
Experimental Study of a Parallel Iterative Solver
for Markov Chain Modeling⋆

V. Besozzi
1
, M. Della Bartola

1
, and L. Gemignani

1[0000−0001−8000−4906]♠

Dipartimento di Informatica, Università di Pisa, 56127, Pisa, Italy
♠ Corresponding author: luca.gemignani@unipi.it

Abstract. This paper presents the results of a preliminary experimen-
tal investigation of the performance of a stationary iterative method
based on a block staircase splitting for solving singular systems of linear
equations arising in Markov chain modelling. From the experiments pre-
sented, we can deduce that the method is well suited for solving block
banded or more generally localized systems in a parallel computing en-
vironment. The parallel implementation has been benchmarked using
several Markovian models.

Keywords: Iterative methods · parallel algorithms · Markov chains.

1 Introduction

The solving of linear algebraic systems lies at the core of many scientific and
engineering simulations. Discrete-state models are widely employed for modeling
and analysis of large networks and systems such as communication networks,
allocation schemes, computer systems and population processes. If the future
evolution of the system depends only on the current state of the system and
not on the past history, the system may be represented by a Markov chain. For
a homogeneous, irreducible, continuous time Markov chain with N states, the
long-term behavior of the system is determined by the stationary probability

vector π ∈ RN
such that

Q
T
π = 0, π ≥ 0, e

T
π = 1, (1)

where Q ∈ RN×N
is the transition rate matrix, or the infinitesimal generator

of the Markov chain, and e = [1, . . . , 1]
T
. Since Q is irreducible, by the Perron-

Frobenius Theorem [17] we find that Q has rank N − 1 and, therefore, π spans

the kernel of Q
T
. The computation of π amounts to solve the homogeneous

⋆
This work has been supported by the project PRA 2020 61 of the University of Pisa
and by the Spoke 1 “FutureHPC & BigData” of the Italian Research Center on
High-Performance Computing, Big Data and Quantum Computing (ICSC) funded
by MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento strutture di
ricerca e creazione di ”campioni nazionali di R&S (M4C2-19)” - Next Generation
EU (NGEU).

linear system (1). A review of numerical methods for solving (1) can be found in
[26, 20]. Active research in this area is focused on the development of techniques,
methods and data structures, which minimize the computational (space and
time) requirements for solving the linear system (1) when Q is large and sparse.
One of such techniques is parallelization.

Iterative methods are generally preferred for solving large linear systems of
equations because they are insensitive to fill-in and accuracy issues [20]. Sta-
tionary iterative methods like Gauss-Seidel (GS), Jacobi, and Successive Over-
Relaxation (SOR) are interesting on their own and have further applications
as preconditioners for projection methods like CG and GMRES. Experimental
studies demonstrated that for Markov chain problems (1) block methods based
on matrix splittings such as block Jacobi and block Gauss–Seidel give better
convergence than other projection methods (see [27] and the references given
therein).

Among classical iterative methods, the Gauss-Seidel method has several in-
teresting features. It is a classical result that on a nonsingular M-matrix the
Gauss-Seidel method converges faster than the Jacobi method [5, Corollary 5.22].
Moreover it can be implemented just using one iteration vector which is an im-
portant feature for huge systems. The SOR method with the optimal relaxation
parameter can be better yet, but, however, choosing an optimal SOR relaxation
parameter is difficult for many problems. Therefore, the Gauss–Seidel method is
very attractive in practice and it is also used as preconditioner in combination
with other iterative schemes. A classical example is the multigrid method for
partial differential equations, where using Gauss–Seidel or SOR as a smoother
typically yields good convergence properties [28].

Parallel implementations of Gauss–Seidel method have been designed for cer-
tain regular problems, for example, the solution of Laplace’s equations by finite
differences, by relying upon red-black coloring or more generally multi-coloring
schemes to provide some parallelism [19]. In most cases, constructing efficient
parallel true Gauss–Seidel algorithms is challenging and Processor-Block (or lo-
calized) Gauss–Seidel is often used [25]. Recent examples with applications to
Markov chain modeling are the methods proposed in [6] and [1]. Here, each pro-
cessor performs Gauss–Seidel as a subdomain solver for a block Jacobi method.
While Processor-Block Gauss–Seidel methods are easy to parallelize, the overall
convergence of the resulting iterative scheme can suffer.

