signal,
we train multilayer perceptrons. Finally, we adjust more advanced ResNets to our specific
setup to solve the inverse photovoltage problem. Any data-driven technique heavily relies
on the amount and quality of the training data. Since, for example, growing crystals is
exceptionally costly, we are not able to generate large real-life datasets. For this reason, we
generate physics-preserving synthetic data (measured signals and corresponding doping
profiles) via a fast and efficient implementation of the forward PDEmodel [6] which relies
on the Voronoi finite volume discretization described in Ref. [12]. As discussed above, in
the context of LPS it has been shown that the forwardmodel nicely encompasses threemain
physicallymeaningful features [6]. The flux discretization is handled by ideas of Scharfetter
andGummel [13]. Compared to an implementation based on commercial software [14,15],
our open-source code reduces the simulation time of the forward model by two orders of
magnitude. Finally, we will study the robustness with respect to noise and carefully tune
the hyperparameters. We introduce noise in the amplitude as well as in the wave lengths
and phase shifts of the doping fluctuations. While the results for noisy data are worse than
for clean data, our approach appears to be relatively robust with respect to noise.

The literature on how deep neural networks maybe be used to solve PDEs has been
rapidly increasing in recent years. A notable numerical approach is called physics informed
neural networks (PINN); see Refs [16] and references therein for more details. The key
idea is to replace classical statistical loss functions with PDE residuals. Unfortunately, in
our case, this is not directly feasible since solving the forward problem requires knowledge
of the doping profile in the entire three-dimensional domain. For the inverse problem,
however, the doping profile may only be reconstructed within a two- or even one-
dimensional subset.Other approaches include supervised deep learning algorithms [17,18]
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to efficiently approximate quantities of interest for PDE solutions and [19] and reference
therein to accelerate existing PDE numerical schemes. In order to solve high-dimensional
PDEs, we refer to Refs [20,21]. In terms of recovering parameters in governing PDEs
by solving inverse problems, we refer to Refs [22–26]. In particular, the authors in Ref.
[22] consider an inverse scattering problem for nano-optics. How to recover generalized
boundary conditions is studied in [23]. Active learning algorithms are also proposed to
approximate associated PDE-constrained optimization problems [24]. In Ref. [25], the
authors provide model-constrained deep learning approaches for inverse problems. Such
strategies are applied in Ref. [26] to reconstruct the second-order coefficients in elliptic
problems. Especially in the context of semiconductors, it is often not clear which material
parameters such as life times or reference densities are actually correct. For this reason, the
authors in Ref. [27] used machine learning techniques to estimate material parameters in
the context of organic semiconductors.

The remainder of the paper is organized as follows: In Section 2, we introduce general
(forward) PDEmodels for general electromagnetic source terms and doping profiles based
on the van Roosbroeck systemwhich describes charge transport in a self-consistent electri-
cal field. In Section 3, we present global and local inverse photovoltage models for generic
electromagnetic source terms. In Section 4, we present the three data-driven approacheswe
use to solve the local inverse photovoltage problem for a specific LPS setup. We conclude
with a summary and an outlook in Section 5.

2. Forward photovoltagemodel

In this section, we first describe the drift-diffusion charge transport model and then the
circuit model which represents the volt metre, modelled by boundary condition. When
combining both models, we are able to formulate the forward photovoltage model which
may be used to predict a measured signal (either a current or a voltage) for a given doping
profile and source of electromagnetic radiation.

2.1. The van Roosbroeckmodel

The semiconductor crystal is modelled by a bounded domain! ⊂ R3 in which two charge
carriers evolve: electrons with negative elementary charge −q, and holes with positive
elementary charge q. The doping profile is given by the difference of donor and accep-
tor concentrations, ND(x) − NA(x) =: C(x), where x = (x, y, z)T ∈ !. We assume that
C is a bounded function, and we call C ⊆ L∞(!) the space of all admissible doping
profiles.

We describe the charge transport within the crystal in terms of the electrostatic potential
ψ(x), and quasi-Fermi potentials for electron and holes, ϕn(x) and ϕp(x), respectively. The
current densities for electrons and holes are given by Jn(x), Jp(x). These variables shall
satisfy the so-called van Roosbroeckmodel in which the first equation, a nonlinear Poisson
equation is self-consistently coupled with two continuity equations [28]

−∇ · (ε∇ψ) = q(p − n + C(x)),
−1/q∇ · Jn = G(x; x0) − H, Jn = −qµnn∇ϕn,
1/q∇ · Jp = G(x; x0) − H, Jp = −qµpp∇ϕp.

(1)
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In the van Roosbroeck model (1), the permittivity of the medium is denoted by ε and
the mobilities of electrons and holes are respectively indicated by µn and µp. Assuming
so-called Boltzmann statistics, the relations between the quasi-Fermi potentials and the
densities of electrons and holes, n and p respectively, are given by

n = Nc exp
(
q(ψ − ϕn) − Ec

kBT

)
and p = Nv exp

(q(ϕp − ψ) + Ev
kBT

)
. (2)

Here, we have denoted the conduction and valence band densities of states withNc andNv,
the Boltzmann constant with kB and the temperature with T. Furthermore, Ec and Ev refer
to the constant conduction and valence band-edge energies, respectively.

The semiconductor is considered in equilibrium if the quasi-Fermi potentials vanish,
ϕn = ϕp = 0. In this case only the nonlinear Poisson equation in (1) is solved for the equi-
librium electrostatic potentialψeq. The corresponding equilibrium charge carrier densities
neq and peq satisfy neqpeq = n2i , where ni is the so-called intrinsic carrier density, defined
via the relationship n2i = NcNv exp(−(Ec − Ev)/kBT).

The recombination termH is the sum of the direct recombination, the Auger recombi-
nation and the Shockley-Read-Hall recombination, that is respectively:

Hdir = Cd(np − n2i ), HAug = Cnn(np − n2i ) + Cpp(np − n2i ),

HSRH = np − n2i
τp(n + nT) + τn(p + pT)

.

Different types of crystal samples (such as silicon, germanium, gallium arsenide) have
different life times τn, τp, and reference densities nT , pT .

The electromagnetic source (a laser or an electron beam) is modelled by the generation
termG(x; x0). When the laser hits the crystal at the point x0 := (x0, y0, z0)T , some photons
are impinged and create electron-hole pairs, resulting in a generation rate defined as follows

G(x; x0) = κS(x − x0), (3)

where S(x) is the shape function of the laser (normalized by
∫

R3 S(x)dx = 1), while κ is a
constant given by κ := PλL

h (1 − r). Here, P is the laser power, λL is the wave length of the
laser, h is the Planck constant, and r is the reflectivity rate of the crystal.

We assume that the area of influence of the electromagnetic source decays exponentially
fast from the incident point x0. In particular, we take a laser profile function S defined as

S(x) := 1
2πσ 2

L dA
exp

[

−1
2

(
x
σL

)2
]

exp

[

−1
2

(
y
σL

)2
]

exp
[
− |z|
dA

]
. (4)

Here σL is the laser spot radius, while dA is the penetration depth (or the reciprocal of the
absorption coefficient), which heavily depends on the laser wave length. Figure 2 shows a
typical configuration, where the laser beam hits the crystal on the top surface, and shows
the exponential decay of the laser shape function S.

