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Abstract
Nutrient enrichment is a major threat to subtidal macroalgal forests. Several studies have shown that nutrient inputs can 
enhance the ability of opportunistic algal species to acquire space freed by disturbance, at the expense of architecturally 
complex species that form forests. However, competition between canopy- and turf-forming macroalgae is not limited to the 
aftermath of disturbance. Canopy-forming macroalgae can provide suitable substratum for diverse epibiont assemblages, 
including both algae (epiphytes) and sessile invertebrates (epizoans). Despite evidence of enhanced epiphyte loading under 
eutrophic conditions, few experimental studies have assessed how nutrient enrichment influences the structure of epibiont 
assemblages on canopy-forming macroalgae at the edge versus inside forests. In oligotrophic waters of the NW Mediterra-
nean, we experimentally tested the hypothesis that nutrient-driven proliferation of opportunistic epiphytic algae would affect 
the performance of the fucoid, Carpodesmia brachycarpa, and reduce the richness and abundance of the epizoan species 
they support. We predicted negative effects of nutrient enrichment to be greater at the edge than inside forests and on thalli 
that had recovered in cleared areas than on those within undisturbed canopy stands. Nutrient enrichment did not affect the 
photosynthetic efficiency and reproductive output of C. brachycarpa. By contrast, it enhanced herbivore consumption and 
decreased the cover and diversity of epizoans at forest edges, likely by stimulating the foraging activity of Arbacia lixula, the 
most abundant sea urchin in adjacent encrusting coralline barrens. Fertilization of areas inside forests had no effect on either 
C. brachycarpa or epibiont assemblages. Finally, nutrient enrichment effects did not vary between cleared and undisturbed 
areas. Our results show that moderate nutrient enrichment of oligotrophic waters does not necessarily cause the proliferation 
of epiphytes and, hence, a strengthening of their competitive effects on canopy-forming macroalgae. Nevertheless, enhanced 
herbivory damage to fertilized thalli at forest edges suggests that fragmentation could reduce the resilience of macroalgal 
forests and associated epibiont assemblages to nutrient enrichment.

Introduction

Coastal environments are under siege from human stressors 
(Halpern et al. 2008; Hoegh-Guldberg and Bruno 2010). 
Loss of foundation species (i.e. species that form or mod-
ify habitat) is of particular concern due to their key role in 
sustaining biodiversity and ecosystem functioning (Ange-
lini et al. 2011; O’Leary et al. 2017; Gribben et al. 2019). 
Along temperate coasts worldwide, brown canopy-forming 
macroalgae, either Fucoids or Laminariales, are being pro-
gressively replaced by less complex, turf-forming species, 
impairing the functioning of shallow rocky reefs (Kautsky 
et al. 1986; Vogt and Schramm 1991; Bulleri and Benedetti-
Cecchi 2006; Airoldi and Beck 2007; Gorman et al. 2009; 
Crowe et al. 2013; Strain et al. 2014; Krumhansl et al. 2016; 
Filbee-Dexter and Wernberg 2018).
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Although there is substantial consensus over this state 
transition to be the result of cumulative effects of regional 
and global stressors (Estes and Palmisano 1974; Benedetti-
Cecchi et al. 2001; Gorgula and Connell 2004; Airoldi and 
Beck 2007; Gorman et al. 2009; Smale and Wernberg 2013; 
Verges et al. 2014; Alestra and Schiel 2015; Ling et al. 2015; 
Wernberg et al. 2016; Bulleri et al. 2017), enhanced nutrient 
loading has been long identified among the primary drivers 
of macroalgal forest loss (Ballesteros et al. 1998; Benedetti-
Cecchi et al. 2001; Gorgula and Connell 2004; Mangialajo 
et al. 2008; Gorman et al. 2009). Nonetheless, most of the 
evidence for nutrient-driven decline of macroalgal forests 
has been generated from eutrophic basins (e.g. the Skager-
rak: Moy and Christie 2012; the Baltic Sea: Kautsky et al. 
1986; Vogt and Schramm 1991; Havelange et al. 1997; 
Bergström et al. 2003; da Gama et al. 2008; the Adriatic 
Sea: Iveša et al. 2016; Strain et al. 2015), agricultural or 
urban catchments (Coleman et al. 2008; Mangialajo et al. 
2008; Gorman et al. 2009) and, hence, it is not representative 
of temperate coasts characterized by lower nutrient status 
(Menge et al. 1999; Bulleri et al. 2012; Clausing et al. 2020).

In non-eutrophic basins, there is limited evidence for 
direct negative effects of moderate nutrient enrichment on 
canopy-forming macroalgae (Creed et al. 1997; Bokn et al. 
2003; Steen and Rueness 2004; Steen and Scrosati 2004; 
Alestra and Schiel 2015; Chu et al. 2019; Tamburello et al. 

2019). Brown macroalgae can, in fact, face seasonal nutrient 
limitation and benefit from nutrient inputs, especially when 
occurring as pulses (Schaffelke and Klumpp 1998) (Fig. 1). 
Increased nutritional value of plant tissue (i.e. lower C/N 
ratio) under elevated nutrient levels can stimulate canopy 
consumption by herbivores (Fig. 1) and, indeed, alter their 
behavior and foster their growth and reproduction (Hemmi 
and Jormalainen 2002, 2004; Kraufvelin et al. 2006; Valen-
tine and Duffy 2006; Balata et al. 2010; Ghedini et al. 2015; 
Tuya et al. 2015; Ravaglioli et al. 2018). On the other hand, 
use of internal N stores, along with efficient external uptake, 
can provide a competitive advantage to complex macroal-
gae, such as Laminariales and Fucales, over ephemeral algal 
species (Pedersen and Borum 1997; Falkenberg et al. 2013; 
Kriegisch et al. 2019; Tamburello et al. 2019).