In order to cope with the parallelization of Gauss-Seidel type methods while
retaining the same convergence rate, in [14] staircase splittings were introduced
by proving that, for consistently ordered matrices [21], the iterative scheme based
on such partitionings splits into independent computations and at the same time
exhibits the same convergence rate as the classical Gauss-Seidel iteration. A
specialization of this result for block tridiagonal matrices had already appeared
in [2]. More recently, in [10] the computational interest of staircase splittings
has been broadened by showing that for a nonsingular M-matrix A in block
lower Hessenberg form the asymptotic rate of convergence of the block staircase
method is better than the asymptotic rate of convergence of the block Gauss-

Seidel method applied to A. A further extension with applications to accelerating
certain fixed point iterations for Markov chain modeling is given in [9]. These
results are quite surprising since the matrix M in the block staircase partitioning
of A = M−N is much more sparse than the corresponding block lower triangular
matrix M of the Gauss-Seidel splitting.

The contribution of this paper is twofold. The matrix A = Q in (1) is singular
and the comparison theorems proved in [10] do not extend to the singular case,
while classical results for singular systems [15, 16] do not apply to our methods.
The first aim is to gain an understanding of how (block) staircase and (block)
Gauss-Seidel type methods compare when applied for solving large and sparse
Markov Chain problems. In particular, we are interested in the case where A is
banded or localized around the main diagonals. The second goal is to perform
this comparison in a parallel computing environment. To do this we have im-
plemented a block staircase iterative solver for the parallel computation of the
vector π. The properties of this method are examined experimentally. In par-
ticular, numerical experiments are performed to compare our method with an
implementation of the composite solver proposed in [6] in terms of traditional
efficiency measures for parallel algorithms. Our experimental evidence indicates
that the block staircase partitioning generally works quite well when compared
to block Gauss-Seidel for block banded or more generally localized matrices [4]
with entries decaying away from the main diagonals. A discussion of the results
is presented together with some conclusions and insights for future work.

2 Mathematical Background

Let P = (pi,j) ∈ RN×N
be a transition probability matrix of a homogeneous

ergodic Markov Chain with N states. Then P is irreducible and row-stochastic,

that is, pi,j ≥ 0, 1 ≤ i, j ≤ N , and Pe = e with e
T

= [1, . . . , 1]. The matrix

Q
T
= IN − P

T
is a singular M-matrix. Observe that e

T
Q

T
= 0

T
. Since Q

T
is

also irreducible, by the Perron-Frobenius Theorem it follows that the kernel of

Q
T
is spanned by a vector π such that π > 0 and e

T
π = 1. This vector is called

the stationary probability distribution vector of the Markov Chain.
The computation of π amounts to solve the homogeneous linear system

Q
T
π = 0 under the normalization e

T
π = 1. Iterative methods based on the

power iteration can be used [20]. The computational efficiency and the conver-
gence properties of these algorithms can benefit of a block partitioning of the

matrix Q
T
. Let us assume that

Q
T
=

Q1,1 . . . Q1,n
...

...
...

Qn,1 . . . Qn,n

 ,

where Qi,j ∈ Rni×nj , 1 ≤ i, j ≤ n,
∑n

i=1 ni = N . A regular splitting of the

matrix Q
T

is a partitioning Q
T

= M − N with M
−1 ≥ 0 and N ≥ 0. Since

Q
T
π = 0 we find that Mπ = Nπ which gives M

−1
Nπ = π. It is well known

that the spectral radius of M
−1

N is equal to 1 and λ = 1 is a simple eigenvalue
of M

−1
N [24]. This does not immediately imply that λ = 1 is the dominant

eigenvalue of M
−1

N , that is, that for the remaining eigenvalues λ of M
−1

N it
holds |λ| < 1.

Example 1. Let Q
T

=

1 −1 0 0

−1/2 1 −1/2 0
0 −1/2 1 −1/2
0 0 −1 1

. The Jacobi splitting with

M = I4 is a regular splitting but the iteration matrix M
−1

N has eigenval-
ues {−1, 1,−1/2, 1/2}. The Gauss-Seidel splitting is a regular splitting and the
corresponding iteration matrix has eigenvalues {1, 1/4, 0, 0}.