A prototypical setting for photovoltage measurements is given by a cuboid sample
attached to a voltmeter with resistance R, and the electromagnetic source aiming at its top
surface.
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Figure 2. A zoom-in of the area around the point x0, where the laser hits the crystal (left), and a cross-
section of the device at y = 0 used in the 2D simulation (right).

2.2. Boundary conditions

The PDE system (1) is supplemented with Dirichlet and Neumann boundary conditions.
The boundary ∂! is the union of twodisjoint parts"N and"D. On"N , we assignNeumann
boundary conditions

∂ψ

∂ν
= ∂ϕn

∂ν
= ∂ϕp

∂ν
= 0, (5)

where ∂/∂ν = ν · ∇ is the normal derivative along the external unit normal ν. On "D,
we assign Dirichlet-type boundary conditions. This type of boundary condition models
so-called ohmic contacts [29]. We suppose that there are two ohmic contacts, i. e. "D =
"D1 ∪ "D2 . The ohmic boundary conditions can be summarized by

ψ − ψ0 = ϕn = ϕp = uDi − uref on "Di , i = 1, 2, (6)

where ψ0 is the local electroneutral potential which one obtains by solving the Poisson
equation for ψ for a vanishing left-hand side. The terms uDi denote the contact voltages
at the corresponding ohmic contacts; for the forward model their difference is a priori
unknown. We define a reference value uref of the potential and set it to uref = 0 = uD1 .

The total electric current iD flowing through the ohmic contact "D2 is defined by the
surface integral

iD : !× R × C → R

(x0, uD2 ,C) +→ iD(x0, uD2 ,C) :=
∫

"D2

ν · (Jn(x) + Jp(x))dσ (x).
(7)

The current iD is a function of the contact voltage uD2 , of the laser spot position x0, and of
the doping profile C.

In order to close the system, we model the voltage/ampere metre as a simple circuit
having a resistance R. This structure is visualized in Figure 1. When the external circuit is
connected to the crystal, the boundary condition uD2 can no longer be chosen arbitrarily
and must balance the voltage difference at the voltmeter due to the current iD, which is
equal to the product R iD. A generalized theory of this coupling can be found in Ref. [30]
and in the references therein.

Let U be the function space of all possible photovoltage signals as a function of the
laser spot position x0 that can be measured at the contacts for any given admissible doping
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profile C ∈ C. We define the laser-voltage (L-V) map as precisely the map that associates
to each laser spot location x0 and doping profile C the corresponding photovoltage signal
uP which satisfies the second ohmic boundary condition in (6) and balances the voltage
difference across R, that is

uP : !× C → R
(x0,C) +→ u ∈ U such that u(x0) − R iD(x0, u,C) = 0 and u(x0) = uD2 .

(8)

The laser-voltage map (8) corresponds to a nonlinear version of Ohm’s law at the contact
and constitutes an implicit equation for the Dirichlet boundary condition uD2 of the van
Roosbroeck system (1). An existence result for solutions of the laser-voltage map is pro-
vided in Ref. [31], with the assumption that the generation rate G is small enough. For a
spatially varying doping profileC, the laser-voltagemap uP(x0,C)may be different for each
laser spot location x0.

2.3. The global forward photovoltage problem

Although the presented forward PDEmodel is well-posed for low laser power intensity and
for all laser spot positions x0 ∈ !, not all positions in! can be illuminated by a laser. The
major limiting factor is the fact that the laser power intensity decays exponentially away
from the surface of the crystal sample, leaving in fact as the only feasible positions those
that are near or on the surface of the crystal sample.

We denote with # ⊆ ! the set of all admissible laser spot positions x0. Our global for-
ward photovoltage problem then associates to each doping profileC the functionu thatmaps
each laser spot position x0 ∈ # to the corresponding photovoltage signal uP(x0,C), i.e.

U : C → U
C +→ u : # → R, u(x0) = uP(x0,C), x0 ∈ #.

(9)

3. Inverse photovoltage problems

From an industrial perspective, more interesting than the forward photovoltage problem is
the inverse one.Howdo doping inhomogeneities influence themeasured voltage difference
uP, defined in the previous section? Suppose we have measured the photovoltage signal for
several different laser spot positions x0, how does the doping profile look like that leads to
this signal? Since the doping profile enters as a volumetric source term defined in the whole
domain in the van Roosbroeck system (1), but we can only probe part of the domain with
the laser signal, answering such a question implies solving an ill-posed inverse problem:
different global doping profiles may lead to the same signal. Hence, we will first formu-
late an idealized global inverse photovoltage problem and then a practically relevant local
inverse photovoltage problem.

3.1. Global inverse photovoltage problem

Ideally, we would like to find the global doping reconstruction operator

F̃ := U−1 : U → P(C),
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that, for a given photovoltage signal measurement u, returns the preimage U−1(u). Here
we indicate withP(C) the power set of C, i.e. the set of all possible subsets of C. The global
inverse photovoltage problem reads

F̃(u) = Cu, Cu := {C ∈ C such that uP(·,C) = u}, (10)

that is, F̃ is a function from U to P(C) (i.e. a multi-valued function of the signal u) such
that C ⊆ F̃(uP(·,C)) for all C ∈ C.

3.2. Local inverse photovoltage problem

In practice, however, the construction of the operator F̃ (even the construction of an
approximation of F̃) is nontrivial, and we would like to simplify our problem by build-
ing a local inverse problem that is better posed. A key point when defining a local inverse
problem, is the fact that we cannot probe the entire domain ! with the laser, but only the
subset of all possible laser spot positions # near or on the surface of !. In the following
subsections, we will make some assumptions on the structure of technologically feasible
doping profiles. Technological feasibility depends on the growth process, on the technology
used to inject doping in the crystal, and on the specific photovoltage technology. Here, we
assume variation only in the x-direction. That is,C(x) = C(x). This class of doping profiles
is relevant, for example, for crystal growth, where striations in the doping profile indicate
fluctuations of the temperature field during the growth process, which are dominant in the
growth direction.

We define the set of technologically feasible (TF) doping profiles and the set of corre-
sponding signals as

CTF = {C ∈ C such thatC(x) = C(x)}, UTF := uP(·, CTF). (11)

With these assumptions on the doping profile, it is reasonable to presume that the pho-
tovoltage signal will be influenced more by variations of the doping profile in the vicinity
of the laser spot position, which is where most of the charge carriers are generated, and
therefore we define the local inverse photovoltage problem by restricting the global inverse
problem (10) both in terms of technologically feasible doping profiles, as well as in terms
of probing domain:

F(u) := (̃F(u) ∩ CTF)|# = (Cu ∩ CTF)|# =: CTF,u,# , (12)

where the restriction operator | is applied to each element in the set. The goal of the local
inverse problem is to reconstruct doping profiles only in the probing area # and not on
the whole domain!. However, the underlying assumption is that the local doping recon-
struction will give us information in a neighbourhood of #, or even on all of !, when
one makes additional assumptions (for example on doping periodicity). In general, the
set CTF,u,# = F(u) is much smaller than the set Cu := F̃(u), since it restricts the family
of admissible doping profiles to CTF, and discards all of the information outside of#. Two
doping profiles in Cu correspond to the same element in CTF,u,# as soon as their restrictions
on# coincide.