Several experimental studies have assessed the effects 
of nutrient enrichment on the ability of canopy-forming 
versus opportunistic species (either turfs or non-natives) to 
acquire space in the aftermath of disturbance (Gorgula and 
Connell 2004; Kraufvelin et al. 2010; Bulleri et al. 2012; 
Alestra and Schiel 2014; Carnell and Keough 2014; Piazzi 
and Ceccherelli 2017; Tamburello et al. 2019). By contrast, 
few studies (Russell et al. 2005; Werner et al. 2016) have 
experimentally investigated the effects of elevated nutri-
ent levels on the interaction between canopy-formers and 
epibionts and these have exclusively focused on established 

Fig. 1  Schematic representation of main direct (solid lines) and indi-
rect (dashed lines) effects of enhanced nutrient levels on subtidal 
macroalgal forests formed by Carpodesmia brachycarpa. In oligo-
trophic waters, moderate inputs of nutrients can directly enhance the 
survival, growth and reproduction of brown seaweeds by alleviating 
resource limitation. Increased nutritional value of macroalgal tissues 
under nutrient enrichment can negatively influence canopy-forming 

macroalgae by stimulating herbivore consumption by fish and, at the 
edge with barrens, by sea urchins. Nutrients can also promote epi-
phyte proliferation, increasing their competitive pressure on both C. 
brachycarpa and epizoans. Since greater water motion could foster 
nutrient uptake, direct and indirect effects of enrichment are expected 
to be greater at the edge than inside macroalgal forests. The size of 
lines represents the intensity of the effects
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canopy stands made of adult thalli. Thus, we know little of 
the structure of epibiont assemblages on canopy-forming 
macroalgae that have recruited and grown in disturbed areas, 
under enriched conditions.

In addition, most studies have focused on epiphytes, 
despite macroalgal canopies provide suitable substrata also 
for diverse assemblages of sessile invertebrates (Thornber 
et al. 2016; Teagle et al. 2017). As shown for epiphytes 
(D’Antonio 1985; Buschmann and Gómez 1993; Saier and 
Chapman 2004; Wahl 2008; Thornber et al. 2016), some 
epizoans, such as encrusting bryozoans, tunicates and 
sponges, can damage their macroalgal host by reducing light 
harvesting, nutrient uptake and reproductive output or pro-
moting blade breakage from hydrodynamic forces (Dixon 
et al. 1981; Wong and Vercaemer 2012; Andersen et al. 
2019). However, the effects of epibionts can be also posi-
tive. For instance, both epiphytes and epizoans can reduce 
host consumption by herbivores (Karez et al. 2000; Loffler 
et al. 2015). Sessile and mobile invertebrates can further 
sustain host growth through the provision of N-rich catabo-
lites (Hepburn and Hurd 2005; Bracken et al. 2007; Hepburn 
et al. 2012; Peters et al. 2019). Thus, the net outcome of 
epibiosis is likely the result of a trade-off between negative 
and positive interactions (Thornber et al. 2016). Nutrient 
enrichment can alter such trade-offs by fostering the prolif-
eration of opportunistic algae (e.g. the filamentous), at the 
expense of more complex algal forms (i.e. the foliose and 
corticated) and epizoans (Fig. 1).

Finally, the effects of nutrient enrichment on canopy-
former epibionts can also vary according to the spatial con-
figuration of canopy stands and, more specifically, among 
individuals at the edge versus inside forests (Fig. 1). Key 
features of both habitat-forming macrophytes (i.e. biomass, 
density, growth) and associated assemblages (diversity and 
relative abundances) can differ between forest edge and inte-
rior. In addition, thalli and epibiont assemblages at forest 
edges are exposed to different biotic (e.g. recruitment, graz-
ing, predation) and abiotic (e.g. light, water flow, sedimenta-
tion, physical disturbance) conditions in comparison to those 
at the interior (Boström et al. 2006; Gaylord et al. 2007; 
Stewart et al. 2009; Arkema and Samhouri 2019).

In oligotrophic waters of the NW Mediterranean, we 
assessed how nutrient enrichment affects the photosynthetic 
efficiency, the reproductive output and herbivore damage 
in the fucoid, Carpodesmia brachycarpa, and the struc-
ture of the epibiont assemblage it supports. In particular, 
we tested the hypothesis that nutrient enrichment would 
facilitate the proliferation of opportunistic epiphytic algae 
at the expense of more complex algal forms and epizoans. 
We expected changes induced by nutrient enrichment to be 
greater at the edge than inside forests, since greater water 
motion can facilitate nutrient uptake (Ballesteros et al. 1998; 
Hurd 2000; Gaylord et al. 2007; Stewart et al. 2009). Since 

early life stages are generally more responsive to alterations 
in environmental conditions and resource availability, we 
predicted that nutrient-driven changes in the physiology of 
C. brachycarpa and associated epibiont assemblages would 
be greater for individuals that recruited in cleared areas and 
grew under enriched conditions than for adult specimens 
that were exposed to elevated nutrient levels when already 
fully developed.