By graph-theoretic arguments [24] it follows that for a regular splitting

the matrix M
−1

N is permutationally similar to a block matrix T =

[
0 T1,2

0 T2,2

]
where T2,2 is square, irreducible and non-negative and every row of the possibly
nonempty matrix T1,2 is nonzero. A non-negative square matrix A is primitive if
there is m ≥ 1 such that A

m
> 0. By the Perron-Frobenius Theorem we obtain

that λ = 1 is the dominant eigenvalue of M
−1

N if T2,2 is primitive. Hereafter,
this condition is always assumed. Under this assumption the classical power
iteration is eligible for determining a numerical approximation of the vector π.

The method based on the (block) Jacobi splitting is very convenient to vec-
torize and to parallelize. As shown in the simple example above it can suf-
fer from convergence problems. In this respect, the (block) Gauss-Seidel itera-
tion generally outperforms the Jacobi algorithm. Processor-Block (or localized)
Gauss–Seidel schemes provide a reliable compromise between parallelization and
convergence issues. One such hybrid adaptation is described in [6]. Suppose that

the matrix Q
T
is partitioned as

Q
T
=

Q

(1)T

...

Q
(p)T

 , Q
(j)T

=

 Qmj ,1
. . . Qmj ,n

...
...

...
Qmj+rj−1,1 . . . Qmj+rj−1,n

 ,

with m1 = 1, mj =
∑j−1

i=1 ri + 1, 2 ≤ j ≤ p,
∑p

i ri = n. The iterative scheme in
[6] exploits the regular splitting where

M = diag
[
M1, . . . ,Mp

]
, Mj =

Qmj ,mj

Qmj+1,mj
Qmj+1,mj+1

...
. . .

Qmj+1−1,mj
. . . Qmj+1−1,mj+1−1

and, hence, M is a block diagonal matrix with block lower triangular blocks.
The resulting scheme proceeds as follows:{

Mx
(k+1)

= Nx
(k)

x
(k+1)

= x(k+1)

eTx(k+1)

, k ≥ 1. (2)

If p is the number of processors, then Algorithm 1 is a possible implementation
of this scheme starting from the skeleton proposed in [6]. A different approach to

Algorithm 1 This algorithm approximates the vector π by means of the method
in [6]

1: Initialization
2: while err ≥ tol & it ≤ maxit do
3: parfor j = 1, . . . , p do
4: for k = mj , . . . ,mj + rj − 1 do
5: Jk = {s ∈ N : mj ≤ s < k}
6: zk ← −Q

−1
k,k

(∑
s∈Jk

Qk,szs +
∑

s∈{1,...,n}\Jk
Qk,sxs

)
7: end for
8: end parfor
9: z ← z

eTz
10: err ←∥ z − x ∥1; x← z; it← it+ 1
11: end while
12: return x

parallelizing stationary iterative solvers was taken in [14]. The approach is based

on the exploitation of a suitable partitioning of the matrix Q
T
where M has a

”zig-zag” pattern around the main diagonal referred to as a staircase profile.

More specifically, we can associate with Q
T
the stair matrices M1 ∈ RN×N

and

M2 ∈ RN×N
defined by

M1 =

Q1,1

Q2,1 Q2,2 Q2,3

Q3,3

Q4,3 Q4,4 Q4,5

Q5,5

× × ×
×

and

M2 =

Q1,1 Q1,2

Q2,2

Q3,2 Q3,3 Q3,4

Q4,4

Q5,4 Q5,5 Q5,6

×
× × ×

.

These matrices are called stair matrices of type 1 and 2, respectively. Staircase

splittings of the formQ
T
= M−N whereM is a stair matrix have two remarkable

features:

1. The solution of a linear system Mx = b can be carried out in two parallel
steps since all even and all odd components of x can be computed concur-
rently.