In principle, it should be possible to formulate a well-posed local inverse problem by
further reducing the admissible doping profiles CTF until the set CTF,u,# contains just one
single element for any admissible input signal u ∈ U(CTF). We do not know, however, if
this procedure is feasible, and what the necessary and sufficient conditions on CTF and on
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# are to ensure that the local inverse problem F(u) is well-posed. We leave these ques-
tions for future investigations and concentrate on numerical approximations of the local
inverse problem based on well-posed finite dimensional approximations of F. In Section 4,
we propose three different strategies (of increasing complexity) to build an approximate
inverse operator Fh starting from a collection of doping profiles restricted to a discrete set
of probing points#h and their corresponding discrete photovoltage signals.

Remark 3.1: The numerical approximations that we construct always produce a unique
answer for each finite sampling of a signal u in UTF. We do not attempt to construct the
full set CTF,u,# of all possible doping profiles that would generate u, but only provide the
sampling of a single doping profile C, which is, in some sense, a representative of the set
CTF,u,# . The ill-posedness of the local inverse problem and the impossibility to recover the
full doping profile C after having solved the approximate inverse problem is one of the
reasons why we cannot use more modern techniques (such as Physics-Informed Neural
Networks (PINN) [16]) that would exploit the residual of the forward problem to improve
the construction of an approximate inverse operator.

4. Data-driven approximation of the inverse photovoltage problem

Inverse problems for charge transport equations have often been tackled with standard
techniques (see, for example, Refs [9–11]). However, in other fields such as image recog-
nition or weather prediction, data-driven approaches have gained significant momentum
to solve a variety of inverse problems (see, for example, Refs [32–34]).

In order to formulate a data-driven approach for the numerical approximation of
the operator F, we leverage the well-posedness of the forward problem U and its dis-
crete approximation described in Ref. [6] to formulate a discrete inverse problem Fh as
a well-posed minimization problem in a finite-dimensional space.

4.1. Discrete local inverse problem

Let # ⊆ ! be a subdomain. We assume we sampled both the photovoltage signal uP and
the doping profile C at n ∈ N discrete laser spot positions which shall be contained in the
discrete mesh #h ⊆ #. With the boldface symbols u and C, we indicate the discrete sam-
plings of the signal uP(·,C) and the doping profile C evaluated on#h, respectively. Notice
that the generation of a single pair of signal and doping samples (u,C) ∈ Rn×2 from an
admissible doping profileC ∈ CTF requires in fact the solution ofndiscrete vanRoosbroeck
systems (1), one for each laser spot position x0 ∈ #h.

The local discrete inverse problem Fh can be interpreted as a (generally nonlinear) func-
tion that maps a vector of signal measurements u ∈ Rn to a vector of doping profile values
C ∈ Rn:

Fh : Rn → Rn

u +→ C.
(13)

Ideally, we would like to build Fh in such a way that for all u in UTF, there exists a
C ∈ CTF,u,# = F(u) such thatFh(u := u|#h) = C := C|#h . However, this procedure suffers
from the non-uniqueness of F(u), which we mitigate by constructing Fh through a
well-posed minimization problem.



10 S. PIANI ET AL.

In practice, we build Fh by minimizing the mean square error loss

MSE
(
{uj,Cj}Ntrain

j=1

)
:= 1

Ntrain

Ntrain∑

j=1
∥Fh(uj) − Cj∥2ℓ2 , (14)

on a given training dataset {uj,Cj}Ntrain
j=1 consisting of a collection of Ntrain pairs of sig-

nal samples uj and doping samples Cj. The generation process of the data is detailed in
Section 4.3.

The quality of the approximation of Fh is evaluated by measuring the prediction capa-
bilities of Fh on a test dataset that is independent of the training dataset. For the evaluation
of the prediction quality, we use the ℓ∞ norm and define the test error as

TE
(
{uj,Cj}Ntest

j=1

)
:= 1

Ntest

Ntest∑

j=1
∥Fh(uj) − Cj∥ℓ∞ . (15)

It is worth noting that, while the definition of the MSE function relies on the ℓ2 norm,
in Equation (15) we are using the ℓ∞ norm. There are several reasons for this. First of
all, minimizing the ℓ∞ error is more difficult than minimize the ℓ2 error; therefore, when
we build our models, we take advantage of the smoothness of the ℓ2 norm. But the ℓ∞
error has several advantages: its independence from the size of the domain and its physical
meaning of being an upper bound for the pointwise error.

On the other hand, the ℓ∞ error has several advantages: it is independent of the size of
the domain and it has the physical meaning of being an upper bound on the error on each
point. Finally, we perform some hyperparameter tuning on our models (i.e. given a fam-
ily of models, we choose the one that performs better; see Sections 4.5 and 4.6). Since we
generate our models by minimizing the ℓ2 error while the tuning of the hyperparameters
minimizes the error in ℓ∞, we keep both of them under control (and therefore, by interpo-
lation, we control every other error in ℓk for k ≥ 2). Indeed, the training of a specificmodel
minimizes the ℓ2 error without taking into account the effect this procedure has in the ℓ∞
space; on the other hand, if this effect is too detrimental for the ℓ∞ error, we discard that
model during the tuning of the hyperparameters.

We develop three approaches to build Fh:

• Least squares (LS): we approximate Fh(u) by the matrix vector product of an n × n
matrix Ah with u. We find the matrix by minimizing the MSEL error defined in (14)
over all n × nmatrices;

• Multilayer perceptron (MLP): we approximate Fh(u) by amultilayer perceptron, and use
Stochastic Gradient Descent (SGD) to minimize the MSE;

• Residual neural network (ResNet): we approximate Fh(u) by a residual neural network,
and use SGD to minimize the MSE.

4.2. An industrial application: the LPS setup

We introduce a specific LPS setup for a silicon sample, discuss how andwhywe generate the
data from the forward model as well as solve the corresponding local inverse photovoltage
problem via the three data-driven approaches introduced in Section 4.1.
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We consider a silicon cuboid of the form ! := [−ℓ/2, ℓ/2] × [−w/2, w/2] × [−h, 0] with
length ℓ = 3mm, width w = 0.5mm and height h = 5 × 10−5 mm, ohmic contacts at
x = −ℓ/2 (corresponding to "D1) and x = ℓ/2 (corresponding to as "D2), see Figure 1.
We focus on a lateral photovoltage scanning (LPS) table-top setup, see Figure 1 right
panel. The silicon parameters needed for the corresponding forwardmodel from Section 2
can be found in Ref. [6]. We simulate the charge transport in the two-dimensional plane
where y = 0 and reconstruct the doping profile along a line, namely the subdomain # =
{(x, 0, 0)T ∈ ! : x ∈ [0, k/2]} with k < ℓ, ensuring we are sufficiently far away from the
boundaries x = ±ℓ/2 to reduce boundary effects. The laser scan then produces a uniform
partition 0 = x1 < . . . < xn = k/2 with mesh size .x. The resulting laser spot positions
are given by #h := {xi}ni=1 = {(xi, 0, 0)T}ni=1. In the following numerical simulations, we
set n = 1200 and k = 0.4mm.