Materials and methods

This study was carried out along the south-eastern coast of 
Capraia Island, in the Tuscan Archipelago (43.05° N, 9.85° 
E), between June 2014 and July 2016, within the framework 
of a broader project aimed to assess the mechanisms under-
lying shifts among alternative stable states on temperate 
rocky reefs. At depths between 2 and 8 m, the fucoid, Carpo-
desmia brachycarpa (J. Agardh) Orellana and Sansòn (pre-
viously Cystoseira brachycarpa), forms lush canopy stands 
that alternate with patches dominated by either encrusting 
corallines or algal mats made of foliose (Dictyota spp., Pad-
ina pavonica), filamentous (Sphacelariales), siphonous algae 
(Acetabularia acetabulum, Caulerpa cylindracea) and cor-
ticated Rhodophyta (e.g. Laurencia obtusa, Gastroclonium 
sp.) (Bulleri et al. 2017; Tamburello et al. 2019). Patches 
of habitat alternatives to macroalgal forests are produced 
by intensive grazing by sea urchins or disturbance due to 
hydrodynamic forces (Bulleri et al. 2018).

At 4–6 m depths, we randomly selected 8 boulders com-
pletely covered by C. brachycarpa canopies (hereafter 
referred to as forest habitat: FH) and 8 boulders over which 
urchins had formed barren patches (2–3 m2) within cano-
pies (hereafter referred to as edge habitat: EH). All boulders 
were about ~ 15 m2 in surface area. Arbacia lixula was the 
dominant sea urchin in barren patches (mean density·m−2 ± 
SE = 3.344 ± 0.168), while Paracentrotus lividus densities 
were remarkably low (mean density·m−2 ± SE = 0.136 ± 0.0
24) (Tamburello et al. 2019). On each boulder, a 1.5 × 0.5 m 
area was marked, using epoxy putty, either inside the for-
est on FH boulders (> 1 m from the edge of the boulders) 
or at the edges between the forest and the barren on EH 
boulders. To assess how nutrient enrichment influences the 
physiology of newly established thalli and the structure of 
the epibiont assemblage they support, canopies were totally 
removed from marked areas in four FH and four EH, ran-
domly chosen, boulders. Thus, there were 4 boulders for 
each combination of habitat (FH versus EH) and canopy 
treatment (Control versus Cleared).

Nutrients were elevated in 2 randomly identified boul-
ders for each combination of habitat and canopy treatment, 
using slow-release fertilizer pellets (Osmocote, 6 months, 
17:11:10 N:P:K) contained in plastic mesh bags (1 mm), 
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a common method for elevating nutrient levels in seawater 
(Worm et al. 2000; Russell et al. 2005; Balata et al. 2010; 
Bulleri et al. 2012; Tuya et al. 2015; Ravaglioli et al. 2018). 
To achieve nutrient levels found in nearby urban areas, 8 
bags, each containing 100 g of fertilizer, were fixed with 
plastic cables ties to steel hooks inserted in the rock within 
each area. Bags within an area were at least 30 cm apart 
and were replaced every 3 months to guarantee continuous 
nutrient release. At each of two times (June and November 
2015), two seawater samples were taken ~ 3 cm above each 
fertilized area, using a 60 ml syringe (n = 16). Background 
nutrient levels in the area were assessed taking two water 
samples from each of six randomly chosen areas maintained 
at ambient nutrients, using the same method. These included 
also partial canopy removal areas that were generated within 
the framework of the broader project and not useful for the 
test of the hypotheses in this study (i.e. 30% and 70% canopy 
removal; see Tamburello et al. 2019 for details). Samples 
were immediately filtered (0.45 μm) and frozen prior to 
transport to the laboratory, where concentrations of nitrites 
 (NO2), nitrates  (NO3) and phosphates  (PO4) were assessed 
by means of a continuous-flow AA3 Auto-Analyzer (Bran-
Luebbe), following standard methods (Grasshoff et al. 1999). 
Although moderate, there was an increase in the concentra-
tion of  NO3 and  PO4 at both times of sampling and in that 
of  NO2 at Time 1 (See Electronic Supplementary Material, 
ESM Fig. S1).

Measurements of nutrient levels from water samples col-
lected nearby the releasing devices are generally highly vari-
able in time and do not provide accurate estimates of mean 
concentrations achieved throughout the duration of an exper-
iment (Russell et al. 2005; Bulleri et al. 2012). Thus, the 
weight of nutrient pellets in each bag was measured before 
deployment with a precision scale and, following retrieval 
from the field, after residual pellets were kept in a muffle 
oven for 28 h at 60 °C. The difference between the initial 
and final weight provides a more reliable estimate of daily 
rates of nutrient release (Carnell and Keough 2014). Across 
the duration of the experiment, the average daily release of 
N and P within each area was consistent among treatments 
(mean g day−1 ± SE; FH: canopy control, N = 0.392 ± 0.040, 
P = 0.254 ± 0.024; canopy removal, N = 0.421 ± 0.040, 
P = 0.272 ± 0.027; EH: canopy control, N = 0.38 ± 0.031, 
P = 0.247 ± 0.020; canopy removal, N = 0.400 ± 0.038, 
P = 0.259 ± 0.024).