2. In terms of convergence these splittings inherit some advantages of the block

Gauss-Seidel method. If Q
T
is block tridiagonal, then it can be easily proved

that the iteration matrices associated with block Gauss-Seidel and block
staircase splittings have the same eigenvalues and therefore the same con-
vergence rate. In [10] it is shown that the spectral radius of the iteration
matrix generated by the staircase splitting of an invertible M-matrix in
block lower Hessenberg form is not greater than the spectral radius of the
corresponding iteration matrix in the block Gauss-Seidel method. For sin-
gular matrices the convergence of the scheme (2) depends on the spectral
gap between the dominant eigenvalue equal to 1 and the second eigenvalue
γ = max{|λ| : λ eigenvalue of M

−1
N and λ ̸= 1}. Experimentally (see Ex-

ample 3 below) the block staircase iteration still performs similarly to the
block Gauss-Seidel method when applied for solving linear systems with sin-
gular M-matrices in block Hessenberg form. The same behavior is observed
for matrices that are localized around the main diagonals. Examples are the
covariance matrices with application to the spatial kriging problem (compare
with [11]). Other non artificial examples are discussed in Section 3.

Example 2. For the matrix of Example 1 the staircase splitting of the first type
gives an iteration matrix having the same eigenvalues {1, 1/4, 0, 0} of the Gauss-
Seidel scheme.

Example 3. We have performed several numerical experiments with randomly
generated singular M-matrices in banded block lower Hessenberg form having
the profile depicted in Figure 1.

0 50 100 150 200 250

nz = 20128

0

50

100

150

200

250

Fig. 1: Spy plot

kp
k

16 32 64

16
ρ1 1.6
ρ2 1.5

32
ρ1 1.6
ρ2 1.4

64
ρ1 ∞ 33.6 2.0
ρ2 1.0 1.0 1.4

Table 1: Convergence comparisons

The size of the blocks is k, the block size of the matrix is n and the lower
bandwidth is 4k. We compare the performance of the block Jacobi (BJ), block
Gauss-Seidel (BGS) and block staircase (BS) methods for different sizes of the
block partitioning denoted as kp. In the following Table 1 we show the maximum
value of ρ1 = log(1/γBGS)/ log(1/γBJ) and of ρ2 = log(1/γBGS)/ log(1/γBS) –
where γM is the second eigenvalue of the iteration matrix of size N = k × n
generated by the method M ∈ {BGS,BJ,BS} over 1000 experiments with

k = 64 and n = 16. The value ∞ indicates that in some trials the block Jacobi
method does not converge due to the occurrence of two or more eigenvalues
equal to 1 in magnitude. The results demonstrate that the spectral gap of the
iteration matrix in the block staircase method remains close to that one of BGS.

The following Algorithm 2 provides an implementation of (2) using M =
M1. For i = 1, . . . , n let

Ji =

{
{i− 1, i+ 1} ∩ {1, . . . , n}, i even
i, i odd.

Algorithm 2 This algorithm approximates the vector π by means of the method
(2) with M = M1

1: Initialization
2: while err ≥ tol & it ≤ maxit do
3: parfor i = 1, . . . , n do
4: zi ← −

∑
k/∈Ji

Qi,kxk

5: end parfor
6: parfor i = 1, 3, . . . , n do
7: zi ← Q

−1
i,i zi

8: end parfor
9: parfor i = 2, 4, . . . , n do

10: zi ← Q
−1
i,i

(
zi −

∑
k∈Ji

Qi,kzk

)
11: end parfor
12: z ← z

eTz
13: err ←∥ z − x ∥1; x← z; it← it+ 1
14: end while
15: return x

In the next section numerical experiments are performed to compare the
performance of Algorithm 1 and Algorithm 2 for solving singular systems of
linear equations arising in Markov chain modeling.

3 Numerical Experiments

The experiments have been run on a server with two Intel Xeon E5-2650v4 CPUs
with 12 cores and 24 threads each, running at 2.20GHz. Hyper-threading was
disabled so that the number of logical processors is equal to physical processors
(cores). To reduce the variance of execution times, the number of threads is set
to the number of physical cores and each thread is mapped statically to one core.
The parallel implementations of Algorithm 1 –referred to as JGS algorithm–
and Algorithm 2 –referred to as STAIR1 or STAIR2 algorithm depending on
the staircase splitting– are based on OpenMP. Specifically, we have used C++20
with the help of Armadillo [22, 23] which also provides integration with LAPACK
[3] and OpenBLAS [13].