4.3. Data generation

For our data-driven approaches, we need a suitable amount of data; unfortunately, gener-
ating enough data from real life requires large budgets. Instead, we will generate synthetic
data from the forwardmodel that we have described in Section 2. These data are physically
meaningful in the sense that our finite volume approximation of the LPS problem correctly
incorporates physically meaningful behaviour, namely (i) the signal intensity depends lin-
early on local doping variations for low laser powers, (ii) the signal saturates for higher
laser intensities due to a screening effect, and (iii) the signal depends logarithmically on
moderate laser intensities [6].

As pointed out in Section 3.2, we consider a family of doping profiles that vary only along
the x direction, and that are constant in both y and z directions. To generate our synthetic
datasets, we need an algorithm that produces fluctuating doping profiles. Since within the
LPS framework, the doping profile is roughly periodic, see Ref. [6], we assume a super-
position of sinusoidal functions from which we randomly sample physically reasonable
amplitudes and wavelengths. Therefore, we define

C
(
x = (x, y, z)T ;β = (C0,α,λ)T

)
= C0

(

1 +
Nb∑

i=1
αi sin

2πx
λi

)

, (16)

where β is a vector of parameters that includes a fixed average doping value C0 = 1.0 ×
1016 cm−3 (a typical value for silicon crystals), amplitudes α := {αi} ⊂ {0} ∪ [0.05, 0.2],
and wavelengths λ := {λi} ⊂ [10µm, 1000µm]. In our simulation, we set the number of
sine terms to Nb = 5, which seems to strike a good balance between complexity and real-
life situations for striations in doping profiles.

To generate an element {u,C} of our dataset, we randomly sample a parameter β with
which we generate a continuous functionC(x,β) and we compute the discrete counterpart
of u := U(C) defined in Equation (9) using the finite volume scheme developed in Ref.
[35]. Finally, we restrict both C and u to the discrete laser spot mesh#h.

In realistic physical scenarios, the doping profiles contain noises, and they cannot be
represented exactly by Equation (16). To simulate such scenario, we perturb some of the
doping profiles and generate an additional noisy dataset, used to test the robustness of
our networks in the presence of noise. In what follows, we say that a dataset is “noisy” or
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“clean” if C has or has not been perturbed. The algorithm used to generate noisy datasets
is described in Appendix 1.

In the following, we summarize the datasets used to construct and test the learning
models introduced in Section 4.4–4.6. The datasets are available on the repository [36].

CleanDataSET
Consisting of:

• CleanTrainingDataSET: a dataset withNtrain = 22, 500 clean samples used to train our
initial model;

• CleanTestDataSET: a dataset with Ntest = 7, 500 clean samples. With this dataset, we
test the performance of our models trained by CleanTrainingDataSET. Note that test-
ing errors generated by this dataset (cf. (15)) implies the quality of a trainedmodel. This
will help use tune the corresponding hyperparameters;

• CleanValidationDataSET: a dataset with the same size of the CleanTestDataSET that
will be used to validate the performance of ourmodel on the clean case after performing
the tuning.

NoisyDataSET Consisting of:

• NoisySmallTestDataSET: again a dataset of Ntest = 7, 500 samples, but this time with
noise. This is used to test the robustness of the models trained by the CleanTest-
DataSET;

• NoisyTrainingDataSET: a dataset with Ntrain = 150, 000 noisy samples that we use to
train our models to be robust to noise;

• NoisyTestDataSET: a dataset withNtest = 50, 000 noisy samples. This is the dataset that
we use to test the performances of ourmodels trainedwith theNoisyTrainingDataSET.

We provide a qualitative analysis of CleanTrainingDataSET and NoisyTraining-
DataSET in Figure 3, where we compute the Singular Value Decomposition (SVD) of both
datasets interpreted as n × Ntrain matrices. The number of dominant singular values is
a crude indication of the actual dimension of the spaces CTF, and UTF, and shows that,
roughly, their dimension is close to 50 when using the clean data generation described
above, see Figure 3 left panel. The two dimensions mismatch significantly when adding
noise, see Figure 3 right panel. While the dimension of the clean photovoltage signals fol-
lows roughly that of the clean doping profiles, the same cannot be said for the noisy cases.

Figure 3. SVD analysis of CleanTrainingDataSET and NoisyTrainingDataSET. The figure shows the
magnitude of the first 200 singular values for CleanTrainingDataSET (left) and the first 400 singular val-
ues forNoisyTrainingDataSET. The singular values for the doping profilematrices are shown in dashed
blue lines and the singular values for the photovoltage signals are shown as solid orange lines.
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This difference is a hint that the inverse operator F is not well-posed, due to a mismatch in
the dimension of the input and output spaces.

4.4. Least squares

In Ref. [6], the authors showed that, under certain restrictive conditions, the operator F
can be approximated by a linear one. Indeed, in case of an n or p doped semiconductor
that varies only along the x direction, we can show that

uP(x,C) ∼ −ex · ∇C(x). (17)

If the support of the laser source is larger than the wavelength of oscillation of the doping
profile, measuring the voltage difference may actually result in a signal that does not cap-
ture a single oscillation, but a floating average. We could represent this floating average of
doping fluctuations by a convolution of the doping gradient with some (unknown) profile
f, i.e.

uP(x,C) ∼ (f ∗ (ex · ∇C))(x) = d
dx

(
f ∗ C

)
(x). (18)

Hence, it may seem plausible to relate the photovoltage signal to the doping profile via
linear operations such as convolution and differentiation. However, it is not clear whether
this profile function f is actually independent from the doping fluctuations, the shape of
the laser beam or the laser spot position.

The least square analysis is useful to understand how the inverse problem behaves,
and what type of operation the inverse operator Fh(u) = Ahu performs. Let us express
the training data for the photovoltage signals and doping profiles generated according to
Section 4.3 with the two dense matrices Un×Ntrain and Cn×Ntrain . Then we wish to solve the
least square problem

Ah = argmin
B∈Rn×n

1
2

∥∥BUn×Ntrain − Cn×Ntrain
∥∥2
ℓ2 . (19)

In Figure 4, we show Ah obtained with CleanDataSET (left) and with NoisyDataSET
(center). We observe a highly non-local behaviour of Fh. In the CleanDataSET case, this
behaviour is more pronounced than in the NoisyDataSET case.

If we compare the singular values of the matrix Ah in Figure 4 (right) with those of
the two datasets in Figure 3, we observe that the dominant singular values of the least
square matrix computed with the CleanDataSET are the first thirty (similar to what hap-
pens in the singular values of the CleanDataSET itself in Figure 3), while those that are
most relevant for the matrix constructed with the NoisyDataSET are the first one hun-
dred. While this information is only qualitative, it does show that a non-negligible part
of the local inverse problem can be approximated relatively well by the linear operator
Fh(u) = Ahu, with an intrinsic dimension of around one hundred, when including noise,
and much smaller when considering a clean dataset.