Two years after the start of the experiment, C. brach-
ycarpa had recovered in experimentally cleared areas, 
although to a greater extent under nutrient enrichment 
(Tamburello et al. 2019). Thus, five C. brachycarpa thalli 
were randomly identified in each of the areas assigned to a 
combination of habitat (FH versus EH), canopy (Control 
versus Cleared) and nutrient (Ambient versus Enhanced) 
treatments, for a total of 80 thalli. The length of thalli ranged 

between 8 and 24 cm, but the average length did not differ 
among experimental treatments (See Electronic Supplemen-
tary Material, ESM Table S1). Selected thalli were about 
30 cm apart one from another and, in nutrient enriched areas, 
20–30 cm apart from the nearest nutrient bag. For each thal-
lus, in vivo chlorophyll fluorescence was measured on 3 ran-
domly chosen branches with a pulse-amplitude-modulated 
(PAM) fluorometer (Diving-PAM, Walz). Effective quantum 
yield, an estimate of the photosynthetic efficiency of photo-
system II (PSII) in light-adapted thalli, was measured in situ, 
between 11:00 a.m. and 14:00, by means of the saturating-
light method on branches under ambient conditions. These 
thalli were then collected, sealed in transparent plastic bags 
and brought to the lab in an ice cooler, where they were 
preserved at − 20° C until further analyses.

The main consumers of C. brachycarpa in the Mediter-
ranean are the sea urchins, P. lividus, and A. lixula, and 
the sparid fish, Sarpa salpa (Vergés et al. 2009; Agnetta 
et al. 2015). At our study site, urchins were absent inside 
C. brachycarpa stands and their grazing was, thus, limited 
to the boundary with barren areas. Thalli inside and at the 
edge of forests were exposed to herbivory by S. salpa (Ver-
gés et al. 2009). To assess the effects of nutrient enrichment 
on herbivore consumption, we quantified the percentage 
of primary branches damaged in each thallus. In addition, 
since previous studies have shown that seawater nutrient 
levels influence the fecundity of brown seaweeds (Wahl 
2008; O’Brien et al. 2013), the number of receptacles was 
counted on 5 randomly chosen primary fronds for each of 
four experimental thalli, under a dissecting microscope. The 
number of receptacles was standardized per frond surface 
area (i.e. expressed as density).

For each of the five experimental thalli, the abundance of 
algae and sessile animals was assessed on 5 randomly cho-
sen primary branches. Species abundance was quantified as 
the surface occupied by the vertical projection of individuals 
of each species and expressed as a percent cover (Boudour-
esque 1971). Species were identified to the lowest taxonomic 
level possible, generally the genus or the species, except for 
encrusting corallines, Serpulidae, Foraminifera and Porifera.

Analysis of data

Replicate measures taken within thalli (3 for quantum yield 
and 5 for receptacle number and relative abundances of epi-
biont species) were averaged for analysis. The percentage 
of damaged fronds, effective quantum yield and number of 
receptacles were analyzed by means of ANOVAs, includ-
ing the factors Habitat (fixed), Canopy treatment (fixed and 
crossed with Habitat), Nutrients (fixed and crossed with 
Habitat and Canopy treatment) and Boulder (random and 
nested within the other three factors).



Marine Biology (2020) 167:181 

1 3

Page 5 of 15 181

The same four-factor design was used for multivariate 
and univariate analyses of epibionts. A four-factor PER-
MANOVA (Anderson 2001) on Bray–Curtis dissimilari-
ties calculated on square-root transformed data was used to 
assess the response of the whole epibiont assemblage to the 
experimental conditions. Multivariate patterns were visual-
ized using non-metric multidimensional scaling (nMDS). 
Multivariate analyses were performed using Primer 6 and 
PERMANOVA + (PRIMER-E 2008). Variations in total 
epibiont, epiphyte and epizoan cover and species richness, 
as well as variations in the relative abundance of the most 
abundant taxa, were analyzed by means of ANOVA. Pool-
ing procedures were also used as recommended by Under-
wood (1997) to enhance the power of the statistical tests. 
More specifically, in the analyses of receptacle density and 
bryozoan abundance, the factor Boulder (Habitat × Canopy 
treatment × Nutrients) was not significant at P = 0.25 and 
was removed from the analyses, allowing the F tests for 
fixed factors and higher-order interactions to be carried out 
using the Residual term as the denominator. In all ANOVAs, 
homogeneity of variances was checked with Cochran’s C 
test and, when necessary, data were log-transformed. Stu-
dent–Neuman–Keuls (SNK) tests were used for the ranking 
of the means.

Results

Nutrient enrichment did not influence the effective quan-
tum yield or receptacle density in C. brachycarpa, while it 
increased the percentage of branches damaged by herbivores 
in thalli at forest edges (Fig. 2A–C, Table 1A–C). Receptacle 
density was significantly greater in thalli from cleared than 
canopy control areas (Fig. 2B, Table 1B). 

C. brachycarpa supported a total of 102 epibiont taxa 
(Table S2). The structure of the epibiont assemblage dif-
fered between the edge and the inside of forests and between 
ambient and enriched nutrient levels (Fig. 3; Table 2). In 
the nMDS, symbols representing thalli exposed to nutrient 
enrichment are segregated from those maintained at ambient 
nutrient levels, while differences between habitats are not 
evident (Fig. 3). The high value of stress indicates consider-
able distortion in the two-dimensional representation of data.