Our test suite consists of the following transition matrices:

1. The transition rate matrix associated with the queuing model described in
[7]. This is a complex queuing model, a BMAP/PHF/1/N model with retrial
system with finite buffer and non-persistent customers. We do not describe
in detail the construction of this matrix, as it would take some space, but
refer the reader to [6, Sections 4.3 and 4.5]. The buffer size is denoted as n.
The only change with respect to the paper is that we fix the orbit size to a
finite capacity k (when the orbit is full, customers leave the queue forever).
We set n = 15, which results in a block upper Hessenberg matrix Q of size
N = 110400 with k × k blocks of size 138.

2. The transition rate matrix for the model described in Example 1 of [20].
The model describes a time-sharing system with n terminals which share
the same computing resource. The matrices are nearly completely decom-
posable (NCD) so that classical stationary iterative methods do not perform
satisfactorily as the spectral gap is pathologically close to unity. We set
n = 80 which gives a matrix of size N = 91881.

3. The transition rate matrix for the model described in Example 3 of [20]. The
model describes a multi-class, finite buffer, priority system. The buffer size
is denoted as n. This model can be applied to telecommunications modeling,
and has been used to model ATM queuing networks as discussed in [26, 20].
We note that the model parameters can be selected so that the resulting
Markov chain is nearly completely decomposable. We set n = 100 which
results in a matrix of size N = 79220.

4. The transition rate matrix generated by the set of mutual-exclusion prob-
lems considered in [8]. In these problems, n distinguishable processes share a
certain resource. Each of these processes alternates between a sleeping state
and a resource using state. However, the number of processes that may con-
currently use the resource is limited to r, where 1 ≤ r ≤ n, so that when a
process wishing to move from the sleeping state to the resource using state
finds r processes already using the resource, that process fails to access the
resource and returns to the sleeping state. We set n = 16 and r = 12 so that
the transition matrix has size N = 64839.

All the considered transition matrices are sparse matrices. In Figure 2 we show
the spy plots of the matrices generated in tests 1-4. The matrices are stored using
the compressed sparse column format. With this method, only nonzero entries
are kept in memory. However, despite evident merits this solution has also some
drawbacks. In particular, we notice that certain operations such as submat calls
become relatively expensive because they could be creating temporary matrices.
Clearly, the size of the block partitioning of the matrix seriously affects the
performance of iterative methods. There is an extensive literature on this topic
(see for instance [18, 12] and the references given therein). We have not tried the
partition algorithms described in [18, 12] and in this paper we explore the use of
blocks of equal size ni = ℓ, 1 ≤ i ≤ n−1. A test for the change of two consecutive
iterates to be less than a prescribed tolerance or the number of iterations to be
greater than a given bound is used as stopping criterion. In other words, we stop

0 2 4 6 8 10

nz = 3008124 10
4

0

2

4

6

8

10

10
4

(a) Spy plot of the matrix in 1

0 2 4 6 8

nz = 623241 10
4

0

1

2

3

4

5

6

7

8

9

10
4

(b) Spy plot of the matrix in 2

0 1 2 3 4 5 6 7

nz = 533120 10
4

0

1

2

3

4

5

6

7

10
4

(c) Spy plot of the matrix in 3

0 1 2 3 4 5 6

nz = 1094983 10
4

0

1

2

3

4

5

6

10
4

(d) Spy plot of the matrix in 4

Fig. 2: Illustration of the sparsity pattern of the matrices in our test suite

the iteration if

∥ x
(k) − x

(k+1) ∥1≤ ϵ ∨ k ≥ maxit.

In all the experiments reported below we have used ϵ = −1.0e−9 and maxit=1.0e+
4. A larger number of iterations is carried out in some cases to check for di-
vergence of the iterative process. For each algorithm and experiment we mea-
sure the sequential completion time Tseq, the parallel completion time on m
threads Tpar(m), the speedup Sp(m) = Tseq/Tpar(m) and the efficiency E(m) =

Sp(m)/m. We also report a plot of the residual ∥ x
(k)−x

(k+1) ∥1 to analyze the
convergence of the iterative scheme.