The statistical distribution of the test error in the CleanDataSET (i.e. the error defined
in (15) for the CleanTestDataSET) is reported in Table 2 and depicted in the left panel
of Figure 5. It shows an error which is, on average (orange dashed line), around 9%. Even
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Figure 4. Magnitude of the entries of the least squarematricesAh obtained forCleanDataSET (left) and
NoisyDataSET (center), and singular values of the twomatrices for the clean case (dashed blue line) and
for the noisy case (orange line).

Figure 5. Statistical distribution of the errors on the predictions of our least square
model, trained/tested on CleanTrainingDataSET/CleanTestDataSET (left), CleanTraining-
DataSET/NoisySmallTestDataSET (center), and NoisyTrainingDataSET/NoisyTestDataSET.
The bottom histograms are obtained by removing the average value of the doping. The dashed lines
represent the average value of the error, while the arrows point to the 25, 50, and 75-percentile of the
error on the top histogram, and show how these change when removing the average in the bottom
histogram.

Figure 6. Three examples of predictions obtained using the least squares model applied to the Clean-
DataSET. The dashed grey line is the expected result, the continuous coloured lines are our predictions.
The three plots represent samples whose error is close to the 25, 50 and 75-percentile (from left to right),
and corresponds to the three arrows in the left histogram in Figure 5 of the same colour.
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Figure 7. Threeexamplesof predictionson theNoisyTestDataSet, using the least squaremodel trained
on the CleanTrainingDataSet, taken from the 25, 50, and 75 percentile of the error (from left to right),
without removing the average of the doping (top), and removing the average (bottom). The samples
in the plots have an error that corresponds to the arrows in the histograms in the middle of Figure 5
(including the colour).

though such a model presents a relatively high error, we observe that it is still capable of
capturing the overall qualitative behaviour of the doping profiles (see Figure 6).

Next, we check how robust our two models are with respect to noise. As a first test, we
use the linear operator generated from the CleanTrainingDataSET to predict the doping
of the samples in the NoisyTestDataSET. Since this model has not been trained with data
affected by noise, we observe a significant deterioration in the quality of the predictions,
shown in the middle plot of Figure 5, where the average error is now around 20%.

We believe that themain reasonwhy the error increases somuch is the fact that the noise
introduces a shift in the average of the doping function that can not be physically estimated
by our setup. In other words, Equation (16) defines the admissible doping profiles with an
average of (roughly) equal to 1 · 1016 = C0 on the overall domain. When we introduce
noise, this assumption does not hold anymore and we have no way to predict whether the
average of the doping is the one we expect in the entire crystal sample. This is also coherent
with the qualitative analysis in Equation (17), where we show that the value of the current
is mostly related to the local variation of the doping and not to its average value.

Removing the average from both the output of the model, and from the reference dop-
ing during testing leads to the results in the right plot of Figure 5 (bottom), where the error
drops from 20% to 15%. Indeed, we expect still a larger error w.r.t. to the histogram pre-
sented in Figure 5, since the test dataset includes noisy data which are not included in the
training dataset. A few examples of predictions of the doping profile on#h with noisy input
data are shown in Figure 7.

An improvement of the error for the least square problemcanbe obtained by performing
the training on theNoisyTrainingDataSET. The histogram of the error on theNoisyTest-
DataSET is shown in the right plot of Figure 5, where the error is now around 10% (see
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Table 2 for the details). It becomes apparent that training with noisy doping profiles also
significantly reduces the need to remove the average doping value.

In summary, the least square model is able to predict doping profiles with an aver-
age error of around 10% for clean test data or noisy but properly average adjusted test
data. However, it is possible to further improve the results by introducing nonlinearities in
our models, for example using neural networks. We focus on multilayer perceptrons and
residual neural networks in the following sections.

4.5. Multilayer perceptron

While the least square approach is a good starting point, its efficiency is only good if the
inverse operator is close to a linear operator. For inverse problems associated to the van
Roosbroeck system, this is not necessarily the case, and one may choose to introduce
some nonlinearities in the approximation of Fh. Multilayer perceptrons [37] are among
the most widely used feedforward neural networks, and they are the first natural candi-
date for general nonlinear function approximations. We consider networks consisting of a
down-sampler (L1), a multilayer perceptron with six layers (L2 . . . L7), and an up-sampler
(L8). The main motivation for introducing the down-sampler and the up-sample layers is
to avoid introducing “too many values” inside our model. Indeed, if we used directly the
data from our datasets, then the first layer of our MLP should have 1200 neurons (which
is the value of n defined in Section 4.2), which is a large number that would increase the
complexity of themodel and our probability of overfitting during the training.On the other
hand, the signal is just a spatial function defined on # and we can interpolate the signal
on a coarser grid obtaining a still accurate description of the signal while reducing the
dimension of the space of the admissible inputs. The down-sampler layer we introduced
uses cubic interpolation to describe the original signal on a coarse grid of evenly spaced
points. The up-sampler, instead, performs cubic interpolation from the coarse grid to the
original one we used for measuring the doping. In this way, we can compare results from
different models in the same space, independently from the grid used by the MLP.

There is no a priori method to choose a suitable number of points for the coarse grid nor
there exists a standard algorithm to select the number of neurons of each layer. Our strategy
is to choose some reasonable values for each free hyperparameter of the model and then
combine all the admissible choices to generate a set of candidate models. Unfortunately, we
do not dispose of enough computational power to train all these models and, therefore, we
need an algorithm to explore this set and to find a good choice for the hyperparameters.

First of all, let us describe the space of the admissible configurations. The number of
points of the coarse grid (which coincides with the number of neurons of the input layer of
the MLP) is chosen from the set {100 + i50 : i = 0, . . . , 8}. The number of neurons of the
MLP output layer L7, which in principle can be different from the previous one, is chosen
from the same set.

Let #(Li) denote the number of neurons in Li. For each hidden layer Li of the MLP
with i = 3, . . . , 6, we randomly choose #(Li) in the set {#(Li−1), #(Li−1) ± 50, #(Li−1) ±
100, #(Li−1) − 200} with the constraint that #(Li) > 0. In total, there are 71, 118 admis-
sible configurations. There are fewer than 64 · 92 configurations because some of them
would lead to a negative amount of neurons. The multilayer perceptrons are implemented
in PyTorch [38].
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Figure 8. Statistical distribution of the ℓ∞ errors on the predictions of our best multilayer perceptron,
trained/tested on CleanTrainingDataSET/CleanValidationDataSET (left picture), CleanTraining-
DataSET/NoisySmallTestDataSET (center), and NoisyTrainingDataSET/NoisyTestDataSET (right).
The bottom histograms are obtained by removing the average value of the doping. The dashed lines
represent the average value of the error, while the arrows point to the 25, 50, and 75-percentile of the
error on the top histogram, and show how these transform when removing the average in the bottom
histogram.