The total cover of epibionts on C. brachycarpa was 
greater at the edge than inside the forest and decreased 
under nutrient enrichment, consistently between canopy 
treatments (Table 3, Fig. 4A). Nutrient enrichment sig-
nificantly decreased the cover of epizoans on thalli at for-
est edges, but not on those inside the forest (Fig. 4C). By 
contrast, there was no effect of nutrient enrichment on epi-
phyte cover (Fig. 4B). Likewise, epizoan species richness 
decreased under nutrient enrichment, while there was no 
change in both total and epiphyte species richness (Table 3, 

Fig. 4D–F). Epizoan species richness was also greater on 
thalli in cleared than in control areas and inside the forest 
than at the edge of the forest (Fig. 4F).
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Fig. 2  Effective quantum yield (A), receptacle density (B) and her-
bivore frond damage (C) in thalli of C. brachycarpa at the edge or 
inside forests, exposed to different levels of nutrients (enriched ver-
sus ambient) and canopy treatments (cleared versus control). Data 
are means ± SE; n = 10 for (A) and (B); n = 8 for (C). Different letters 
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None of the macroalgal groups, except for articulated coral-
lines, responded to seawater fertilization (Table 4). This group 
decreased under enhanced nutrient levels, but cover values 
were generally very low, making these changes unlikely to 
be biologically meaningful (Fig. 5A). By contrast, nutrient 
enrichment decreased the cover of bryozoans on thalli at 

forest edges and that of hydrozoans on thalli from both habi-
tats (Fig. 5B, C; Table 4). The analysis also indicated a sig-
nificant effect of the interaction Habitat × Canopy treatment 
on the cover of hydrozoans, but the SNK tests did not show 
differences between means for any of the level comparisons. 
There was no effect of nutrient enrichment on sponges and ser-
pulids, which covers on C. brachycarpa varied neither between 
cleared and control areas nor between the edge and inside of 
forests (Table 4). 

Table 1  ANOVA on the 
effects of Habitat (forest edge 
versus forest inside), Canopy 
treatment (cleared versus 
control), Nutrients (ambient 
versus enhanced) and Boulder 
on (A) effective quantum yield, 
(B) receptacle density and 
(C) percentage of herbivore-
damaged branches

Residual degrees of freedom for (C) are reported in brackets. In (B), the factor Boulder (H × C × N) was 
eliminated and the effects of Habitat, Canopy treatment, Nutrients and their interactions are tested against 
the Residual term
*P < 0.05; ***P < 0.001

Source of variation df (A) (B) (C)

MS F MS F MS F

Habitat = H 1 0.086 2.02 1.939 1.05 1297.90 3.40
Canopy treat. = C 1 0.041 0.97 8.212 4.46* 20.81 0.05
Nutrients = N 1 0.028 0.67 1.138 0.62 2229.57 5.85*
H × C 1 0.004 0.10 0.622 0.34 338.06 0.89
H × N 1 0.163 3.81 0.470 0.26 2615.33 6.86*
C × N 1 0.001 0.03 0.019 0.01 71.148 0.19
H × C × N 1 0.015 0.35 0.037 0.002 89.91 0.24
Boulder (H × C × N) 8 0.043 5.97*** 1.964 Eliminated 381.38 0.89
Residual 64 (48) 0.007 1.841 280.08
Transformation None None None
Cochran’s test P > 0.05 P > 0.05 P > 0.05

Stress = 0.28

Edge/Canopy removal/ Nutrients enriched
Edge/Canopy removal/ Nutrients ambient
Edge/Canopy control/ Nutrients enriched
Edge/Canopy control/ Nutrients ambient
Inside/Canopy removal/ Nutrients enriched
Inside/Canopy removal/ Nutrients ambient
inside/Canopy control/ Nutrients enriched
Inside/Canopy control/ Nutrients ambient

Fig. 3  nMDS ordination plots comparing epibiont assemblages 
among thalli at the edge and inside forests, exposed to different levels 
of nutrients (enriched versus ambient) and canopy treatments (cleared 
versus control). Each symbol represents one thallus. Filled and empty 
symbols represent enriched and non-enriched thalli, respectively

Table 2  PERMANOVA on the effects of Habitat (forest edge versus 
forest inside), Canopy treatment (cleared versus control), Nutrients 
(ambient versus enriched) and Boulder on epibiont assemblages on C. 
brachycarpa 

Analysis on Bray–Curtis dissimilarities calculated from square-root 
transformed data

Source of variation df MS Pseudo-F P (perm)

Habitat = H 1 5350.0 2.409 0.029
Canopy treat. = C 1 4451.5 2.005 0.054
Nutrients = N 1 7294.8 3.285 0.012
H × C 1 1162.0 0.523 0.841
H × N 1 2240.5 1.009 0.453
C × N 1 2821.8 1.271 0.263
H × C × N 1 2122.7 0.956 0.464
Boulder (H × C × N) 8 2220.7 1.963 0.001
Residual 64
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Discussion

Nutrient enrichment had weak effects on the photosynthetic 
efficiency and reproductive output of the canopy-forming 
macroalga, C. brachycarpa. By contrast, it increased frond 
damage by herbivores at forest edges. Grazing by sea urchins 
is often intense at boundaries between barren patches and 
algal forests (Andrew 1994; Gagnon et al. 2004; Bulleri 
2013). Greater water motion and light availability at forest 
edges may have facilitated nutrient uptake by macroalgae 
(Ballesteros et al. 1998; Hurd 2000; Stewart et al. 2009), 
enhancing their nutritional value and, hence, consumer 
pressure (Valentine and Duffy 2006; Balata et al. 2010; 
Prado et al. 2010b; Ghedini et al. 2015). P. lividus, a spe-
cies actively feeding on Cystoseira, had very low densities 
in barrens on experimental boulders (i.e. 1.4 individuals 
·10 m−2) and was unlikely to cause significant frond dam-
age. Fertilization may have attracted A. lixula towards thalli 
at forest edges. This species has a limited ability to handle 

and consume intact Cystoseira and feeds mostly on encrust-
ing algae and sessile invertebrates (Wangensteen et al. 2011; 
Agnetta et al. 2013, 2015).