In the first experiment we consider the transition rate matrix generated in 1
with n = 15 and k = 800. The matrix has size N = 110400 and the block parti-
tioning is determined by setting ℓ = 512. The matrix is block lower Hessenberg
and block banded. In Figure 3 we show the plots of completion time, residual,
speedup and efficiency generated for this matrix. The convergence of block stair-
case methods is better than the convergence of the block Gauss-Seidel method.
The superlinear speedup is a cache effect. The best sustained computation rate
is about 6.5 Gflops on 24 cores. We think that the attained level of performance
is quite low with respect to the theoretical peak performance due to the use of
sparse linear algebra functionalities.

0

100

200

300

400

500

600

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(a) Completion-time plot for the matrix in 1

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

0 200 400 600 800 1000 1200

R
es

id
ua

l

Iteration

STAIR1

STAIR2

JGS 1 threads

JGS 24 threads

Residual Plot

(b) Residual plot for the matrix in 1

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(c) Speedup plot for the matrix in 1

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

E
ffi

ci
en

cy

Num. Threads

STAIR1

STAIR2

JGS

Efficiency Plot

(d) Efficiency plot for the matrix in 1

Fig. 3: Illustration of the performance of algorithms JGS, STAIR1 and STAIR2 for the
matrix in 1

In Figure 4 we show the plots generated for the matrix in 2 with n = 80. The
size is N = 91881. The matrix is symmetric with bandwidth 1135. We set ℓ =
2048 so that the matrix is block tridiagonal. The crazy behavior of JGS in Figure
4 and in Figure 5 depends on the fact that the block partitioning varies with
the number of threads. In particular, for the nearly completely decomposable
example this makes possible divergence or false convergence cases. In the course
of experimenting with the JGS method, we have tried various policies for the
distribution of blocks to different processors. The chosen policy also goes to affect
the behavior and convergence of the algorithm as the number of threads varies.
It was chosen in the end to use as fair a distribution policy as possible, trying
in general to allocate in each thread the same number of blocks and eventually,
in the case of any remaining blocks, evenly distributing the remainder.

In Figure 5 we show the plots generated for the matrix in 3 with n = 100. The
matrix has size N = 79220, lower bandwidth 2370 and upper bandwidth 1585.
We set ℓ = 2048 so that the matrix is block banded in block lower Hessenberg
form.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(a) Completion-time plot for the matrix in 2

10-10

10-9

10-8

10-7

10-6

0 500 1000 1500 2000 2500 3000 3500

R
es

id
ua

l

Iteration

STAIR1

STAIR2

JGS 1 threads

JGS 24 threads

Residual Plot

(b) Residual plot for the matrix in 2

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(c) Speedup plot for the matrix in 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

E
ffi

ci
en

cy

Num. Threads

STAIR1

STAIR2

JGS

Efficiency Plot

(d) Efficiency plot for the matrix in 2

Fig. 4: Illustration of the performance of algorithms JGS, STAIR1 and STAIR2 for the
matrix in 2

The results in Figure 4, 5 clearly highlight that the convergence of the JGS

method may deteriorate as the number of threads increase since the iteration
becomes close to a pure block Jacobi method. In particular for m = 24 threads in
both examples the method does not converge and the process stops as the max-
imum number of iterations has been reached. Finally, in Figure 6 we illustrate
the plots of completion time and speedup for the matrix generated by 4 with
n = 16, and r = 12. The matrix has size N = 64839 and bandwidth 13495. We
set ℓ = 256 so that the matrix is block banded. Since the entries are very rapidly
decaying away from the main diagonal all methods perform quite well and the
number of iterations in the JGS method is quite insensitive to the number of
threads.