For a given configuration of the neural network, we apply the stochastic gradient descent
(SGD) algorithm (without momentum and weight decay) to find the MLP that minimizes
the mean square error loss defined in Equation (14). For each network configuration, we
fix the learning rate to a value that is chosen randomly in the interval [10−3, 1] and the
batch size to 64. The number of training epochs is set to 1, 000.

We randomly select 10, 000 configurations where we vary both the structure of theMLP
(choosing one of the 71,118 possible MLPs) as well as the learning parameters of SGD.
To reduce the computational cost associated with the training of all the resulting neural
networks, we apply the Asynchronous Successive Halving algorithm (ASHA) [39], a multi-
armed bandit algorithm that has been optimized to run on a massive amount of parallel
machines. The ASHA algorithm discards the worst 50% performers of the neural network
population at each check point and proceeds with the training only for the most promising
neural networks. Our implementation is based on the Ray library [40], which also takes
care of distributing the jobs and coordinating the execution among different nodes during
the computation.

The multilayer perceptron with the smallest ℓ∞ testing error defined in Equation (15)
(trained withCleanDataSET and tested withCleanTestDataSET), has six layers with 250,
250, 150, 100, 1000, 350 nodes, a batch size of 64, and a learning rate of 0.06. The statistical
distribution of the error is reported in the middle part of Table 2, and depicted in the left
plot of Figure 8. The ℓ∞ error is, on average, around 4.67%. Even with such a simple neural
network, we reduce the average error with respect to the least square model by of a factor
two. Also, we obtain a much better statistical distribution, clearly shown in Figure 8.

Furthermore, the resulting MLP is robust to noise, provided that we properly filter the
average of the doping profile. A comparison between the statistical distribution of the
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Figure 9. Three examples of predictions on theNoisyTestDataSet, with the bestMLPmodel trained on
theNoisyTrainingDataSet, taken from the 25, 50, and 75 percentile of the error, removing the average.
The errors of the plots correspond to the arrows in the lower histogram in the right of Figure 8.

errors (both with andwithout average) as well as the corresponding statistical distributions
are shown inTable 2 and in Figure 8 (center). Testingwith theNoisyTestDataSETwhile the
MLP was trained with CleanDataSET shows (as expected) a large increase in the average
error.

More robust results with respect to noise can be obtained by training again the best
MLP on the full NoisyTrainingDataSET. We do not perform an additional hyperparam-
eter tuning, but simply repeat the training stage on the same MLP. In this case, the larger
dataset and the presence of noise induce an error when tested with theNoisyTestDataSET
of around 5.92%. This error can, again, be improved by removing the average as we did
before, leading to a final error which is very close to the clean case (4.96% vs 4.67%). We
show three doping reconstructions for this case in the 25, 50, and 75 percentile in Figure 9.

In summary, introducing a nonlinear MLP model has reduced the error roughly by a
factor of two compared to the linear least square model. The average MLP is just below 5%
for clean test data or noisy but properly average adjusted test data.

4.6. Residual neural network (ResNet)

In 2015, Kaiming et al. [41] introduced ResNets, feedforward convolutional neural net-
workmodels, which, since then, have beenwidely used to solve different kinds of problems.
One of the biggest advantages of ResNets (or, generally, of convolutional neural networks)
over the multilayer perceptrons is their ability to learn 2D images. Interpreting the doping
profiles in 2D probing region as an image, this is precisely what we need to achieve, too.
Moreover, the proportionality shown inEquation (18), valid under additional assumptions,
suggests that the photovoltage signal and the doping profilemay be related by convolutions.
Even assuming now a nonlinear relationship described via ResNets, we may still wish to
exploit a convolutive structure to encompass the relationship in Equation (18). Our refer-
ence implementation for residual neural networks (ResNet) is described in Ref. [41], with
some important differences regarding the structure of the network.

First, in our LPS setup from Section 4.2, we consider one-dimensional data vectors C
and u instead of two-dimensional images. The dimension is particularly relevant to choose
the size of the network: In ResNets, the downsampling blocks reduce by a factor of two
the size of the input, by first halving the size of the input in each direction (reducing the
spatial indices by a factor four) and then doubling the number of channels. In our setup,
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this dimension reduction associated to the downsampling block does not happen because
in the first step we only have one dimension to divide by two, and we end up with the
same number of neurons after doubling the numbers of channels. Moreover, while the
ImageNet database used to train the network described in Ref. [41] contains about one
million images, our datasets are significantly smaller. We expect to face some overfitting
and therefore we aim for a model with fewer parameters than the one described in Ref.
[41]. Finally, we solve a regression problem instead of a classification one. The major con-
sequences for ourmodel are that we cannot use drop-out layers to reduce overfitting, and it
is unclear if there is any benefit in using batch normalization layers.We keep the batch nor-
malization layers because we expect the statistical distribution of our batches to be similar
to each other, and the statistical distribution of the error for a simpler network (the MLP)
shows an improvement in the performance of the model with noise when removing the
average, suggesting that batch normalization layers are at least not harmful.

We build several ResNet models using PyTorch [38] and develop a strategy to find the
best ones by adapting the model described in Ref. [41], and using the insight obtained
from theMLPmodel presented in Section 4.5. Our best multilayer perceptron had 160,950
parameters that had to be optimized. We try to keep the number of parameters of our
ResNet around the same order of magnitude. Of course, this means that we need to
drastically simplify the model developed in Ref. [41], to find a model whose number of
parameters is compatible with the size of our CleanTrainingDataSET.

Since training a ResNet is significantly more expensive compared to training a mul-
tilayer perceptron, we use a two-step strategy to reduce the computational cost of the
hyperparameter tuning. The possible configurations of the ResNet that we allow in our
models are detailed in Appendix 2 and correspond to a total of 48 configurations for the
gate, 9 configurations for the encoder, and 18 configurations for the decoder, for a total of
7776 possible configurations (Figure 10).

In the first step of our hyperparameter tuning, we restrict the parameters for the SGD
optimizer to a fixed float number chosen in the interval [5 × 10−3, 1 × 10−1] for the learn-
ing rate, and choose a batch size in the set {64, 128, 256, 384, 512}. We fix also the gradient
clipping to 1 and the weight decay to 0. During this step, we randomly sampled 300 ResNet
configurations among the 7776 generated according to Appendix 2, and for each one of
them, we performed six trainings using different set of parameters for the SGD opti-
mizer. Again, we rely on the ASHA algorithm as we did in Section 4.5. We compare the
performances of the models after 5000 epochs of the SGD algorithm, and retain only four
of the candidate ResNet models selected by the ASHA algorithm, which are described in
Table 1.

In the second stage of the hyperparameter tuning, we keep the four structures of the
ResNet models fixed, and enlarge the search space in the optimization parameters by
defining a new set of admissible parameters: we choose the learning rate in the interval
[10−3, 10−1], the batch size in the set {32, 64, 128, 256, 384, 512}, the gradient clipping in
{10−2, 10−1, 1}, and we introduce some weight decay, with decay parameters chosen in the
set {10−4, 10−3, 10−2, 10−1, 1}.