Isotopic analyses have indeed shown that A. lixula occu-
pies a higher trophic level than P. lividus and that it has, in 
some cases, a diet similar to that of a strict carnivore (Wan-
gensteen et al. 2011). A. lixula attracted at forest edges, may 
have targeted epizoan preys on C. brachycarpa, halving their 
total cover and reducing their species richness. The decline 
of epizoans cannot be due to increased competition from 
epiphytes since their abundance, in contrast with our predic-
tions, was not enhanced by nutrient enrichment.

This hypothesis would be supported by several lines 
of evidence: first, A. lixula was absent underneath intact 
canopies, explaining the lower damage of thalli inside the 
forest. Second, the abundance of sessile invertebrates, an 
important component of the diet of A. lixula, was very low 
in barren areas (i.e. total cover < 4%). Filter-feeders can 
benefit from nutrient enrichment via increased availability 

Table 3  ANOVA on the effects of Habitat (forest edge versus forest 
inside), Canopy treatment (cleared versus control) Nutrients (ambient 
versus enhanced) and Boulder on (A) total epibiont cover, (B) epi-

phyte cover, (C) epizoan cover, (D) total species richness, (E) epi-
phyte species richness and (F) epizoan species richness

*P < 0.05; **P < 0.01; ***P < 0.001

Cover (A) Total (B) Epiphytes (C) Epizoans

Source of variation df MS F MS F MS F

Habitat = H 1 6257.2 10.55* 693.67 1.28 2784.4 17.32**
Canopy treat. = C 1 1595.6 2.96 123.38 0.23 831.8 5.17
Nutrients = N 1 4568.9 7.70* 2.27 0.00 4774.1 29.69***
H × C 1 385.3 0.65 13.16 0.02 540.9 3.36
H × N 1 512.4 0.86 176.69 0.33 1290.4 8.03*
C × N 1 951.1 1.60 970.29 1.79 0.0 0.00
H × C × N 1 428.5 0.72 39.83 0.07 207.0 1.29
Boulder (H × C × N) 8 593.1 1.56 543.57 2.78* 160.8 1.05
Residual 64 379.3 234.29 153.7
Transformation None None None
Cochran’s test P > 0.05 P > 0.05 P > 0.05

Species richness (D) Total (E) Epiphytes (F) Epizoans

Source of variation df MS F MS F MS F

Habitat = H 1 57.80 0.97 0.80 0.00 27.61 10.27*
Canopy treat. = C 1 39.20 0.66 2.45 0.05 35.51 12.10**
Nutrients = N 1 211.25 3.54 80.00 1.78 25.31 9.42*
H × C 1 54.45 0.91 72.20 1.61 1.01 0.38
H × N 1 64.80 1.09 42.05 0.94 3.61 1.34
C × N 1 217.80 3.65 156.80 3.50 5.51 2.05
H × C × N 1 48.05 0.81 22.05 0.49 2.11 0.79
Boulder (H × C × N) 8 59.67 2.44* 44.85 4.56*** 2.69 0.33
Residual 64 24.44 9.82 8.12
Transformation None None None
Cochran’s test P > 0.05 P > 0.05 P > 0.05
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means ± SE; n = 10. Different letters above bars indicate significant 
differences from SNK tests
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of plankton and organic particles. Such effects are com-
mon at sites exposed to sustained nutrient inputs (Gili and 
Coma 1998; Prado et al. 2010a; Rorig et al. 2017). Nutri-
ents may have also enhanced the quality of epizoans as 
food. Stoichiometric theory assumes fixed elemental com-
position (i.e. homoestasis), but intraspecific variation in P 
content has been documented in some invertebrates and 
explained by dietary availability (Small and Pringle 2010). 
Although mostly limited to freshwater environments, 
there is evidence that the effects of nutrient enrichment 
on elemental compositions can propagate across trophic 
levels (Singer and Battin 2007; Small and Pringle 2010). 
Since foraging in invertebrate predators can be nutrient-
specific (Mayntz et al. 2005), enhanced nutritional value 
(i.e. higher N and/or P content) of epizoans exposed to 
enrichment might have sustained predation by A. lixula.

Finally, as also documented in Cystoseira tamariscifolia 
(Otero Schmitt and Perez Cirera 1996), epizoans represented 
the dominant component of epibiont assemblages in the 
shaded, lower part of C. brachycarpa, while they were scant 
in the well-lit upper part, likely due to strong competition 
from macroalgae (Authors’ personal observation). Although 
A. lixula has a limited ability to bend down thalli and feed on 
apical fronds (Agnetta et al. 2015), it might be able to prey 
upon sessile invertebrates colonizing the cauloid and fronds 
closer to the bottom. Under these circumstances, frond dam-
age would be a coincidental aspect of urchin foraging on 
epizoans, a phenomenon also termed as shared-doom (Dixon 
et al. 1981; Wahl and Hay 1995; da Gama et al. 2008).