Concerning the parallel performance, we recall that the server has only 24
combined physical cores, and going above 12 required communication between
the different CPUs, which inevitably reduces the efficiency of the parallelization.
When the number of threads is quite small it is generally observed that the bigger
the block size, the shorter is the execution time. Differently, as the number

0

50

100

150

200

250

300

350

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(a) Completion-time plot for the matrix in 3

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

0 5000 10000 15000 20000 25000

R
es

id
ua

l

Iteration

STAIR1

STAIR2

JGS 1 threads

JGS 24 threads

Residual Plot

(b) Residual plot for the matrix in 3

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(c) Speedup plot for the matrix in 3

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

E
ffi

ci
en

cy

Num. Threads

STAIR1

STAIR2

JGS

Efficiency Plot

(d) Efficiency plot for the matrix in 3

Fig. 5: Illustration of the performance of algorithms JGS, STAIR1 and STAIR2 for the
matrix in 3

of threads increases small blocks promote the parallelism. The reason can be
attributed to two main factors: load balancing and communication overhead. In
Figure 7 we show the the speedup plot for the test 3 with ℓ = 512 and ℓ = 1024,
respectively. The comparison with the results reported in Figure 5 with ℓ = 2048
indicates some improvements. These effects are highlighted in all the conducted
experiments. Considering that most consumer hardware has between 2 and 8 or
16 cores, this shows that the proposed method is generally well tuned for the
currently available architectures.

4 Conclusions

This paper presents the results of a preliminary experimental investigation of
the performance of a stationary iterative method based on a block staircase
splitting for solving singular systems of linear equations arising in Markov chain
modeling. From the experiments presented, we can deduce that the method is

0

1

2

3

4

5

6

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(a) Completion-time plot for the matrix in 4

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(b) Speedup plot for the matrix in 4

Fig. 6: Illustration of the performance of algorithms JGS, STAIR1 and STAIR2 for the
matrix in 4

well suited for solving block banded or more generally localized systems in a
shared-memory parallel computing environment. The parallel implementation
has been benchmarked using several Markovian models. In the future we plan to
examine the performance of block staircase splittings in a distributed comput-
ing environment and, moreover, their use as preconditioners for other iterative
methods.

References

1. Ahmadi, A., Manganiello, F., Khademi, A., Smith, M.C.: A parallel Jacobi-
embedded Gauss-Seidel method. IEEE Transactions on Parallel and Distributed
Systems 32, 1452–1464 (2021)

2. Amodio, P., Mazzia, F.: A parallel Gauss-Seidel method for block tridi-
agonal linear systems. SIAM J. Sci. Comput. 16(6), 1451–1461 (1995),
https://doi.org/10.1137/0916084

3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dongarra, J.D.J., Croz, J.D.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’
Guide. SIAM, Philadelphia, Pennsylvania, USA, third edn. (1999)

4. Benzi, M.: Localization in matrix computations: theory and applications. In: Ex-
ploiting hidden structure in matrix computations: algorithms and applications,
Lecture Notes in Math., vol. 2173, pp. 211–317. Springer, Cham (2016)

5. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathemat-
ical sciences, Classics in Applied Mathematics, vol. 9. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA (1994),
https://doi.org/10.1137/1.9781611971262, revised reprint of the 1979 origi-
nal

6. Bylina, J., Bylina, B.: Merging Jacobi and Gauss-Seidel methods for solv-
ing Markov chains on computer clusters. In: 2008 International Multiconfer-
ence on Computer Science and Information Technology. pp. 263–268 (2008).
https://doi.org/10.1109/IMCSIT.2008.4747250

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(a) Completion-time plot with ℓ = 512

0

20

40

60

80

100

120

140

0 5 10 15 20 25

S
ec

.

Num. Threads

STAIR1

STAIR2

JGS

Completion Time Plot

(b) Completion-time plot with ℓ = 1024

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(c) Speedup plot with ℓ = 512

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
U

p

Num. Threads

Optimal SpeedUp

STAIR1

STAIR2

JGS

SpeedUp Plot

(d) Speedup plot with ℓ = 1024

Fig. 7: Illustration of the completion time and speedup plot for the matrix 3 with
different block sizes

7. Dudin, S., Dudin, A., Kostyukova, O., Dudina, O.: Effective algorithm for compu-
tation of the stationary distribution of multi-dimensional level-dependent Markov
chains with upper block-Hessenberg structure of the generator. J. Comput. Appl.
Math. 366, 112425, 17 (2020), https://doi.org/10.1016/j.cam.2019.112425

8. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor-vector multi-
plications in stochastic automata networks. J. ACM 45(3), 381–414 (1998),
https://doi.org/10.1145/278298.278303

9. Gemignani, L., Meini, B.: Relaxed fixed point iterations for matrix equa-
tions arising in Markov chain modeling. Numerical Algorithms (2023).
https://doi.org/https://doi.org/10.1007/s11075-023-01496-y

10. Gemignani, L., Poloni, F.: Comparison theorems for splittings of M-
matrices in (block) Hessenberg form. BIT 62(3), 849–867 (2022),
https://doi.org/10.1007/s10543-021-00899-4

11. Ghadiyali, H.S.: Partial Gauss-Seidel Approach to Solve Large Scale
Linear Systems. Master’s thesis, Florida State University (2016),
http://purl.flvc.org/fsu/fd/FSU 2016SP Ghadiyali fsu 0071N 13280

12. Klevans, R.L., Stewart, W.J.: From queueing networks to markov chains:
The XMARCA interface. Performance Evaluation 24(1), 23–45 (1995).
https://doi.org/https://doi.org/10.1016/0166-5316(95)00007-K

13. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra sub-
programs for Fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (sep 1979),
https://doi.org/10.1145/355841.355847

14. Lu, H.: Stair matrices and their generalizations with applications to iterative meth-
ods. I. A generalization of the successive overrelaxation method. SIAM J. Numer.
Anal. 37(1), 1–17 (1999), https://doi.org/10.1137/S0036142998343294

15. Marek, I., Szyld, D.B.: Iterative and semi-iterative methods for computing sta-
tionary probability vectors of Markov operators. Math. Comp. 61(204), 719–731
(1993), https://doi.org/10.2307/2153249

16. Marek, I., Szyld, D.B.: Comparison of convergence of general stationary iterative
methods for singular matrices. SIAM J. Matrix Anal. Appl. 24(1), 68–77 (2002),
https://doi.org/10.1137/S0895479800375989

17. Meyer, C.: Matrix analysis and applied linear algebra. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA (2000),
https://doi.org/10.1137/1.9780898719512

18. O’Neil, J., Szyld, D.B.: A block ordering method for sparse matrices. SIAM J. Sci.
Statist. Comput. 11(5), 811–823 (1990), https://doi.org/10.1137/0911048

19. Ortega, J.M., Voigt, R.G.: Solution of partial differential equations
on vector and parallel computers. SIAM Rev. 27(2), 149–240 (1985),
https://doi.org/10.1137/1027055

20. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in Markov
chain modeling. Operations Research 40(6), 1156–1179 (1992),
http://www.jstor.org/stable/171728

21. Saad, Y.: Iterative methods for sparse linear systems. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, second edn. (2003),
https://doi.org/10.1137/1.9780898718003

22. Sanderson, C., Curtin, R.: Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software 1, 26 (2016)

23. Sanderson, C., Curtin, R.: A user-friendly hybrid sparse matrix class in C++. In:
Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) Mathematical Software
– ICMS 2018. pp. 422–430. Springer International Publishing, Cham (2018)

24. Schneider, H.: Theorems on M -splittings of a singular M -matrix which
depend on graph structure. Linear Algebra Appl. 58, 407–424 (1984),
https://doi.org/10.1016/0024-3795(84)90222-2

25. Shang, Y.: A distributed memory parallel Gauss-Seidel algorithm for lin-
ear algebraic systems. Comput. Math. Appl. 57(8), 1369–1376 (2009),
https://doi.org/10.1016/j.camwa.2009.01.034

26. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton
University Press, Princeton, NJ (1994)

27. Touzene, A.: A new parallel algorithm for solving large-scale Markov chains. The
Journal of Supercomputing 67(1), 239–253 (2014)

28. Wallin, D., Löf, H., Hagersten, E., Holmgren, S.: Multigrid and Gauss-Seidel
smoothers revisited: parallelization on chip multiprocessors. In: Egan, G.K., Mu-
raoka, Y. (eds.) Proceedings of the 20th Annual International Conference on Su-
percomputing, ICS 2006, Cairns, Queensland, Australia, June 28 - July 01, 2006.
pp. 145–155. ACM (2006), https://doi.org/10.1145/1183401.1183423