For each one of the four models, we perform 200 different trainings applying different
parameters of the SGD optimizer, and finally select a winner, corresponding to RN3 in
Table 1.
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Figure 10. ℓ∞ errors of our model with respect to the parameters of the optimizer. In the top
plot, the colours correspond to the networks RN1-RN4, as seen in Table 1. The other two plots
(bottom row) are batch size and weight decay density plots computed via KernelDensity of
sklearn.neighbours with a Gaussian kernel and a bandwidth of 0.02. Darker line colours cor-
respond to bigger parameter values (batch size or weight decay).

Table 1. The four ResNet models (RN1–RN4) identified in the first stage of the hyperparameter tuning
by the ASHA algorithm.

RN1 RN2 RN3 RN4

N. of channels 24 16 24 16
Gate conv. kernel size 9 5 7 3
Gate conv. stride 4 4 4 4
N. of encoder blocks 3 3 3 3
Block type: FixedChannel Basic FixedChannel FixedChannel
Downsampling: True True True True
Size of decoder layers (100, 200) (150, 150) (200, 200) (250, 200)
N. of parameters 102,188 324,048 141,440 138,994

Note: RN3 is the one selected in the second stage.

In Figure 11 we present the statistical distribution of the error for ResNet RN3 selected
with the strategy outlined above. We observe that the average error we obtain using the
CleanDataSET for both training and testing is around 5.47% (see Table 2 for the details).
This number is slightly worse compared to theMLP case introduced in Section 4.5. In par-
ticular, we observe that the ResNet RN3 trained with the CleanDataSET is more sensitive
to noise (see Figure 11, center figure) when compared to the MLP (29.7% vs 21.2%). This
difference decreases when removing the average, but for the ResNet remains surprisingly
worse than the least square model (16% vs 15.5%).

When we keep the structure of RN3, and train the network on the NoisyTraining-
DataSET, we obtain the results shown in Figure 11 on the right. An example of reconstruc-
tion obtained with RN3 with a sample from theNoisyTestDataSET is shown in Figure 12.



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 21

Figure 11. Statistical distribution of the errors on the predictions of our best ResNet, trained/tested on
CleanTrainingDataSET/CleanTestDataSET (left), CleanTrainingDataSET/NoisySmallTestDataSET
(center), and NoisyTrainingDataSET/NoisyTestDataSET (right). The bottom histograms are obtained
by removing the average value of the doping. The dashed lines represent the average value of the error,
while the arrows point to the 25, 50, and 75-percentile of the error on the top histogram, and show how
these transform when removing the average in the bottom histogram.

Table 2. Absolute errors w.r.t C0 = 1.0 × 1016 cm−3 corresponding to the coloured arrows as well as
dashed lines showing in Figures 5,8, and 11 (from top to bottom).

Absolute error (×C0) Average 25-th percentile Median 75-th percentile

LS C.C. 9.32% 4.15% 6.53% 1.16%
C.N.w/ mean 21.5% 11.5% 17.9% 28.4%
C.N.w/o mean 15.5% 6.75% 10.5% 21.0%
N.N.w/ mean 11.4% 5.72% 8.46% 13.8%
N.N.w/o mean 9.81% 4.20% 6.47% 11.9%

MLP C.C. 4.67% 1.03% 1.83% 3.98%
C.N.w/ mean 21.2% 91.1% 17.3% 29.3%
C.N.w/o mean 13.7% 4.15% 8.89% 19.7%
N.N.w/ mean 5.92% 2.14% 3.60% 6.20%
N.N.w/o mean 4.96% 1.44% 2.49% 4.67%

ResNet C.C. 5.47% 1.60% 3.00% 6.80%
C.N.w/ mean 29.7% 13.2% 22.3% 38.5%
C.N.w/o mean 16.0% 5.27% 10.4% 21.2%
N.N.w/ mean 8.67% 4.22% 6.20% 10.1%
N.N.w/o mean 6.72% 3.15% 4.44% 7.06%

Note: Here the second column categorized the training and testing datasets mentioned in the captions of the histogram
figures. For instance, the row for “C.N. w/ mean” in the block of MLP shows the errors in the top-mid histogram in Figure
8 which is trained/tested on CleanTraining DataSET/NoisySmallTestDataSET.

In this case the average error on theNoisyTestDataSET is around 6.72%, which is slightly
worse than the result obtained with the MLP network.

5. Summary and outlook

The aimof this paperwas to properlymodel andnumerically solve general ill-posed inverse
photovoltage technologies where measured photovoltage signals are used to reconstruct
local doping fluctuations in a semiconductor crystal. The underlying charge transport
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Figure 12. Three examples of predictions on the NoisyValidationDataSet, with the best ResNet RN3
model trained on the NoisyTrainingDataSet, taken from the 25, 50, and 75 percentile of the error,
removing the average of the doping. The colours of the plots indicate the arrows in the right bottom
histogram in Figure 11.

model is based on the van Roosbroeck system as well as Ohm’s law.We presented three dif-
ferent data-driven approaches to solve a physically relevant local inverse problem, namely
via least squares, multilayer perceptrons, and residual neural networks. The methods
were trained on synthetic datasets (pairs of discrete doping profiles and corresponding
photovoltage signals at different illumination positions) which are generated by efficient
physics-preserving finite volume solutions of the forward problem. While the linear least
squaremethod yields an average absolute ℓ∞ error of 9.3%, the nonlinear networks roughly
halve this error to 4.7% and 5.5%, respectively, after optimizing relevant hyperparameters.
Ourmethod turned out to be robustwith respect to noise, provided that training is repeated
with larger, noisy, datasets. In this case, the error is around 9.8%, 5%, and 6.7% respectively.
Removing the average doping value from the data was more important to reduce the test-
ing error for clean datasets than for noisy ones. The datasets, python codes, and resulting
trained networks are available in the repository [36].

Future research may go into different directions: the numerical simulation served as
a proof of principle and was limited to a 2D version of the photovoltage problem. For
the 3D problem, efficient data generation strategies need to be designed. Furthermore,
it is clear that different doping profiles may correspond to similar signals. On the one
hand, this is intrinsically dependent on the technology that we apply to recover the sig-
nal: we hit the crystal with a laser that has a finite laser spot radius (in our case, around
20µ m), and we cannot expect to resolve oscillations with smaller wave lengths. On
the other hand, our models do not have a way to distinguish between two doping pro-
files that deliver the same signal but are exposed, during training, to many such cases.
In Figure 13, for example, we show two examples of doping profiles that have errors
on the far right regions of the histograms in Figures 8 and 11. The figure shows how
in some cases, the inverse problem is oblivious to higher oscillations, and both neu-
ral network types will have cases in which they return an answer which is either too
smooth w.r.t. the expected result, (left panel of Figure 13) or too oscillatory (right panel
of Figure 13).