Increased herbivore attraction to fertilized thalli at for-
est edges might also be the consequence of direct nega-
tive effects on epizoans. At ambient nutrient levels, thalli 

Table 4  ANOVA on the effects of Habitat (forest edge versus forest 
inside), Canopy treatment (cleared versus control) Nutrients (ambient 
versus enhanced) and Boulder on epiphyte taxa: (A) articulated coral-

line algae, (B) corticated-terete algae, (C) encrusting algae, (D) fila-
mentous algae, (E) sheet-like algae and epizoan taxa: (F) Bryozoans, 
(G) Hydrozoans, (H) Serpulids and (I) sponges

In (F), the factor Boulder (H × C × N) was eliminated and the effects of Habitat, Canopy treatment, Nutrients and their interactions are tested 
against the Residual term
*P < 0.05; **P < 0.01; ***P < 0.001

Epiphytes (A) (B) (C) (D) (E)

Source of variation df MS F MS F MS F MS F MS F

Habitat = H 1 4.511 1.31 1.363 0.17 0.056 0.03 32.06 0.14 3.334 0.97
Canopy treat. = C 1 3.856 1.12 1.400 0.17 1.200 0.70 865.51 3.67 2.738 0.79
Nutrients = N 1 22.593 6.55* 0.041 0.01 1.018 0.59 30.57 0.13 2.764 0.80
H × C 1 0.245 0.07 3.087 0.87 0.711 0.41 8.62 0.04 2.472 0.72
H × N 1 0.001 0.00 1.317 0.16 1.141 0.67 32.81 0.14 3.843 0.32
C × N 1 3.267 0.95 0.677 0.08 1.488 0.87 236.73 1.00 3.912 1.13
H × C × N 1 0.000 0.00 0.102 0.01 1.356 0.79 143.27 0.61 5.739 1.66
Boulder (H × C × N) 8 3.448 2.01 8.129 4.35*** 1.716 1.87 236.03 4.38*** 3.454 3.10**
Residual 64 1.715 1.871 0.917 53.90 1.116
Transformation Ln (x + 0.1) Ln (x + 0.1) Ln (x + 0.1) None Ln (x + 0.1)
Cochran’s test P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05

Epizoans (F) (G) (H) (I)

Source of variation df MS F MS F MS F MS F

Habitat = H 1 5.980 16.37*** 0.024 0.02 6.143 2.79 0.019 0.01
Canopy treat. = C 1 1.887 5.14* 0.555 0.43 3.668 1.67 0.004 0.00
Nutrients = N 1 3.343 9.15** 40.190 31.06*** 5.313 2.41 0.913 0.58
H × C 1 0.080 0.22 7.924 6.12* 5.146 2.34 0.301 0.19
H × N 1 1.601 4.38* 2.179 1.68 0.179 0.08 0.006 0.00
C × N 1 0.900 2.47 0.326 0.25 0.001 0.00 2.690 1.70
H × C × N 1 0.300 0.82 2.793 2.16 0.018 0.01 0.244 0.15
Boulder (H × C × N) 8 0.485 Eliminated 1.294 1.22 2.201 1.03 1.584 0.79
Residual 64 0.365 1.058 2.140 1.995
Transformation Ln (x + 0.1) Ln (x + 0.1) None None
Cochran’s test P > 0.05 P > 0.05 P > 0.05 P > 0.05
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at forests edges supported a greater cover and diversity of 
epizoans than thalli inside forests. There are examples of 
epizoans deterring herbivory: the bryozoans, Lichenopora 
novae-zelandiae and Membranipora membranacea, reduced 
consumption of their host, respectively, Agarum fimbriatum 
and Saccharina latissimi, from herbivorous gastropods 
(Durante and Chia 1991; O’Brien et al. 2013). Likewise, 

along the coasts of Chile, consumption by the snail Tegula 
tridentata on the kelp, Lessonia trabeculata, colonized 
by hydroids was 3–4 times lower than on kelps without 
hydroids (González-Duarte et al. 2020). A decline of epizo-
ans is very unlikely to have stimulated grazing by A. lixula 
on C. brachycarpa, but may have stimulated that by the fish, 
Sarpa salpa. This is a true herbivore (Havelange et al. 1997; 
Prado et al. 2010a) and may have preferentially browsed 
on fertilized thalli characterized by higher nutritional value 
(higher P and N content) and lower epizoan loading. Heavy 
consumption of Posidonia oceanica plants within fertilized 
patches inside seagrass beds and preferential feeding on Cys-
toseira branches bearing reproductive structures, suggests 
active selection of more nutritional plant tissues by S. salpa 
(Gianni et al. 2017; Ravaglioli et al. 2018). In addition, fer-
tilized thalli may have lower levels of defensive compounds, 
such as phenolics (Ilvessalo and Tuomi 1989; Yates and 
Peckol 1993; Pavia and Toth 2000; Ravaglioli et al. 2018). 
Nonetheless, we did not observe more intense grazing on 
thalli in cleared areas, despite they supported higher num-
bers of receptacles. In addition, S. salpa is highly mobile and 
should have caused comparable damage to fertilized thalli 
both at the edge and inside forests.

Rapid recovery of canopies in areas cleared within for-
ests (i.e. not subjected to urchin grazing) and exposed to 
nutrient addition (Tamburello et al. 2019), further suggests 
a weak grazing pressure by S. salpa. Thus, the hypothesis 
of enhanced frond damage at forest edges due to increased 
herbivory from S. salpa does not seem to be supported by 
our data. For the same reason, enhanced consumption by 
fish is unlikely to explain the weak response of epiphytes 
to fertilization both inside and at the edge of forests. This 
does not exclude trophic compensation of nutrient effects 
by meso-grazers (e.g. gastropods and amphipods) living 
within C. brachycarpa canopies (Piazzi et al. 2018). For 
example, the gastropod herbivore, Turbo undulatus, could 
absorb positive effects of nutrient enrichment, maintaining 
algal turf growth under check (Ghedini et al. 2015). Alterna-
tively, greater nutrient uptake efficiency of C. brachycarpa 
may have limited the proliferation of weedy species either 
composing turfs (Tamburello et al. 2019) or growing as epi-
phytes (this study). In oligotrophic waters, low or moderate 
nutrient inputs can advantage complex, slow-growing mac-
roalgae, such as Fucales, over ephemeral species (Pedersen 
and Borum 1997).

Ammonium excretion by sessile invertebrates can repre-
sent an important source of nitrogen for macroalgae during 
shortage periods (e.g. in summer) (Hurd et al. 1994; Hep-
burn and Hurd 2005; Bracken et al. 2007; Hepburn et al. 
2012). Independently from the underpinning mechanisms, 
nutrient enrichment caused a decrease in the cover of ses-
sile invertebrates on the lower part of thalli of C. brachy-
carpa. Such a decline did not influence the photosynthetic 
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activity or the development of reproductive structures, as 
Carpodesmia can efficiently take up N in the form of nitrates 
(Epiardlahaye 1988). In general, brown seaweeds can use 
ammonium and nitrates simultaneously and the uptake of 
one form does not influence the uptake of the other (Haines 
and Wheeler 1978). Thus, decreased abundance of the ani-
mal component of the epibiont assemblages during events 
of nutrient release should not limit the productivity of brown 
seaweed stands.

There were no differences in the response to nutrient 
enrichment between C. brachycarpa within established 
stands and those that recolonized cleared areas during the 
study (i.e. 2 years). Elevation of nutrient levels has been 
found to reduce invertebrate settlement, likely through the 
alteration of biofilm chemical cues (Lawes et al. 2018). Our 
data indicate that nutrients did not influence the recruit-
ment of sessile invertebrates on C. brachycarpa or that the 
alterations caused at the earlier stages of epibiont coloniza-
tion were not long-lasting. Under these circumstances, the 
effects of nutrient enrichment on the structure of the epibiont 
assemblage supported by C. brachycarpa would not change 
when fertilization occurs simultaneously with acute events 
of mechanical disturbance. Interestingly, thalli in cleared 
areas had more receptacles, suggesting that reduced com-
petition for light could foster the reproduction (Dayton et al. 
1992; Viejo and Åberg 2001). Increased reproductive output 
might be key for the recovery of C. brachycarpa stands after 
disturbances and this process appears not to be altered by 
nutrient enrichment.

Our results suggest that fragmentation of macroalgal 
forests, increasing the perimeter to area ratio, could exac-
erbate nutrient effects on C. brachycarpa and its epibionts 
by increasing herbivore damage. Such indirect effects of 
nutrient enrichment are likely dependent upon the com-
position of the herbivore assemblage. The extent of the 
damage suffered by C. brachycarpa could be expected to 
be greater when macroalgal forests are adjacent to barren 
areas supporting higher densities of P. lividus. Indeed, at 
high densities, this species is able to completely eliminate 
erect macroalgae, forming barren grounds (Agnetta et al. 
2015). Sparse densities of this species on shallow rocky 
reefs around the island, can be explained by a strengthen-
ing of predatory control in response to the establishment 
of partially or fully protected areas (Bulleri et al. 2018). 
Similarly, reduced densities and/or foraging efficiency 
of S. salpa due to predation may explain why there was 
not an increase in consumption rates on C. brachycarpa 
and its epiphytes in fertilized areas. Re-establishment of 
lost predatory control through fishery management is rec-
ognized as a valid strategy for mitigating the effects of 
nutrient inputs on habitat-forming macrophytes (Östman 
et al. 2016). Our study suggests that reducing the inten-
sity and frequency of mechanical disturbances fragmenting 

macroalgal forests could further enhance their resistance 
and resilience to nutrient loading. Controlling disturbances 
linked with climate change, such as sea storms, requires a 
transnational and long-term effort. By contrast, targeting 
localized disturbances, such as those due to boat anchor-
ing and fishing gear, might be a more viable strategy in 
the short-term. In particular, it may sustain the persistence 
of macroalgal forest in the face of nutrient enrichment 
in systems characterized by weak top-down control (e.g. 
outside MPAs).

In summary, our experiment shows that moderate nutrient 
enrichment of oligotrophic waters does not necessarily cause 
the proliferation of opportunistic epiphytes and, hence, a 
strengthening of their competitive effects on canopy-forming 
macroalgae. In particular, thalli inside forests appear little 
susceptible to either direct or indirect effects of nutrient 
enrichment. Our results reinforce the findings of previous 
experimental studies suggesting that nutrient enrichment 
can reduce the resilience of Mediterranean macroalgal for-
ests to other disturbances, but it is unlikely, per se, to cause 
a shift towards a less productive state dominated by algal 
turfs (Piazzi and Ceccherelli 2017; Tamburello et al. 2019; 
Kraufvelin et al. 2020). It is worth noting that the net effects 
of seawater enrichment on canopy-forming macroalgae can 
vary according to the intensity and temporal regime (i.e. 
chronic versus acute) of nutrient inputs, their natural con-
centration in the receiving water body and composition of 
the herbivore assemblage (Russell et al. 2005; Bulleri et al. 
2012; Tuya et al. 2015; Östman et al. 2016; Ravaglioli et al. 
2018). This brings two main caveats: (i) caution should be 
used in generalizing the results of single-site studies—such 
as ours—to broader areas; (ii) strategies for mitigating 
the impact of nutrient enrichment on marine macrophytes 
should be tailored regionally, on biotic and abiotic features 
of targeted ecosystems.
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