A possible focus of future research could be to study how to resolve this ambiguity,
which is intrinsic to the ill-posedness of the discrete local photovoltage inverse problem.
Finally, we aim to extend our data-driven approach to opto-accoustic imaging, replacing
the charge transport model with appropriate thermal expansion models.
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Figure 13. An example of an outliers using the MLPmodel (left) and the ResNet model RN3 (right). The
dashed line represents the expected doping profile sample, and the continuous line is the output of the
neural networks.
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Appendices

Appendix 1. Generation of noise
In order to introduce noise in the doping profile (16), we perturb both the doping amplitudes as
well as the wavelength. To perturb the doping amplitudes, we start from some elements of CTF.
We introduce imperfections of the doping profile that may be interpreted physically with a slight
perturbation during the growth process (for example, due to a fluctuation of the temperature), we
choose a random function fn(x) and define a perturbed doping of the form C̃(x) := C(x) + fn(x).We
require that fn(x) ≪ C(x) for any x. To generate fn(x), we pick 129 equally-spaced points xi across
the silicon sample and randomly sample 129 values from a normal distribution (with 0 mean and
standard deviation equal to 1), obtaining a family of values si. Denoting the maximal variation of C
with

.C := max
x∈[−ℓ/2,ℓ/2]

C(x) − min
x∈[−ℓ/2,ℓ/2]

C(x) we define fn(xi) := k si.C,

for 0 < k ≪ 1. For any other point x ̸= xi across the sample, we compute fn(x) by cubic spline inter-
polation. Next, we perturb the wavelengths. In (16), we assumed that the doping has fluctuations
with constant wavelength across the entire domain. We weaken this assumption by introducing a
non-periodic perturbation in the argument of the sinusoidal functions: we consider a differentiable
function t : [−ℓ/2, ℓ/2] −→ [−ℓ/2, ℓ/2], such that t(−ℓ/2) = −ℓ/2, t(ℓ/2) = ℓ/2, and t′(x) > 0 for every
x; then we define the perturbed doping as C̄(x) := C̃(t(x)).

In order to generate t, we impose that p(x) := t(x) − x is a polynomial of degree 2 or 3. Due to
the properties of the function t, we obtain that p(−ℓ/2) = 0 and p(ℓ/2) = 0. We randomly decide
whether to use a polynomial of degree 2 or of degree 3, that is, we use

p(x) = k (x + ℓ/2) (x − ℓ/2) or p(x) = k (x + ℓ/2) (x − ℓ/2) (x − α)

where k and α are random constants chosen so that p′(x) > −1 for every x.
Applying the transformation on a doping function, we can generate new samples for our dataset

whose doping can not be described simply by choosing some suitable parameters in (16).

Appendix 2. ResNet structure
Exactly as we did for the MLP models, all of our ResNets are preceded by a down-scaling interpola-
tion layer and, at the end, there is an up-scaling layer that restores the original dimension of the data;
the scaling layers use cubic interpolation to describe the signals or the dopings on different spacial
grids. In this case, we fix the size of the coarse grid to 256, i.e. to a power of two that is close to the
size that we have seen performs better in the MLP model. Using a power of two we ensure that the
downscaling blocks of the ResNet always deal with an even number of neurons.

Following [41], the structure of our ResNets is made of three different parts: the gate, which
elaborates the input from the down-scaling layer; the encoder, which applies the convolutional layers

https://doi.org/10.1109/CVPR.2016.90
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in order to extract the most relevant features of the signal; and the decoder, which takes as input the
features recognized by the encoder and produces the model prediction. In the following part, we
describe in detail the structure of each part of the network and its associated hyperparameters.

Gate This is the first part of our network (after the down-sampling layer). It consists of a convolu-
tional layer, a batch normalization layer, and an activation layer. In the convolutional layer, we choose
the kernel sizes from the set {3, 5, 7, 9}. The number of output channels, instead, is chosen from the
set {8, 16, 24, 32}. Finally, the stride of the convolution layer is chosen from the set {1, 2, 4}. This leads
to 4 × 4 × 3 = 48 possible convolutional layers for our gate. Taking into account that the activation
layer always applies a ReLU (that does not require parameters) and that also the normalization layer
is fixed, we have a total of 54 possible configurations for the gate.

Encoder The encoder is built by stacking several blocks of the same type. We consider two dif-
ferent kinds of blocks: the “basic blocks” described in Ref. [41] and the “fixed channel block”. Both
blocks are made of the following layers: a convolutional layer, a batch normalization, a ReLU acti-
vation layer, another convolution, and, finally, a normalization. The two convolutional layers have a
fixed kernel size of 3: they do not have bias and the padding is chosen so that the size of the output
is preserved (therefore, in our case, the padding is equal to 1).

The difference between a ResNet and a plain convolutional neural network is the fact that the
input of each block is not simply the output of the previous one. Instead, each block Bi saves the
input xi it receives and, after its computations, sums its output Bi(xi) with the original input xi (or
with a simple function of the input si(xi)). In this way, the input of the layer Bi+1 is

xi+1 = xi + Bi(xi). (A1)

Usually, in a ResNet, the shape of the data may change along the layers; indeed, xi is a bidimensional
tensor: the first index represents the spatial position and while the second one is the channel. The
input of the first block of the encoder has shape (256, k1) where k1 is the number of output channels
of the gate but, while the blocks become deeper, ki increases and the number of points decreases.
A block Bi so that B(xi) has a different shape respect to xi is called a downsampler block. In our
networks, each downsampler block halves the size of the first index of the tensor; so, for example, the
output of the first downsampler block will have size (128, ki). The only difference between the “basic
blocks” and the “fixed channel blocks” is in how the perform the downsample: a downsampling basic
block increases the number of channels by a factor two, while a fixed channel block does not.

It is worth noting that Equation (A1) can not be applied by the downsampling blocks because of
the different shapes of the tensors. In this case, the equation becomes

xi+1 = si(xi) + Bi(xi).

where si is called ”shortcut operation”; in our network, si is performed by a convolutional layer with
kernel size equal to 1 and stride equal to 2 (basic blocks), or kernel size equal to 2 and stride equal
to 2 (for the fixed channel blocks), followed by a normalization block.

The convolutional layer of the shortcut of the fixed channel blocks forbids any communication
between channels, i.e. each element of the output tensor depends only on the values of the elements
of the input tensor that share the same index for the channel (or, in other words, using PyTorch we
impose that the number of groups of the convolutional layer is equal to the number of channels).
For what concerns the computation of the output (and not the shortcut), the dimensional reduction
is obtained by setting the stride of the first convolutional layer to 2.
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Therefore, the only free parameters that we have left for our encoder are the number of blocks,
their kind, and a downsampling flag for each block. Our encoders consist of one, two, or three blocks
of the same kind. For encoders made of basic blocks, we allow two different configurations of the
downsample flag: true for all blocks or false for all blocks. For fixed channel blocks, we always set the
downsample flag to true. We have a total of 6 configurations for the encoders with the basic blocks
and 3 configurations that use the fixed channels blocks, for a total of 9 possible configurations.

Decoder This is essentially a multilayer perceptron, and we allow 1 or 2 hidden layers. If we
choose a configuration with 1 layer, the size of this layer could be 100, 150 or 200. With 2 lay-
ers, there is a total of 15 possible configurations obtained by choosing the size of the first layer in
{100, 150, 200, 250, 300} and the second one in {100, 150, 200}. In total, we have therefore 18 different
configurations for the decoder.
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